
CS319: Scientific Computing (with C++)

Week 5: Streams and files
9am, 09 March, and 4pm, 10 March, 2021

1 Part 1: Review of classes
Constructors

2 Part 2: Destructors & Constructors
Destructors
Constructor again

3 Part 3: I/O streams as objects
manipulators

4 Part 4 (i): Files
ifstream and ofstream

5 Part 4 (ii): Files
open a file
Reading from the file

6 Part 5: Portable Bitmap Format (pbm)
7 Part 6: Templates

Motivation
Function Templates

CS319 — Week 5: Streams and files 1/50

Usual reminders...

Mon Tue Wed Thu Fri
9 – 10 LECTURE 7

10 – 11 LAB
11 – 12
12 – 1
1 – 2 LAB
2 – 3
3 – 4
4 – 5 LECTURE

1 We’ll have recorded classes on Tuesdays at 9.00 and Thursdays at
16.00.

2 Lab times: Tuesday 10.00-10:50, and 13.00-13.50. You should
try to attend at least one of these.

3 A short introduction to the lab will be recorded.

4 There will be no recorded class next Wednesday (St. Patrick’s Day).

CS319 — Week 5: Streams and files 2/50

Part 1: Review of classes

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 1: Review of classes

CS319 — Week 5: Streams and files 3/50

Part 1: Review of classes

class
In C++, we defined new classed with the class keyword.
An instance of the class is called an “object”.
A class combines by data and functions.

Within a class, code and data may be either

Private: accessible only to another part of that object, or

Public: other parts of the program can access it.

Roughly,

keep data elements private,

make function elements public.

CS319 — Week 5: Streams and files 4/50

Part 1: Review of classes

The basic syntax for defining a class:

class class-name {
private:

. . . // private functions and variables

public:
. . . // public functions and variables

};

class-name becomes a new object type—one can now declare objects
to be of type class-name .

This is only a declaration. Therefore,

functions are not defined, though the prototype is given,

variables are declared but are not initialised,

the declaration block is delineated by { and }, and terminated with a
semicolon.

use scope resolution operator :: to combine a class name and
element/member name.

CS319 — Week 5: Streams and files 5/50

Part 1: Review of classes Constructors

CONSTRUCTOR

A Constructor is a public member function of a class.
It has the same name as the class.

It’s return type is not specified explicitly.

It is executed whenever a new instance of that class is created.

Constructors may contain any code you like; but it is good practice to
only use them for initialization and, especially Dynamic memory
allocation (see Part 7 of Week 4).

CS319 — Week 5: Streams and files 6/50

Part 1: Review of classes Constructors

CS319 – Week 5
Week 5: Streams and files

END OF PART 1

CS319 — Week 5: Streams and files 7/50

Part 2: Destructors & Constructors

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 2: Destructors and
Constructors

CS319 — Week 5: Streams and files 8/50

Part 2: Destructors & Constructors Destructors

Complementing the idea of a constructor is a destructor. This function is
called

for a local object – whenever it goes out of scope,

for a global object – when the program ends.

The name of the destructor is the same as the class, but preceded by a tilde.

Recall the MyStack example from last week:

class MyStack {

private:

char *contents;

int top;

public:

MyStack(void);

~MyStack(void);

void push(char c);

char pop();

};

MyStack::~MyStack()

{

delete [] contents;

}

CS319 — Week 5: Streams and files 9/50

Part 2: Destructors & Constructors Constructor again

The example we had earlier of a constructor was particularly basic, not
least because is its parameter list is void. More commonly, one passes
arguments to the constructor that can be used, e.g.,

to set the value of a data member;

dynamically size an array using new.

