
CS319: Scientific Computing (with C++)

Week 5: Streams and files
9am, 09 March, and 4pm, 10 March, 2021

1 Part 1: Review of classes
Constructors

2 Part 2: Destructors & Constructors
Destructors
Constructor again

3 Part 3: I/O streams as objects
manipulators

4 Part 4 (i): Files
ifstream and ofstream

5 Part 4 (ii): Files
open a file
Reading from the file

6 Part 5: Portable Bitmap Format (pbm)
7 Part 6: TemplatesCS319 — Week 5: Streams and files 1/50

Part 4 (ii): Files

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 4 (ii): Files

This section is split into two parts.
Part 4–(i) was recorded Tuesday, 9 March

Part 4–(ii) was recorded Wednesday, 10 March

CS319 — Week 5: Streams and files 26/50

Part 4 (ii): Files open a file

The method open works differently for ifstream and ofstream:

InFile.open() Opens an existing file for reading,

OutFile.open() Opens a file for writing. If it already exists, its
contents are overwritten.

The first argument to open() contains the file name, and is an array of
characters. More precisely, it is of type const char*.

For example, we could have opened the input file in the last example
with:

char InFileName [20]="CPlusPlusTerms.txt";

...

std::cout << "Processing the contents of "

<< InFileName << std::endl;

...

InFile.open(InFileName);

Note that this char array is not the same as a string. The precursor to
C++, C, handled strings this way, so they are known as C-style strings.

CS319 — Week 5: Streams and files 27/50

Part 4 (ii): Files open a file

If we do want to use C++ style strings (and we probably do), we have to
do it as follows. In this example we’ll prompt the user to enter the file
name.

std:: ifstream InFile;

std:: string InFileName;

std::cout << "Input the name of a file: " << std::endl;

std::cin >> InFileName;

InFile.open(InFileName.c_str ())

CS319 — Week 5: Streams and files 28/50

Part 4 (ii): Files open a file

If you are typing the file name, there is a chance you will mis-type it, or
have it placed in the wrong folder: so always check that the file was
opened successfully. To do this, use the fail() function, which
evaluates as true if the file was not opened correctly:

if (InFile.fail()){

std::cerr << "Error - cannot open " <<

InFileName << std::endl;

exit(1);

}

A better approach in this case might be to use a while loop, so the user
can re-enter the filename. See 02CountCharsV02.cpp

CS319 — Week 5: Streams and files 29/50

Part 4 (ii): Files open a file

Recall that if you open an existing file for output, its contents are lost. If
you wish to append data to the end of an existing file, use

To open an existing file and append to its contents, use
OutFile.open("Output.txt", std::ios::app);

. .

Other related functions include is open() and, of course, close()

. .

Above we also saw that InFile.eof() evaluates as true if we have
reached the end of the (read) file.

Related to this are

InFile.clear(); // Clear the eof flag

InFile.seekg(std::ios::beg); // rewind to begining.

CS319 — Week 5: Streams and files 30/50

Part 4 (ii): Files Reading from the file

In the above example, we read a character from the file using
InFile.get(c). This reads the next character from the InFile stream
and stores it in c. It will do this for any character, even non-printable
ones (such as the newline char). For example, if we wanted to extend our
code above to count the number of lines in the file, as well as the
number of characters, we could use:

std:: ifstream InFile;

int CharCount =0, LineCount =0;

...

// Open the file, etc.

InFile.get(c);

while(! InFile.eof()) {

CharCount ++;

if (c == ’\n’)

LineCount ++;

InFile.get(c);

}

CS319 — Week 5: Streams and files 31/50

Part 4 (ii): Files Reading from the file

Alternatively, we could the stream extraction operator:
InFile >> c;

However, this would ignore non-printable characters.

One can also use get() to read C-style strings. However, to achieve this
task, it can be better to use getline(), which allows us to specify a
delimiter character.

CS319 — Week 5: Streams and files 32/50

Part 4 (ii): Files Reading from the file

CS319 – Week 5
Week 5: Streams and files

END OF PART 4

CS319 — Week 5: Streams and files 33/50

Part 5: Portable Bitmap Format (pbm)

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 5: Portable Bitmap
Format (pbm)

We’ll introduce this image format as a motivation for working with files.

