
CS319: Scientific
Computing (with C++)

Week 6: The
Password
Problem

9am, 16 March, 2021

http://xkcd.com/936

CS319 — Week 6: The Password Problem 1/34

Usual reminders...

Mon Tue Wed Thu Fri
9 – 10 LECTURE ✗

10 – 11 LAB
11 – 12
12 – 1
1 – 2 LAB
2 – 3
3 – 4
4 – 5 LECTURE

1. This week, we have just one recorded class: Tuesdays at 9.00.

2. Lab times: Tuesday 10.00-10:50, and 13.00-13.50. You should
try to attend at least one of these.

3. A short introduction to the lab will be recorded.

CS319 — Week 6: The Password Problem 2/34

Usual reminders...

1 Part 1: A note on complexity

2 Part 2: Merge Sort
Why is Merge Sort is fast
Implementation

3 Part 3: Comparing in practice

4 Part 4: The Password problem
Algorithm (high-level)
Implementation

CS319 — Week 6: The Password Problem 3/34

Part 1: A note on complexity

CS319 – Week 6
Week 6: The Password Problem

Start of ...

PART 1: A note on complexity

CS319 — Week 6: The Password Problem 4/34

Part 1: A note on complexity

Before we introduce an algorithm that is “better” than Bubble Sort, we
need to explain what “better” means.

There are many ways that one algorithm could be considered superior to
another, for example:

� takes less time to run;

� takes less memory to run;

� takes less time to program;

� is more accurate;

� is more reliable;

� ...?

CS319 — Week 6: The Password Problem 5/34

Part 1: A note on complexity

Focusing on efficiency, we now need a way of discussing how the time
taken by an algorithm depends on the problem size.

The usual way to discuss this in in terms of the “Big O” notation, which
is use to classify how their run-times (for example) grow as the input size
grows.

For example, if we say an algorithm for a problem of size n has
complexity O(n2), then we mean there is some constant, C such that the
run-time is at most Cn2. We don’t really care too much about what C is.
For example, if Algorithm 1 had complexity 0.1n2, and Algorithm 2 had
complexity 100n, then...

CS319 — Week 6: The Password Problem 6/34

Part 1: A note on complexity

Focusing on efficiency, we now need a way of discussing how the time
taken by an algorithm depends on the problem size.

The usual way to discuss this in in terms of the “Big O” notation, which
is use to classify how their run-times (for example) grow as the input size
grows.

For example, if we say an algorithm for a problem of size n has
complexity O(n2), then we mean there is some constant, C such that the
run-time is at most Cn2. We don’t really care too much about what C is.
For example, if Algorithm 1 had complexity 0.1n2, and Algorithm 2 had
complexity 100n, then...

CS319 — Week 6: The Password Problem 6/34

Part 1: A note on complexity

The best to worst, some common complexities are

� O(1)

� O(log n)

� O(n)

� O(n log n)

� O(n2)

� O(n3)

� O(2n)

� O(n!)

CS319 — Week 6: The Password Problem 7/34

Part 1: A note on complexity

CS319 – Week 5
Week 6: The Password Problem

END OF PART 1

CS319 — Week 6: The Password Problem 8/34

Part 2: Merge Sort

CS319 – Week 6
Week 6: The Password Problem

Start of ...

PART 2: Marge Sort

CS319 — Week 6: The Password Problem 9/34

Part 2: Merge Sort

The Bubble Sort algorithm from last week is much too slow for the
project we have in mind: its worse-case complexity is O(N2) for a list of
length N.

Instead we’ll implement the Merge Sort algorithm. It has complexity
O(N logN).

Merge Sort

� Split the list into two smaller lists,

� Split each of those into 2 smaller lists.

� Keep doing this until each list is of length 1.

� A list of length 1 is already sorted, so...

� Reassemble each of your sub-lists by merging these sorted list.

CS319 — Week 6: The Password Problem 10/34

Part 2: Merge Sort

It is useful to write this as a recursive algorithm:

Recursive Merge Sort Algorithm

procedure mergesort(L = a1, a2, . . . , an)
if n > 1 then

m := floor(n/2)
L1 := (a1, a2, . . . , am)
L2 := (am+1, am+1, . . . , an)
L := merge

�
mergesort(L1),mergesort(L2)

�
.

end if

So we need two functions:

(i) A Merge() function to merge two sorted list

(ii) A MergeSort() function that
� splits the list in two,
� calls MergeSort() for each half
� calls the Merge() function

CS319 — Week 6: The Password Problem 11/34

Part 2: Merge Sort

Example (Merge Sort)

Show how Merge Sort would sort the list

9 5 1 2 6 3 4 9 4

CS319 — Week 6: The Password Problem 12/34

Part 2: Merge Sort Why is Merge Sort is fast

CS319 — Week 6: The Password Problem 13/34

Part 2: Merge Sort Why is Merge Sort is fast

CS319 — Week 6: The Password Problem 14/34

Part 2: Merge Sort Implementation

Our first function will take two sorted lists, and combine them.