However, one should still provide a default constructor (i.e., one with no
arguments), or one with a default argument list.

class MyStack

{

private:

char *contents;

int top;

public:

MyStack(void);

MyStack(unsigned int MyStackSize);

void push(char c);

char pop(void);

};

MyStack::MyStack(void)

{

top=0;

contents = new char[MAX_STACK];

}

MyStack::MyStack(unsigned int StackSize)

{

top=0;

contents = new char[StackSize];

}

CS319 — Week 5: Streams and files 10/50

Part 2: Destructors & Constructors Constructor again

CS319 – Week 5
Week 5: Streams and files

END OF PART 2

CS319 — Week 5: Streams and files 11/50

Part 3: I/O streams as objects

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 3: I/O streams as objects

CS319 — Week 5: Streams and files 12/50

Part 3: I/O streams as objects cout, cin

I/O means “Input/Output. So far, we have taken input from the
keyboard, typically using cin, and sent output to a terminal window,
using cout.

These are examples of streams: flows of data to or from your program.
Moreover, they are examples of objects in C++.

In this section, we’ll study how to manipulate these streams in C++,
including writing to and reading from files.

But first, some more information about cout and cin.

CS319 — Week 5: Streams and files 13/50

Part 3: I/O streams as objects cout, cin

The objects cout and cin are objects and are manipulated by their
methods, i.e., public member functions and operators.

Methods:

width(int x) – minimum number of characters for next output,

fill(char x) – character used to fill with in the case that the
width needs to be elongated to fill the minimum.

precision(int x) – sets the number of significant digits for
floating-point numbers.

CS319 — Week 5: Streams and files 14/50

Part 3: I/O streams as objects cout, cin

Code – width

for (int i=65; i<123; i++)

{

std::cout.width(8);

std::cout << i;

std::cout.width(3);

std::cout << (char) i;

if ((i%5) == 4)

std::cout << std::endl;

}

Output
65 A 66 B 67 C ...

70 F 71 G 72 H ...

75 K 76 L 77 M ...

80 P 81 Q 82 R ...

85 U 86 V 87 W

90 Z 91 [92 \

95 _ 96 ‘ 97 a

100 d 101 e 102 f

105 i 106 j 107 k

110 n 111 o 112 p

115 s 116 t 117 u

120 x 121 y 122 z

CS319 — Week 5: Streams and files 15/50

Part 3: I/O streams as objects cout, cin

Code – width, fill

std::cout.fill(’0’);

for (int i=0; i<8; i++)

{

std::cout.width(6);

std::cout << rand()%200000 <<std::endl;

}

Output
089383

130886

092777

036915

147793

038335

085386

160492

CS319 — Week 5: Streams and files 16/50

Part 3: I/O streams as objects cout, cin

Code – precision

double Pi=3.1415926535;

for (int i=1; i<=10; i++)

{

std::cout.precision(i);

std::cout << "Pi (correct to "<< i << " digits) is "

<< Pi << std::endl;

}

Output
Pi (correct to 1 digits) is 3

Pi (correct to 2 digits) is 3.1

Pi (correct to 3 digits) is 3.14

Pi (correct to 4 digits) is 3.142

Pi (correct to 5 digits) is 3.1416

Pi (correct to 6 digits) is 3.14159

Pi (correct to 7 digits) is 3.141593

Pi (correct to 8 digits) is 3.1415927

Pi (correct to 9 digits) is 3.14159265

Pi (correct to 10 digits) is 3.141592654

CS319 — Week 5: Streams and files 17/50

Part 3: I/O streams as objects manipulators

setw – like width

left – Left justifies output in field width. Used after setw(n).

right – right justify.

endl – inserts a newline into the stream and calls flush.

flush – forces an output stream to write any buffered characters

dec – changes the output format of number to be in decimal format

oct – octal format

hex – hexadecimal format

showpoint – show the decimal point and some zeros with whole
numbers

Others: setprecision(n), fixed, scientific, boolalpha, noboolalpha, ...

Need to include iomanip

CS319 — Week 5: Streams and files 18/50

Part 3: I/O streams as objects manipulators

All of the C++ programs we have looked at so far took their input from
the standard input stream : this was usually the keyboard.

