
CS319: Scientific Computing (with C++)

Week 4: Introduction to classes
9am 02 March, and 4pm, 03 March, 2021

1 Part 1: Functions - default arguments
2 Part 2: Binary and bitwise operators
3 Part 3: Recursion
4 Part 4: Encapsulation
5 Part 5: class

Example – a stack
class

6 Part 6: Constructors
7 Part 7: Dynamic memory allocation

Pointers
DMA
new

delete

8 Part 8: Destructors
The Constructor again...

CS319 — Week 4: Introduction to classes 1/47

New class times

Mon Tue Wed Thu Fri
9 – 10 LECTURE 7

10 – 11 LAB
11 – 12
12 – 1
1 – 2 LAB
2 – 3
3 – 4
4 – 5 LECTURE

1 The recorded class on Wednesdays at 9.00 moves to Tuesday at
9.00.

2 The recorded class on Thursdays at 16.00 stays.

3 New lab times: Tuesday 10.00-10:50, and 13.00-13.50. You
should try to attend at least one of these.

4 Little, if any, of the “lab” times will be recorded.

5 This may all change again towards the end of the semester.

CS319 — Week 4: Introduction to classes 2/47

Part 1: Functions - default arguments

CS319 – Week 4
Week 4: Introduction to classes

Start of ...

PART 1: Functions - default
argument values

CS319 — Week 4: Introduction to classes 3/47

Part 1: Functions - default arguments

In C++, one can also define functions that have assigned default values:

int mult(int a, int b=1, int c=1) // from 00Mult.cpp

{

return(a * b * c);

}

This means that, if the user fails to provide the second and third
arguments to the function, it is assumed that they are both 1.

Example

std::cout << "mult(1) = " << mult(1);

std::cout << "mult(1,2) = " << mult(1,2);

std::cout << "mult(1,2,3) = " << mult(1,2,3);

CS319 — Week 4: Introduction to classes 4/47

Part 1: Functions - default arguments

CS319 – Week 3
Week 4: Introduction to classes

END OF PART 1

CS319 — Week 4: Introduction to classes 5/47

Part 2: Binary and bitwise operators

CS319 – Week 4
Week 4: Introduction to classes

Start of ...

PART 2: Binary and bitwise
operators

CS319 — Week 4: Introduction to classes 6/47

Part 2: Binary and bitwise operators

Last week, we say that all data in C++ (and all other languages, etc) is
really stored in binary.

To help us get a better understanding of binary numbers, and operations
on them, we’ll now study how to convert numbers from decimal (Base
10) to binary (Base 2).

This will also motivate an example of programming a recursive function
in C++.

First, recall that a decimal (i.e., base 10) integer is made up of the
digits 0, 1, 2, ... 9, and that the kth digit (from the right) is the
coefficient of 10k−1.

CS319 — Week 4: Introduction to classes 7/47

Part 2: Binary and bitwise operators

Next, recall that a binary (base 2) integer is made up of the “bits” 0

and 1, and that the kth digit (from the right) is the coefficient of 2k−1.

Example: Here’s how to convert from binary to decimal.

CS319 — Week 4: Introduction to classes 8/47

Part 2: Binary and bitwise operators

There are several important operations on binary numbers, that don’t
really have decimal equivalents, including

Bit-wise AND:

Bit-wise OR:

Bit-wise EXCLUSIVE OR (XOR):

These are implemented in C++ using &, |, and ^, respectively.

CS319 — Week 4: Introduction to classes 9/47

Part 2: Binary and bitwise operators

To check how these operators work, we’ll need to be able to convert from
binary to decimal:

01Binary.cpp

std:: string Int_to_Binary(int a)

46 {

std:: string A="";

48 for (int i=(int)log2(a); i>=0; i--)

{

50 if (a >= pow(2,i))

{

52 A=A+"1";

a=a-pow(2,i);

54 }

else

56 A=A+"0";

}

58 return(A);

}

We’ll return to a recursion-based implementation later...