CS319 — Week 5: Streams and files 34/50

Part 5: Portable Bitmap Format (pbm)

Image analysis and processing is an important sub-field of scientific
computing.

There are many different formats: you are probably familiar with
JPEG/JPG, GIF, PNG, BMP, TIFF, and others. One of the simplest
formats is the Netpbm format, which you can read about at
https://en.wikipedia.org/wiki/Netpbm_format

There are three variants:

Portable BitMap files represent black-and-white images, and have file
extension .pbm

Portable GrayMap files represent gray-scale images, and have file
extension .pgm

Portable PixMap files represent 8-big colour (RGB) images, and have file
extension .ppm

In this example, we’ll focus on .pbm files.

CS319 — Week 5: Streams and files 35/50

Part 5: Portable Bitmap Format (pbm)

CS319.pbm

1 P1
25 9

3 0
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

5 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0

7 0 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

9 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0

11 0

The first line is the “magic number”. Here “P1” means that it is a
PBM format ASCII (i.e, plain-text) file.

The second line has two integer representing the number of columns
and rows of pixels in the image, respectively.

The remaining lines store the matrix of pixel values: 0 is “white”,
and 1 is “black”.

CS319 — Week 5: Streams and files 36/50

Part 5: Portable Bitmap Format (pbm)

The file 03FlipPBM.cpp shows how to read such an image, and output
its negative. (See notes from class).

03FlipPBM.cpp

std:: ifstream InFile;

16 std:: ofstream OutFile;

std:: string InFileName , OutFileName;

std::cout << "Input the name of a PBM file: " << std::endl;

20 std::cin >> InFileName;

InFile.open(InFileName.c_str ());

CS319 — Week 5: Streams and files 37/50

Part 5: Portable Bitmap Format (pbm)

03FlipPBM.cpp

while (InFile.fail())

24 {

std::cout << "Cannot open " << InFileName << " for reading."

26 << std::endl;

std::cout << "Enter another file name : ";

28 std::cin >> InFileName;

InFile.open(InFileName.c_str ());

30 }

std::cout << "Successfully opened " << InFileName << std::endl;

CS319 — Week 5: Streams and files 38/50

Part 5: Portable Bitmap Format (pbm)

03FlipPBM.cpp

// Open the output file

34 OutFileName = "Negative_"+InFileName;

OutFile.open(OutFileName.c_str ());

std:: string line;

38 // Read the "P1" at the start of the file

InFile >> line;

40 OutFile << "P1" << std::endl;

42 // Read the number of columns and rows

unsigned int rows , cols;

44 InFile >> cols >> rows;

OutFile << cols << " " << rows << std::endl;

std::cout << "read: cols=" << cols << ", rows="

48 << rows << std::endl;

CS319 — Week 5: Streams and files 39/50

Part 5: Portable Bitmap Format (pbm)

03FlipPBM.cpp

50 for (unsigned int i=0; i<rows; i++)

{

52 for (unsigned int j=0; j<cols; j++)

{

54 int pixel;

InFile >> pixel;

56 OutFile << 1-pixel << " ";

}

58 OutFile << std::endl;

}

60 InFile.close ();

OutFile.close ();

std::cout << "Negative of " << InFileName << " written to "

64 << OutFileName << std::endl;

return (0);

CS319 — Week 5: Streams and files 40/50

Part 5: Portable Bitmap Format (pbm)

CS319 – Week 5
Week 5: Streams and files

END OF PART 5

CS319 — Week 5: Streams and files 41/50

Part 6: Templates

CS319 – Week 5
Week 5: Streams and files

Start of ...

PART 6: Templates

CS319 — Week 5: Streams and files 42/50

Part 6: Templates Motivation

We’ll now start building towards solving the problem of, given a VERY
long list of (pass)words, determine which ones occur most frequently.

The source of the data is the infamous RockYou password file, a list of
over 30,000,000 unencrypted passwords stolen from RockYou in 2009,
and now widely available online. The version we’ll work with was
provided by David Malone from Maynooth University, who used it in an
article Investigating the Distribution of Password Choices1

The benign reasons for wanting to do this include

We could use this as a way of testing the security of our own
systems;

Understanding how these attacks are done help up protect against
them.

We’ll solve part of the problem this week, and finish the rest next week.

1David Malone and Kevin Maher. Investigating the Distribution of Password
Choices. International conference on the World Wide Web (WWW). 19 April 2012.