Example:

std::cout << "Enter an inteter: ";

std::cin >> i;

Although, for example, the standard input stream can be redirected
to a file, it is usually necessary to open a file from within the program
and take the data from there.

The same is true for writing to a file.

To do either of these takes in C++ we create a file stream and use it just
as we would cin or cout.

CS319 — Week 5: Streams and files 19/50

Part 3: I/O streams as objects manipulators

CS319 – Week 5
Week 5: Streams and files

END OF PART 3

CS319 — Week 5: Streams and files 20/50

Part 4 (i): Files

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 4 (i): Files

CS319 — Week 5: Streams and files 21/50

Part 4 (i): Files

All of the C++ programs we have looked at so far take their input from
the standard input stream , which is usually the keyboard. Example:

std::cout << "Enter an inteter: ";

std::cin >> i;

Although the standard input stream can be redirected to be, for
example, a file (easily done on a Mac and on Linux), it is usually
necessary to open a file from within the program and take the data
from there. The data is then processed and written to a new file.

CS319 — Week 5: Streams and files 22/50

Part 4 (i): Files

To achieve either of these tasks in C++, we create a file stream and use
it just as we would cin or cout.

We’ll start by looking at a simple example:

(i) open a file,

(ii) count the number of characters,

(iii)save this number to a new file.

Once we have the basic idea, we’ll take a closer look at each operation
(opening, reading, writing).

CS319 — Week 5: Streams and files 23/50

Part 4 (i): Files ifstream and ofstream

When working with files,
we need to include the
fstream header file.

To read from a file,
declare an object of type
ifstream; to write to a
file, declare an object of
type ofstream.

Open the file by calling
the open() member
function.

To read a single
character, can use
InFile.get()

01CountChars.cpp

#include <iostream >

10 #include <fstream >

#include <cstdlib >

int main(void)

14 {

std:: ifstream InFile;

16 std:: ofstream OutFile;

char c;

std::cout << "Processing ..."

20 << " CPlusPlusTerms.txt";

std::cout << "See file Output.txt for"

22 << " more information.";

InFile.open("CPlusPlusTerms.txt");

24 OutFile.open("Output.txt");

26 int i=0;

InFile.get(c);

CS319 — Week 5: Streams and files 24/50

Part 4 (i): Files close a file

If there are no more
characters left in the input
stream, then InFile.eof()

evaluates as true .

Use the steam objects just as
you would use cin or cout:
InFile >> data or
OutFile << data.

Close the files:
InFile.close(),
OutFile.close()

01CountChars.cpp

while(! InFile.eof()) {

28 i++;

InFile.get(c);

30 }

32 OutFile <<

"CPlusPlusTerms.txt contains "

34 << i << " characters \n";

36 InFile.close ();

OutFile.close ();

return (0);

40 }

CS319 — Week 5: Streams and files 25/50

Part 4 (ii): Files

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 4 (ii): Files

This section is split into two parts.
Part 4–(i) was recorded Tuesday, 9 March

Part 4–(ii) was recorded Wednesday, 10 March

CS319 — Week 5: Streams and files 26/50

Part 4 (ii): Files open a file

The method open works differently for ifstream and ofstream:

InFile.open() Opens an existing file for reading,

OutFile.open() Opens a file for writing. If it already exists, its
contents are overwritten.

The first argument to open() contains the file name, and is an array of
characters. More precisely, it is of type const char*.

For example, we could have opened the input file in the last example
with:

char InFileName [20]="CPlusPlusTerms.txt";

...

std::cout << "Processing the contents of "

<< InFileName << std::endl;

...

InFile.open(InFileName);

Note that this char array is not the same as a string. The precursor to
C++, C, handled strings this way, so they are known as C-style strings.