CS319 — Week 4: Introduction to classes 10/47

Part 2: Binary and bitwise operators

Next, the calling part (modified from the actual code to simplify
formatting):

01Binary.cpp (main function)

int a, b, c;

std::cout << "Input two integers: ";

std::cin >> a >> b;

std::cout << "You entered: " << a << " and " << b;

std::cout << a << " = " << Int_to_Binary(a) << std::endl;

std::cout << b << " = " << Int_to_Binary(b) << std::endl;

c = a^b;

std::cout << "XOR: a^b = " << c << " = " << Int_to_Binary(c);

c = a&b;

std::cout << "AND: a&b = " << c << " = " << Int_to_Binary(c);

c = a|b;

std::cout << " OR: a|b = " << c << " = " << Int_to_Binary(c);

CS319 — Week 4: Introduction to classes 11/47

Part 2: Binary and bitwise operators

CS319 – Week 3
Week 4: Introduction to classes

END OF PART 2

CS319 — Week 4: Introduction to classes 12/47

Part 3: Recursion

CS319 – Week 4
Week 4: Introduction to classes

Start of ...

PART 3: Recursion

CS319 — Week 4: Introduction to classes 13/47

Part 3: Recursion

Many problems in scientific computing can be solved by replacing the
problem by a similar but simpler one, and solving that instead.

Here are a few very simplistic examples:

Suppose we want to compute x = ab, where b is a positive integer.
We could first compute ab−1, and then set x = (a)(ab−1). The
process can be repeated:

Suppose we want to compute x = n!, where n is a positive integer.
We could first compute (n− 1)!, and then compute x = (n)(n− 1)!.

Both these are candidates for computation by recursion.

CS319 — Week 4: Introduction to classes 14/47

Part 3: Recursion

02Power.cpp

10 float Power(float a, unsigned int b); // compute a to power of b

int main()

12 {

float a, c;

14 int b;

16 std::cout << "Input float , a, and nonnegative integer , b: ";

std::cin >> a >> b;

18 std::cout << "You entered: a=" << a << " and b=" << b;

20 c = Power(a,b);

std::cout << a << " to the power of "<< b << " is " << c;

22 return (0);

}

float Power(float a, unsigned int b)

26 {

if (b==0)

28 return (1);

else

30 return(a*Power(a, b-1));

}

CS319 — Week 4: Introduction to classes 15/47

Part 3: Recursion

As mentioned above, we can write a recursive decimal-to-binary
converter. Here it is below. Can you work out how it works?

// A simple example of a recursive algorithm:

2 // converting from decimal to binary

// Based on Shapira "Solving PDEs in C++", Section 1.18

4 #include <iostream >

#include <math.h>

6 int Binary(int a); // return the binary representation of a

int main(void)

8 {

...

10 }

12 int Binary(int a)

{

14 if (a<=1)

return(a);

16 else

return (10* Binary(a/2) + a%2);

18 }

CS319 — Week 4: Introduction to classes 16/47

Part 3: Recursion

CS319 – Week 3
Week 4: Introduction to classes

END OF PART 3

CS319 — Week 4: Introduction to classes 17/47

Part 4: Encapsulation

CS319 – Week 4
Week 4: Introduction to classes

Start of ...

PART 4: Encapsulation

CS319 — Week 4: Introduction to classes 18/47

Part 4: Encapsulation

Encapsulation

Idea: create a single entity in a program that combines data with the
program code (i.e., functions) that manipulate that data.
In C++, a description/definition of such entities is called a class, and an
instance of such an entity is called an object.

That is, like a variable is a single instance for a float (for example),
then an object is a single instance of a class.

A class should be thought of as an Abstract Data Type (ADT): a
specialised type of variable that the user can define.

There are many important examples of “built-in” C++ classes, such as
string, and objects, such as cin and cout. But we’ll leave those until
later, and first study how to make our own.