CS319 — Week 5: Streams and files 43/50

Part 6: Templates Motivation

We have now worked out that we need to do some list sorting. Presently,
we’ll recap on a sorting function that we used in Week 3. However, it
just sorted integers. We’ll need to sort list of strings, or perhaps lists of
objects belonging to a class we define. So we would like to write a sort

function that works for any datatype.

If we took our old Sort(int *list, int length) function (from
Week03/09Sort.cpp), we could rewrite it for (say)
strings: Sort(string *list, int length)

Most of the source code of the two functions would be identical: we’d
just replace several instances of the datatype int with string.

To avoid this repetition, and to allow us to write functions or class
generic datatypes, C++ provides templates.

Today we will only consider function templates. We’ll return to the
related idea of class templates another time.

CS319 — Week 5: Streams and files 44/50

Part 6: Templates Function Templates

To perform essentially identical operations for different types of data
compactly, use function templates.

Syntax: template <typename T> immediately precedes the
function definition. It means that we’ll be referring to the generic
datatype as T in the function definition.

Write a single function template definition. In it, the generic
datatype is named T.

Based on the argument types provided in calls to the function, the
compiler automatically creates functions to handle each type of call
appropriately.

In the example below, which you can find in detail in
04FunctionTemplate.cpp, we’ll write three functions:

(a) PrintList(MyType *x, int n)

(b) void Sort(MyType &a, MyType &b)

(c) void Sort(MyType *x, int n)

CS319 — Week 5: Streams and files 45/50

Part 6: Templates Function Templates

The function declarations:

04FunctionTemplate.cpp

template <typename MyType>
14 vo id P r i n t L i s t (MyType ∗x , unsigned i n t n) ;

16 template <typename MyType>
vo id Sor t (MyType &a , MyType &b) ;

18

template <typename MyType>
20 vo id Sor t (MyType ∗ l i s t , unsigned i n t l e n g t h) ;

CS319 — Week 5: Streams and files 46/50

Part 6: Templates Function Templates

The (bubble) Sort functions:

04FunctionTemplate.cpp

template <typename MyType>
52 vo id Sor t (MyType &a , MyType &b) {

i f (a>b)
54 {

MyType tmp=a ;
56 a=b ;

b=tmp ;
58 }

}

template <typename MyType>
68 vo id Sor t (MyType ∗x , unsigned i n t n) {

f o r (i n t i=n−1; i >1; i −−)
70 f o r (i n t k=0; k< i ; k++)

Sor t (x [k] , x [k +1]) ;
72 }

CS319 — Week 5: Streams and files 47/50

Part 6: Templates Function Templates

04FunctionTemplate.cpp

22 i n t main (vo id)
{

24 i n t Numbers [8] ;
char L e t t e r s [8] ;

26

f o r (i n t i =0; i <8; i++)
28 Numbers [i]= rand ()%40;

30 f o r (i n t i =0; i <8; i++)
L e t t e r s [i]= ’A ’+rand ()%26;

CS319 — Week 5: Streams and files 48/50

Part 6: Templates Function Templates

04FunctionTemplate.cpp

s t d : : cout << ” Be fo r e s o r t i n g : ” << s t d : : e nd l ;
34 s t d : : cout << ”Numbers : ” ; P r i n t L i s t (Numbers , 8) ;

s t d : : cout << ” L e t t e r s : ” ; P r i n t L i s t (L e t t e r s , 8) ;
36

Sor t (Numbers , 8) ;
38 Sor t (L e t t e r s , 8) ;

40 s t d : : cout << ” A f t e r s o r t i n g : ” << s t d : : e nd l ;
s t d : : cout << ”Numbers : ” ; P r i n t L i s t (Numbers , 8) ;

42 s t d : : cout << ” L e t t e r s : ” ; P r i n t L i s t (L e t t e r s , 8) ;

Typical output
Before sorting:

Numbers: 23 6 17 35 33 15 26 12

Letters: B H C D A R Z O

After sorting:

Numbers: 6 12 15 17 23 26 33 35

Letters: A B C D H O R Z

CS319 — Week 5: Streams and files 49/50

Part 6: Templates Function Templates

CS319 – Week 5
Week 5: Streams and files

END OF PART 6

CS319 — Week 5: Streams and files 50/50