CS319 — Week 5: Streams and files 27/50

Part 4 (ii): Files open a file

If we do want to use C++ style strings (and we probably do), we have to
do it as follows. In this example we’ll prompt the user to enter the file
name.

std:: ifstream InFile;

std:: string InFileName;

std::cout << "Input the name of a file: " << std::endl;

std::cin >> InFileName;

InFile.open(InFileName.c_str ())

CS319 — Week 5: Streams and files 28/50

Part 4 (ii): Files open a file

If you are typing the file name, there is a chance you will mis-type it, or
have it placed in the wrong folder: so always check that the file was
opened successfully. To do this, use the fail() function, which
evaluates as true if the file was not opened correctly:

if (InFile.fail()){

std::cerr << "Error - cannot open " <<

InFileName << std::endl;

exit(1);

}

A better approach in this case might be to use a while loop, so the user
can re-enter the filename. See 02CountCharsV02.cpp

CS319 — Week 5: Streams and files 29/50

Part 4 (ii): Files open a file

Recall that if you open an existing file for output, its contents are lost. If
you wish to append data to the end of an existing file, use

To open an existing file and append to its contents, use
OutFile.open("Output.txt", std::ios::app);

. .

Other related functions include is open() and, of course, close()

. .

Above we also saw that InFile.eof() evaluates as true if we have
reached the end of the (read) file.

Related to this are

InFile.clear(); // Clear the eof flag

InFile.seekg(std::ios::beg); // rewind to begining.

CS319 — Week 5: Streams and files 30/50

Part 4 (ii): Files Reading from the file

In the above example, we read a character from the file using
InFile.get(c). This reads the next character from the InFile stream
and stores it in c. It will do this for any character, even non-printable
ones (such as the newline char). For example, if we wanted to extend our
code above to count the number of lines in the file, as well as the
number of characters, we could use:

std:: ifstream InFile;

int CharCount=0, LineCount =0;

...

// Open the file, etc.

InFile.get(c);

while(! InFile.eof()) {

CharCount ++;

if (c == ’\n’)

LineCount ++;

InFile.get(c);

}

CS319 — Week 5: Streams and files 31/50

Part 4 (ii): Files Reading from the file

Alternatively, we could the stream extraction operator:
InFile >> c;

However, this would ignore non-printable characters.

One can also use get() to read C-style strings. However, to achieve this
task, it can be better to use getline(), which allows us to specify a
delimiter character.

CS319 — Week 5: Streams and files 32/50

Part 4 (ii): Files Reading from the file

CS319 – Week 5
Week 5: Streams and files

END OF PART 4

CS319 — Week 5: Streams and files 33/50

Part 5: Portable Bitmap Format (pbm)

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 5: Portable Bitmap
Format (pbm)

We’ll introduce this image format as a motivation for working with files.

CS319 — Week 5: Streams and files 34/50

Part 5: Portable Bitmap Format (pbm)

Image analysis and processing is an important sub-field of scientific
computing.

There are many different formats: you are probably familiar with
JPEG/JPG, GIF, PNG, BMP, TIFF, and others. One of the simplest
formats is the Netpbm format, which you can read about at
https://en.wikipedia.org/wiki/Netpbm_format

There are three variants:

Portable BitMap files represent black-and-white images, and have file
extension .pbm

Portable GrayMap files represent gray-scale images, and have file
extension .pgm

Portable PixMap files represent 8-big colour (RGB) images, and have file
extension .ppm

In this example, we’ll focus on .pbm files.

CS319 — Week 5: Streams and files 35/50

https://en.wikipedia.org/wiki/Netpbm_format

Part 5: Portable Bitmap Format (pbm)

CS319.pbm

1 P1
25 9

3 0
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

5 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0

7 0 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

9 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0

11 0

The first line is the “magic number”. Here “P1” means that it is a
PBM format ASCII (i.e, plain-text) file.

The second line has two integer representing the number of columns
and rows of pixels in the image, respectively.

The remaining lines store the matrix of pixel values: 0 is “white”,
and 1 is “black”.

CS319 — Week 5: Streams and files 36/50

Part 5: Portable Bitmap Format (pbm)

The file 03FlipPBM.cpp shows how to read such an image, and output
its negative. (See notes from class).