CS319 — Week 4: Introduction to classes 19/47

Part 4: Encapsulation

The next bit is really important: not just to C++, but for writing robust
scientific computing code.

Within an object, code and data may be either

Private: accessible only to another part of that object, or

Public: other parts of the program can access it even though it
belongs to a particular object. The public parts of an object provide
an interface to the object for other parts of the program.

It is referred to a “data hiding”, an important concept in software
design.

CS319 — Week 4: Introduction to classes 20/47

Part 4: Encapsulation

CS319 – Week 3
Week 4: Introduction to classes

END OF PART 4

CS319 — Week 4: Introduction to classes 21/47

Part 5: class

CS319 – Week 4
Week 4: Introduction to classes

Start of ...

PART 5: class

CS319 — Week 4: Introduction to classes 22/47

Part 5: class Example – a stack

In C++, encapsulation is implemented using the class keyword. The
example we’ll consider is a stack – a LIFO (Last In First Out) queue.

. .

There is already a C++ implementation of a stack. It is part of the
Standard Template Library (STL). We reinvent the wheel here only
because it is a nice example that includes most of the key concepts
associated with classes in C++. We will study the STL later in CS319.

. .

The name of our class will be MyStack. It will permit two primary
operations:

an item may be added to the top of the stack: push() ;

an item may be removed from the top of the stack: pop().

These then are our interfaces to the stack. Hence these will be public.

CS319 — Week 4: Introduction to classes 23/47

Part 5: class Example – a stack

For the stack itself, the following must be maintained:

an array containing the items in the contents;

a counter/index to the top of the stack.

These are private to the class.

We choose this example because it is obvious that

push() and pop() are the interfaces to the object–they are declared
as public ;

the contents of the stack, and the counter of the number of objects
in it, need only be visible to the object itself; hence they are private.

In our example there is also a public function to initialise the stack.

CS319 — Week 4: Introduction to classes 24/47

Part 5: class class

The basic syntax for defining a class:

class class-name {
private:

. . . // private functions and variables

public:
. . . // public functions and variables

};

class-name becomes a new object type—one can now declare objects
to be of type class-name .

This is only a declaration. Therefore,

functions are not defined, though the prototype is given,

variables are declared but are not initialised,

the declaration block is delineated by { and }, and terminated with a
semicolon.

CS319 — Week 4: Introduction to classes 25/47

Part 5: class class

As mentioned our class has two private members

contents: a char array of length MAX STACK the array containing
the stacked items.

top: an int that stores the number of items on the stack.

It has three public member functions:

(a) init() sets the stack counter to 0. No arguments or return value.

(b) push() adds an item to the stack. One argument: the character to
be added.

(c) pop() takes no argument but returns the removed item.

class MyStack {

private:

char contents[MAX_STACK];

int top;

public:

void init(void);

void push(char c);

char pop(void);

};

CS319 — Week 4: Introduction to classes 26/47

Part 5: class function definitions

To define the functions associated with a particular class we use

1 the name of the class, followed by

2 the scope resolution operator :: , followed by

3 the name of the function.

We now define the three (public) functions: init(), push() and pop().

The init() is required only to set the value of top to zero:

void MyStack ::init(void)

{

top =0;

}

Note that we didn’t have to declare the (private) variable top.

CS319 — Week 4: Introduction to classes 27/47

Part 5: class function definitions

The push() function takes as its only argument a single character. It
adds the character to the stack and increments the index to the top of
the stack.

void MyStack ::push(char c) {

contents[top]=c;

top ++;

}

. .

The pop() function doesn’t take any
arguments (void). It removes the
item from the stack by returning the
top entry and decrementing top.

char MyStack ::pop(void) {

top --;

return(contents[top]);

}

The first item in the stack is at position 0, the second is a position 1, the
3rd is at position 2, etc. So when top=n then there are n items in the
stack but the top one is actually located in contents[n-1].

