
CS319: Scientific Computing (with C++)

Week 5: Streams and files
9am, 09 March, and 4pm, 10 March, 2021

1 Part 1: Review of classes
Constructors

2 Part 2: Destructors & Constructors
Destructors
Constructor again

3 Part 3: I/O streams as objects
manipulators

4 Part 4: Files
ifstream and ofstream
open a file
Reading from the file

5 Part 5: Portable Bitmap Format (pbm)
6 Part 6: Templates

MotivationCS319 — Week 5: Streams and files 1/49

Annotations from Tuesday

Usual reminders...

Mon Tue Wed Thu Fri
9 – 10 LECTURE ✗

10 – 11 LAB
11 – 12
12 – 1
1 – 2 LAB
2 – 3
3 – 4
4 – 5 LECTURE

1 We’ll have recorded classes on Wednesdays at 9.00 and Thursdays at
16.00.

2 Lab times: Tuesday 10.00-10:50, and 13.00-13.50. You should
try to attend at least one of these.

3 A short introduction to the lab will be recorded.

CS319 — Week 5: Streams and files 2/49

Part 1: Review of classes

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 1: Review of classes

CS319 — Week 5: Streams and files 3/49

Part 1: Review of classes

class
In C++, we defined new classed with the class keyword.
An instance of the class is called an “object”.
A class combines by data and functions.

Within a class, code and data may be either

Private: accessible only to another part of that object, or

Public: other parts of the program can access it.

Roughly,

keep data elements private,

make function elements public.

CS319 — Week 5: Streams and files 4/49

Part 1: Review of classes

The basic syntax for defining a class:

class class-name {
private:

. . . // private functions and variables

public:
. . . // public functions and variables

};

class-name becomes a new object type—one can now declare objects
to be of type class-name .

This is only a declaration. Therefore,

functions are not defined, though the prototype is given,

variables are declared but are not initialised,

the declaration block is delineated by { and }, and terminated with a
semicolon.

use scope resolution operator :: to combine a class name and
element/member name.

CS319 — Week 5: Streams and files 5/49

Part 1: Review of classes Constructors

CONSTRUCTOR

A Constructor is a public member function of a class.
It has the same name as the class.

It’s return type is not specified explicitly.

It is executed whenever a new instance of that class is created.

Constructors may contain any code you like; but it is good practice to
only use them for initialization and, especially Dynamic memory
allocation (see Part 7 of Week 4).

CS319 — Week 5: Streams and files 6/49

Part 1: Review of classes Constructors

CS319 – Week 5
Week 5: Streams and files

END OF PART 1

CS319 — Week 5: Streams and files 7/49

Part 2: Destructors & Constructors

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 2: Destructors and
Constructors

CS319 — Week 5: Streams and files 8/49

Part 2: Destructors & Constructors Destructors

Complementing the idea of a constructor is a destructor. This function is
called

for a local object – whenever it goes out of scope,

for a global object – when the program ends.

The name of the destructor is the same as the class, but preceded by a tilde.

Recall the MyStack example from last week:

class MyStack {

private:

char *contents;

int top;

public:

MyStack(void);

~MyStack(void);

void push(char c);

char pop();

};

MyStack::~MyStack()

{

delete [] contents;

}

CS319 — Week 5: Streams and files 9/49

Part 2: Destructors & Constructors Constructor again

The example we had earlier of a constructor was particularly basic, not
least because is its parameter list is void. More commonly, one passes
arguments to the constructor that can be used, e.g.,

to set the value of a data member;

dynamically size an array using new.

However, one should still provide a default constructor (i.e., one with no
arguments), or one with a default argument list.

class MyStack

{

private:

char *contents;

int top;

public:

MyStack(void);

MyStack(unsigned int MyStackSize);

void push(char c);

char pop(void);

};

MyStack::MyStack(void)

{

top=0;

contents = new char[MAX_STACK];

}

MyStack::MyStack(unsigned int StackSize)

{

top=0;

contents = new char[StackSize];

}

CS319 — Week 5: Streams and files 10/49

Part 2: Destructors & Constructors Constructor again

CS319 – Week 5
Week 5: Streams and files

END OF PART 2

CS319 — Week 5: Streams and files 11/49

Part 3: I/O streams as objects

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 3: I/O streams as objects

CS319 — Week 5: Streams and files 12/49

Part 3: I/O streams as objects cout, cin

I/O means “Input/Output. So far, we have taken input from the
keyboard, typically using cin, and sent output to a terminal window,
using cout.

These are examples of streams: flows of data to or from your program.
Moreover, they are examples of objects in C++.

In this section, we’ll study how to manipulate these streams in C++,
including writing to and reading from files.

But first, some more information about cout and cin.

CS319 — Week 5: Streams and files 13/49

Part 3: I/O streams as objects cout, cin

The objects cout and cin are objects and are manipulated by their
methods, i.e., public member functions and operators.

Methods:

width(int x) – minimum number of characters for next output,

fill(char x) – character used to fill with in the case that the
width needs to be elongated to fill the minimum.

precision(int x) – sets the number of significant digits for
floating-point numbers.