03FlipPBM.cpp

std:: ifstream InFile;

16 std:: ofstream OutFile;

std:: string InFileName , OutFileName;

std::cout << "Input the name of a PBM file: " << std::endl;

20 std::cin >> InFileName;

InFile.open(InFileName.c_str ());

CS319 — Week 5: Streams and files 37/50

Part 5: Portable Bitmap Format (pbm)

03FlipPBM.cpp

while (InFile.fail())

24 {

std::cout << "Cannot open " << InFileName << " for reading."

26 << std::endl;

std::cout << "Enter another file name : ";

28 std::cin >> InFileName;

InFile.open(InFileName.c_str ());

30 }

std::cout << "Successfully opened " << InFileName << std::endl;

CS319 — Week 5: Streams and files 38/50

Part 5: Portable Bitmap Format (pbm)

03FlipPBM.cpp

// Open the output file

34 OutFileName = "Negative_"+InFileName;

OutFile.open(OutFileName.c_str ());

std:: string line;

38 // Read the "P1" at the start of the file

InFile >> line;

40 OutFile << "P1" << std::endl;

42 // Read the number of columns and rows

unsigned int rows , cols;

44 InFile >> cols >> rows;

OutFile << cols << " " << rows << std::endl;

std::cout << "read: cols=" << cols << ", rows="

48 << rows << std::endl;

CS319 — Week 5: Streams and files 39/50

Part 5: Portable Bitmap Format (pbm)

03FlipPBM.cpp

50 for (unsigned int i=0; i<rows; i++)

{

52 for (unsigned int j=0; j<cols; j++)

{

54 int pixel;

InFile >> pixel;

56 OutFile << 1-pixel << " ";

}

58 OutFile << std::endl;

}

60 InFile.close ();

OutFile.close ();

std::cout << "Negative of " << InFileName << " written to "

64 << OutFileName << std::endl;

return (0);

CS319 — Week 5: Streams and files 40/50

Part 5: Portable Bitmap Format (pbm)

CS319 – Week 5
Week 5: Streams and files

END OF PART 5

CS319 — Week 5: Streams and files 41/50

Part 6: Templates

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 6: Templates

CS319 — Week 5: Streams and files 42/50

Part 6: Templates Motivation

We’ll now start building towards solving the problem of, given a VERY
long list of (pass)words, determine which ones occur most frequently.

The source of the data is the infamous RockYou password file, a list of
over 30,000,000 unencrypted passwords stolen from RockYou in 2009,
and now widely available online. The version we’ll work with was
provided by David Malone from Maynooth University, who used it in an
article Investigating the Distribution of Password Choices1

The benign reasons for wanting to do this include

We could use this as a way of testing the security of our own
systems;

Understanding how these attacks are done help up protect against
them.

We’ll solve part of the problem this week, and finish the rest next week.

1David Malone and Kevin Maher. Investigating the Distribution of Password
Choices. International conference on the World Wide Web (WWW). 19 April 2012.

CS319 — Week 5: Streams and files 43/50

http://en.wikipedia.org/wiki/RockYou#Controversy
http://www.maths.tcd.ie/~dwmalone/p/www2012.pdf

Part 6: Templates Motivation

We have now worked out that we need to do some list sorting. Presently,
we’ll recap on a sorting function that we used in Week 3. However, it
just sorted integers. We’ll need to sort list of strings, or perhaps lists of
objects belonging to a class we define. So we would like to write a sort

function that works for any datatype.

If we took our old Sort(int *list, int length) function (from
Week03/09Sort.cpp), we could rewrite it for (say)
strings: Sort(string *list, int length)

Most of the source code of the two functions would be identical: we’d
just replace several instances of the datatype int with string.

To avoid this repetition, and to allow us to write functions or class
generic datatypes, C++ provides templates.

Today we will only consider function templates. We’ll return to the
related idea of class templates another time.