CS319 — Week 4: Introduction to classes 28/47

Part 5: class main()

Now that our class MyStack has been declared, and its functions defined,
we can declare objects to be of type MyStack, e.g.,

MyStack s1, s2;

We can refer to the functions s1.pop() and s2.push(c), say, because
these are public members of the class. We cannot refer to s1.top as this
variable is private to the class and is hidden from the rest of the program.

. .

To use the objects, we could have a main() function that behaves as
follows:

Declare and initialise a MyStack object s;

Push the characters ’C’,’S’,’3’,’1’,’9’ onto the stack;

The stack’s contents are popped and output to the console using
cout.

CS319 — Week 4: Introduction to classes 29/47

Part 5: class main()

03MyStack.cpp

int main(void) {

38 MyStack s;

40 s.init ();

42 s.push(’C’);

s.push(’S’);

44 s.push(’3’);

s.push(’1’);

46 s.push(’9’);

48 std::cout << "Popping ... " << std::endl;

50 std::cout << s.pop() << std::endl;

std::cout << s.pop() << std::endl;

52 std::cout << s.pop() << std::endl;

std::cout << s.pop() << std::endl;

54 std::cout << s.pop() << std::endl;

56 return (0);

CS319 — Week 4: Introduction to classes 30/47

Part 5: class main()

CS319 – Week 3
Week 4: Introduction to classes

END OF PART 5

CS319 — Week 4: Introduction to classes 31/47

Part 6: Constructors

CS319 – Week 4
Week 4: Introduction to classes

Start of ...

PART 6: Constructors

CS319 — Week 4: Introduction to classes 32/47

Part 6: Constructors

Suppose we wanted to change the MyStack class so that the user can
choose the maximum number of elements on the stack...

In the example above, the function init() is used explicitly to initialise
the variable top. However, there is an initialisation mechanism called a
Constructor that is built into the concept of a class.

CONSTRUCTOR

A Constructor is a public member function of a class
that shares the same name as the class, and

is executed whenever a new instance of that class is created.

CS319 — Week 4: Introduction to classes 33/47

Part 6: Constructors

Constructors may contain any code you like; but it is good practice to
only use them for initialization.

As an example, we’ll change the declaration of the stack class as shown
here:

class MyStack {

public:

MyStack(void); // Constructor. No return type

void push(char c);

char pop(void);

private:

char contents[MAX_STACK];

int top;

};

CS319 — Week 4: Introduction to classes 34/47

Part 6: Constructors

We then replace the init() function with:

MyStack :: MyStack(void)

{

top =0;

}

Note that the constructor as no explicit return type.

Now whenever an objects of type MyStack is created, e.g., with
MyStack s,

the function s.MyStack() is called automatically – and s.top is set to
zero.

CS319 — Week 4: Introduction to classes 35/47

Part 6: Constructors

CS319 – Week 3
Week 4: Introduction to classes

END OF PART 6

CS319 — Week 4: Introduction to classes 36/47

Part 7: Dynamic memory allocation

CS319 – Week 4
Week 4: Introduction to classes

Start of ...

PART 7: Dynamic memory
allocation

CS319 — Week 4: Introduction to classes 37/47

Part 7: Dynamic memory allocation Pointers

The next topic we’ll study is Dynamic Memory Allocation.
But first we need to get our heads around the topic of Pointers.

Take notes:

CS319 — Week 4: Introduction to classes 38/47

Part 7: Dynamic memory allocation Pointers

04Pointers.cpp

12 char a=’W’, b=’Q’;

char *where;

std::cout << "The variable \"a\" stores " << a << std::endl;

16 std::cout << "The variable \"b\" stores " << b << std::endl;

std::cout << "The variable \"a\" is stored at the address "

18 << (void *)&a << std::endl;

std::cout << "The variable \"b\" is stored at the address "

20 << (void *)&b << std::endl;

22 where = &a;

std::cout << "The variable \"where \" stores "

24 << (void *) where << std::endl;

std::cout << "... and that in turn stores "

26 << *where << std::endl;

CS319 — Week 4: Introduction to classes 39/47

Part 7: Dynamic memory allocation DMA

Our stack example from earlier is quite limited in many ways. One of
then is that the stacks can only store at most MAX STACK items.