CS319 — Week 5: Streams and files 14/49

Part 3: I/O streams as objects cout, cin

Code – width

for (int i=65; i<123; i++)

{

std::cout.width(8);

std::cout << i;

std::cout.width(3);

std::cout << (char) i;

if ((i%5) == 4)

std::cout << std::endl;

}

Output
65 A 66 B 67 C ...

70 F 71 G 72 H ...

75 K 76 L 77 M ...

80 P 81 Q 82 R ...

85 U 86 V 87 W

90 Z 91 [92 \

95 _ 96 ‘ 97 a

100 d 101 e 102 f

105 i 106 j 107 k

110 n 111 o 112 p

115 s 116 t 117 u

120 x 121 y 122 z

CS319 — Week 5: Streams and files 15/49

Part 3: I/O streams as objects cout, cin

Code – width, fill

std::cout.fill(’0’);

for (int i=0; i<8; i++)

{

std::cout.width(6);

std::cout << rand()%200000 <<std::endl;

}

Output
089383

130886

092777

036915

147793

038335

085386

160492

CS319 — Week 5: Streams and files 16/49

Part 3: I/O streams as objects cout, cin

Code – precision

double Pi=3.1415926535;

for (int i=1; i<=10; i++)

{

std::cout.precision(i);

std::cout << "Pi (correct to "<< i << " digits) is "

<< Pi << std::endl;

}

Output
Pi (correct to 1 digits) is 3

Pi (correct to 2 digits) is 3.1

Pi (correct to 3 digits) is 3.14

Pi (correct to 4 digits) is 3.142

Pi (correct to 5 digits) is 3.1416

Pi (correct to 6 digits) is 3.14159

Pi (correct to 7 digits) is 3.141593

Pi (correct to 8 digits) is 3.1415927

Pi (correct to 9 digits) is 3.14159265

Pi (correct to 10 digits) is 3.141592654

CS319 — Week 5: Streams and files 17/49

Part 3: I/O streams as objects manipulators

setw – like width

left – Left justifies output in field width. Used after setw(n).

right – right justify.

endl – inserts a newline into the stream and calls flush.

flush – forces an output stream to write any buffered characters

dec – changes the output format of number to be in decimal format

oct – octal format

hex – hexadecimal format

showpoint – show the decimal point and some zeros with whole
numbers

Others: setprecision(n), fixed, scientific, boolalpha, noboolalpha, ...

Need to include iomanip

CS319 — Week 5: Streams and files 18/49

Part 3: I/O streams as objects manipulators

All of the C++ programs we have looked at so far took their input from
the standard input stream : this was usually the keyboard.

Example:

std::cout << "Enter an inteter: ";

std::cin >> i;

Although, for example, the standard input stream can be redirected
to a file, it is usually necessary to open a file from within the program
and take the data from there.

The same is true for writing to a file.

To do either of these takes in C++ we create a file stream and use it just
as we would cin or cout.

CS319 — Week 5: Streams and files 19/49

Part 3: I/O streams as objects manipulators

CS319 – Week 5
Week 5: Streams and files

END OF PART 3

CS319 — Week 5: Streams and files 20/49

Part 4: Files

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 4: Files

CS319 — Week 5: Streams and files 21/49

Part 4: Files

All of the C++ programs we have looked at so far take their input from
the standard input stream , which is usually the keyboard. Example:

std::cout << "Enter an inteter: ";

std::cin >> i;

Although the standard input stream can be redirected to be, for
example, a file (easily done on a Mac and on Linux), it is usually
necessary to open a file from within the program and take the data
from there. The data is then processed and written to a new file.

CS319 — Week 5: Streams and files 22/49

Part 4: Files

To achieve either of these tasks in C++, we create a file stream and use
it just as we would cin or cout.

We’ll start by looking at a simple example:

(i) open a file,

(ii) count the number of characters,

(iii)save this number to a new file.

Once we have the basic idea, we’ll take a closer look at each operation
(opening, reading, writing).

CS319 — Week 5: Streams and files 23/49

Part 4: Files ifstream and ofstream

When working with files,
we need to include the
fstream header file.

To read from a file,
declare an object of type
ifstream; to write to a
file, declare an object of
type ofstream.

Open the file by calling
the open() member
function.

To read a single
character, can use
InFile.get()

01CountChars.cpp

#include <iostream >

10 #include <fstream >

#include <cstdlib >

int main(void)

14 {

std:: ifstream InFile;

16 std:: ofstream OutFile;

char c;

std::cout << "Processing ..."

20 << " CPlusPlusTerms.txt";

std::cout << "See file Output.txt for"

22 << " more information.";

InFile.open("CPlusPlusTerms.txt");

24 OutFile.open("Output.txt");

26 int i=0;

InFile.get(c);

CS319 — Week 5: Streams and files 24/49

Part 4: Files close a file

If there are no more
characters left in the input
stream, then InFile.eof()

evaluates as true .

Use the steam objects just as
you would use cin or cout:
InFile >> data or
OutFile << data.

Close the files:
InFile.close(),
OutFile.close()

01CountChars.cpp

while(! InFile.eof()) {

28 i++;

InFile.get(c);

30 }

32 OutFile <<

"CPlusPlusTerms.txt contains "

34 << i << " characters \n";

36 InFile.close ();

OutFile.close ();

return (0);

40 }

CS319 — Week 5: Streams and files 25/49