CS319 — Week 5: Streams and files 44/50

Part 6: Templates Function Templates

To perform essentially identical operations for different types of data
compactly, use function templates.

Syntax: template <typename T> immediately precedes the
function definition. It means that we’ll be referring to the generic
datatype as T in the function definition.

Write a single function template definition. In it, the generic
datatype is named T.

Based on the argument types provided in calls to the function, the
compiler automatically creates functions to handle each type of call
appropriately.

In the example below, which you can find in detail in
04FunctionTemplate.cpp, we’ll write three functions:

(a) PrintList(MyType *x, int n)

(b) void Sort(MyType &a, MyType &b)

(c) void Sort(MyType *x, int n)

CS319 — Week 5: Streams and files 45/50

Part 6: Templates Function Templates

The function prototypes:

04FunctionTemplate.cpp

template <typename MyType>
14 vo id P r i n t L i s t (MyType ∗x , unsigned i n t n) ;

16 template <typename MyType>
vo id Sor t (MyType &a , MyType &b) ;

18

template <typename MyType>
20 vo id Sor t (MyType ∗ l i s t , unsigned i n t l e n g t h) ;

CS319 — Week 5: Streams and files 46/50

Part 6: Templates Function Templates

The (bubble) Sort functions:

04FunctionTemplate.cpp

template <typename MyType>
52 vo id Sor t (MyType &a , MyType &b) {

i f (a>b)
54 {

MyType tmp=a ;
56 a=b ;

b=tmp ;
58 }

}

template <typename MyType>
68 vo id Sor t (MyType ∗x , unsigned i n t n) {

f o r (i n t i=n−1; i >1; i −−)
70 f o r (i n t k=0; k< i ; k++)

Sor t (x [k] , x [k +1]) ;
72 }

CS319 — Week 5: Streams and files 47/50

Part 6: Templates Function Templates

04FunctionTemplate.cpp

22 i n t main (vo id)
{

24 i n t Numbers [8] ;
char L e t t e r s [8] ;

26

f o r (i n t i =0; i <8; i++)
28 Numbers [i]= rand ()%40;

30 f o r (i n t i =0; i <8; i++)
L e t t e r s [i]= ’A ’+rand ()%26;

CS319 — Week 5: Streams and files 48/50

Part 6: Templates Function Templates

04FunctionTemplate.cpp

s t d : : cout << ” Be fo r e s o r t i n g : ” << s t d : : e nd l ;
34 s t d : : cout << ”Numbers : ” ; P r i n t L i s t (Numbers , 8) ;

s t d : : cout << ” L e t t e r s : ” ; P r i n t L i s t (L e t t e r s , 8) ;
36

Sor t (Numbers , 8) ;
38 Sor t (L e t t e r s , 8) ;

40 s t d : : cout << ” A f t e r s o r t i n g : ” << s t d : : e nd l ;
s t d : : cout << ”Numbers : ” ; P r i n t L i s t (Numbers , 8) ;

42 s t d : : cout << ” L e t t e r s : ” ; P r i n t L i s t (L e t t e r s , 8) ;

Typical output
Before sorting:

Numbers: 23 6 17 35 33 15 26 12

Letters: B H C D A R Z O

After sorting:

Numbers: 6 12 15 17 23 26 33 35

Letters: A B C D H O R Z

CS319 — Week 5: Streams and files 49/50

Part 6: Templates Function Templates

CS319 – Week 5
Week 5: Streams and files

END OF PART 6

CS319 — Week 5: Streams and files 50/50

	Usual reminders...
	Part 1: Review of classes
	Constructors

	Part 2: Destructors & Constructors
	Destructors
	Constructor again

	Part 3: I/O streams as objects
	cout, cin
	manipulators

	Part 4 (i): Files
	ifstream and ofstream
	close a file

	Part 4 (ii): Files
	open a file
	Reading from the file

	Part 5: Portable Bitmap Format (pbm)
	Part 6: Templates
	Motivation
	Function Templates