It would be useful if

we could have stacks of different sizes, and

the user/programmer could choose the size.

To add this functionality, we will use two new (to us) C++ operators for
dynamic memory allocation and deallocation: new and delete. (There
are also functions malloc(), calloc() and free() inherited from C).

CS319 — Week 4: Introduction to classes 40/47

Part 7: Dynamic memory allocation new

The new operator is used in C++ to allocate memory. The basic form is
var = new type

where type is the specifier of the object for which you want to allocate
memory and var is a pointer to that type.

If insufficient memory is available then new will return a NULL pointer or
generate an exception.

To use new allocate space for the integer top and initialise it to zero:
top = new int(0);

To dynamically allocate an array:

First declare a pointer of the right type:
char *contents;

Then use new

contents = new char[MAX STACK];

CS319 — Week 4: Introduction to classes 41/47

Part 7: Dynamic memory allocation delete

When it is no longer needed, the operator delete releases the memory
allocated to an object.

The basic syntax is
delete var;

where var is a pointer previously allocated with new.

To “delete” an array we use a slightly different syntax:
delete [] array;

where array is a pointer to an array allocated with new.

CS319 — Week 4: Introduction to classes 42/47

Part 7: Dynamic memory allocation delete

We now make the following modifications to the stack implementation
(for full implementation, see 05MyStackConstructor.cpp)

class MyStack {

private:

char *contents;

int top, maxsize;

public:

MyStack (void);

MyStack (unsigned int StackSize);

void push(char c);

char pop(void);

};

Here we have changed
contents so that it is a
pointer.

MyStack::MyStack(void)

{

contents = new char [MAX_STACK];

top=0;

}

CS319 — Week 4: Introduction to classes 43/47

Part 7: Dynamic memory allocation delete

CS319 – Week 3
Week 4: Introduction to classes

END OF PART 7

CS319 — Week 4: Introduction to classes 44/47

Part 8: Destructors

CS319 – Week 4
Week 4: Introduction to classes

Start of ...

PART 8: Destructors

CS319 — Week 4: Introduction to classes 45/47

Part 8: Destructors

Complementing the idea of a constructor is a destructor. This function is
called

for a local object – whenever it goes out of scope,

for a global object – when the program ends.

The name of the destructor is the same as the class, but preceded by a tilde:

class MyStack {

private:

char *contents;

int top;

public:

MyStack(void);

~MyStack(void);

void push(char c);

char pop();

};

MyStack::~MyStack()

{

delete [] contents;

}

CS319 — Week 4: Introduction to classes 46/47

Part 8: Destructors The Constructor again...

The example we had earlier of a constructor was particularly basic, not
least because is its parameter list is void. More commonly, one passes
arguments to the constructor that can be used, e.g.,

to set the value of a data member;

dynamically size an array using new.

However, one should still provide a default constructor (i.e., one with no
arguments), or one with a default argument list.

class MyStack

{

private:

char *contents;

int top;

public:

MyStack(void);

MyStack(unsigned int MyStackSize);

void push(char c);

char pop(void);

};

MyStack::MyStack(void)

{

top=0;

contents = new char[MAX_STACK];

}

MyStack::MyStack(unsigned int StackSize)

{

top=0;

contents = new char[StackSize];

}

CS319 — Week 4: Introduction to classes 47/47

	New class times
	Part 1: Functions - default arguments
	Part 2: Binary and bitwise operators
	Part 3: Recursion
	Part 4: Encapsulation
	Part 5: class
	Example – a stack
	class
	function definitions
	main()

	Part 6: Constructors
	Part 7: Dynamic memory allocation
	Pointers
	DMA
	new
	delete

	Part 8: Destructors
	The Constructor again...