00MergeSort.cpp

template <typename MyType >

56 void Merge(MyType *list1 , unsigned int length1 ,

MyType *list2 , unsigned int length2 ,

58 MyType *Merged)

{

60 unsigned int i=0, j=0;

for (unsigned int k=0; k<length1+length2; k++)

62 if ((i != length1) && ((j== length2)

|| (list1[i] <= list2[j]))) {

64 Merged[k] = list1[i];

i++;

66 }

else {

68 Merged[k] = list2[j];

j++;

70 }

}

CS319 — Week 6: The Password Problem 15/34

Part 2: Merge Sort Implementation

00MergeSort.cpp

template <typename MyType>
82 vo id MergeSort (MyType ∗ l i s t , unsigned i n t l e n g t h)

{
84 i f (l e n g t h <=1) // A l i s t o f l e n g t h 0 or 1 i s s o r t e d .

re tu rn ;
86 e l s e {

unsigned i n t m = (unsigned i n t) f l o o r ((double) l e n g t h / 2 . 0)
88 MyType ∗ l i s t 1 = new MyType [m] ;

MyType ∗ l i s t 2 = new MyType [l eng th−m] ;
90 f o r (unsigned i n t i =0; i<m; i++)

l i s t 1 [i]= l i s t [i] ;
92 f o r (unsigned i n t i =0; i<l eng th−m; i++)

l i s t 2 [i]= l i s t [m+i] ;
94 MergeSort (l i s t 1 , m) ;

MergeSort (l i s t 2 , l eng th−m) ;
96 Merge (l i s t 1 , m, l i s t 2 , l eng th−m, l i s t) ;

de l e te [] l i s t 1 ; de le te [] l i s t 2 ;
98 }

}
CS319 — Week 6: The Password Problem 16/34

Part 2: Merge Sort Implementation

CS319 – Week 5
Week 6: The Password Problem

END OF PART 2

CS319 — Week 6: The Password Problem 17/34

Part 3: Comparing in practice

CS319 – Week 6
Week 6: The Password Problem

Start of ...

PART 3: Comparing in practice

CS319 — Week 6: The Password Problem 18/34

Part 3: Comparing in practice

Today, we considered two sorting algorithms

� Bubble Sort which is conceptually simple, and has a worst-case
complexity of O(N2) for a list of length N.

� A recursive Merge Sort, which has a worst-case complexity of
O(N logN) for a list of length N.

This means that if we have a list of length N, then the expected time
taken for the methods are CBN

2 and CMN logN, for some constants CB

and CM .

CS319 — Week 6: The Password Problem 19/34

Part 3: Comparing in practice

We want to estimate these constants so that we can predict how long the
algorithm will take for some given N.

Before class, I ran both algorithms. Here is a snippet of the code I used,
and the output. Can we estimate how long each algorithm would
take for a list of length 32 million?

CS319 — Week 6: The Password Problem 20/34

Part 3: Comparing in practice

See 01CompareSorts.cpp for more details

f o r (i n t n=1000; n<=32000; n∗=2) {
40 f o r (i n t i =0; i<n ; i++)

Copy [i] = Numbers [i] ;
42 s t a r t=c l o c k () ;

Bubb l eSor t (Copy , n) ;
44 d i f f = (double) (c l o c k ()− s t a r t) ;

d i f f s e c o n d s = d i f f /CLOCKS PER SEC ;
46 C bubb le = d i f f s e c o n d s /((double) (n∗n)) ;

s t d : : cout << ”Bubble : n = ” << s t d : : setw (5) << n <<
48 ” took ” << s t d : : setw (8) << d i f f s e c o n d s <<

” seconds . C=” << C bubb le << s t d : : e nd l ;
50 }

Output (Bubble Sort):

Bubble: n = 1000 took 0.01468 seconds. C=1.468e-08

Bubble: n = 2000 took 0.0265 seconds. C=6.625e-09

Bubble: n = 4000 took 0.06219 seconds. C=3.887e-09

Bubble: n = 8000 took 0.2737 seconds. C=4.276e-09

Bubble: n = 16000 took 1.134 seconds. C=4.428e-09

Bubble: n = 32000 took 4.623 seconds. C=4.514e-09

CS319 — Week 6: The Password Problem 21/34

Part 3: Comparing in practice

See 01CompareSorts.cpp for more details

66 f o r (i n t n=1000; n<=32000; n∗=2) {
f o r (i n t i =0; i<n ; i++)

68 Copy [i] = Numbers [i] ;
s t a r t=c l o c k () ;

70 MergeSort (Copy , n) ;
d i f f = (double) (c l o c k ()− s t a r t) ;

72 d i f f s e c o n d s = d i f f /CLOCKS PER SEC ;
C merge= d i f f s e c o n d s /((double) (n∗ l o g2 (n))) ;

74 s t d : : cout << ”Merge : n = ” << s t d : : setw (5) << n <<
” took ” << s t d : : setw (5) << d i f f s e c o n d s <<

76 << ” seconds . C=” << C merge << s t d : : e nd l ;
}

Output (Merge Sort):

Merge: n = 1000 took 0.000245 seconds. C=2.458e-08

Merge: n = 2000 took 0.000425 seconds. C=1.938e-08

Merge: n = 4000 took 0.000873 seconds. C=1.824e-08

Merge: n = 8000 took 0.001754 seconds. C=1.691e-08

Merge: n = 16000 took 0.003692 seconds. C=1.652e-08

Merge: n = 32000 took 0.008756 seconds. C=1.828e-08

CS319 — Week 6: The Password Problem 22/34

Part 3: Comparing in practice

Question?
How long would it take to sort a list of length 32,000,000?

CS319 — Week 6: The Password Problem 23/34

Part 3: Comparing in practice

CS319 – Week 5
Week 6: The Password Problem

END OF PART 3

CS319 — Week 6: The Password Problem 24/34

