
CS319: Scientific
Computing (with C++)

Week 7: The
Password Problem;
Vectors & Matrices

9am, 23 March, and 4pm,
24 March, 2021

http://xkcd.com/936

[Originally, the Week 6 class was titled “The Password Problem”; but I didn’t actually

get ’round to it!]

CS319 — Week 7: The Password Problem; Vectors & Matrices 1/56

Usual reminders...

Mon Tue Wed Thu Fri
9 – 10 LECTURE ✗

10 – 11 LAB
11 – 12
12 – 1
1 – 2 LAB
2 – 3
3 – 4
4 – 5 LECTURE

1. Two recorded classes this week: Tuesday at 09.00, and Wednesday at
16.00.

2. Lab times: Tuesday 10.00-10:50, and 13.00-13.50. You should try to
attend at least one of these.

CS319 — Week 7: The Password Problem; Vectors & Matrices 2/56

Usual reminders...

1 Part 0: Feedback on Feedback

2 Part 1: The Password Problem
Algorithm (high-level)
Implementation

3 Part 2: Vectors and Matrices

4 Part 3: A vector class
Vectors
C++ “Project”
Adding two vectors
Exercise

5 Part 4: Solving Linear Systems
Introduction
Jacobi’s Method
Implementation

6 Part 5: A matrix class

MatVec

7 Part 6: Coding Jacobi’s method
Exercise

CS319 — Week 7: The Password Problem; Vectors & Matrices 3/56

Part 0: Feedback on Feedback

CS319 – Week 7
Week 7: The Password Problem; Vectors & Matrices

Start of ...

PART 0: Feedback on Feedback

CS319 — Week 7: The Password Problem; Vectors & Matrices 4/56

Part 0: Feedback on Feedback

� Thank-you to the 8 of you that completed the feedback form circulated by
Noelle Cannon.

� On average, it took 1 minutes, 49 seconds to complete.

� Mostly very positive.

� A small number of people are “unsure” or “disagree somewhat” with the
statement that “The feedback I have received is helping me to improve my
learning”. Which is fair! (Will do better!).

� The “live-but-recorded” lectures seem to be popular (which I was unsure
of, since the quality is not very high).

� Some good suggestions for improvement, including
� “An example of longer code from start to finish, I find it hard to see how

the code works as a whole when I only see snippets of code”. [Response:
Fair point. Although the entire code is made available separately, and the
snippets have line-numbers, I will do some start-to-finish examples soon.]

CS319 — Week 7: The Password Problem; Vectors & Matrices 5/56

Part 0: Feedback on Feedback

CS319 – Week 7
Week 7: The Password Problem; Vectors & Matrices

END OF PART 0

CS319 — Week 7: The Password Problem; Vectors & Matrices 6/56

Part 1: The Password Problem

CS319 – Week 7
Week 7: The Password Problem; Vectors & Matrices

Start of ...

PART 1: The Password Problem (finally!)

CS319 — Week 7: The Password Problem; Vectors & Matrices 7/56

Part 1: The Password Problem

Recall from last week that our aim is to take a very long list of passwords and
to determine the most common.

The source of the data is the infamous RockYou password file, a list of over
30,000,000 unencrypted passwords stolen from RockYou in 2009, and now
widely available online.

The file contains one password per line, in no particular order. The first few are

password

mekster11

mekster11

progr4sm

khas8950

emilio1

holiday2

caitlin1

CS319 — Week 7: The Password Problem; Vectors & Matrices 8/56

UserAccount-1e6.txt

Part 1: The Password Problem Algorithm (high-level)

Given a list of 30,000,000 passwords, how shall we work out which
10 (say) occur most frequently?

Idea:

1. Read the list of passwords from the file.

2. Sort the list alphabetically.

3. Calculate the frequency of each word, while removing duplicates.

4. Make a new list of the unique words, and their frequencies.

5. Sort this list by frequency.

CS319 — Week 7: The Password Problem; Vectors & Matrices 9/56

Part 1: The Password Problem Implementation

The first step is to open the file, and count the number of lines, and the length
of the longest line.

00SortPasswords.cpp

std:: ifstream InFile;
36 std:: string InFileName="UserAccount -1e4.txt";

38 InFile.open(InFileName.c_str ());
if (InFile.fail())

40 {
std::cerr << "Error: Cannot open " << InFileName <<

42 " for reading." << std::endl;
exit (1);

44 }

46 // Need to know the number of lines, and the length of the longest one
unsigned int LineCount , LongestLine;

48 LineCount = FileLength(InFile , LongestLine);

CS319 — Week 7: The Password Problem; Vectors & Matrices 10/56

Part 1: The Password Problem Implementation

00SortPasswords.cpp

116 int FileLength(std:: ifstream &InFile , unsigned int &LongestLine)
{

118 InFile.clear ();
InFile.seekg(std::ios::beg); // Rewind to the start of the file

120 char c;
InFile.get(c);

122 unsigned int LineCount =0, ThisLineLength =0;
LongestLine =0;

124 while(! InFile.eof()) {
if (c != ’\n’)

126 ThisLineLength ++;
else {

128 LineCount ++;
if (LongestLine <ThisLineLength)

130 LongestLine = ThisLineLength;
ThisLineLength =0;

132 }
InFile.get(c);

134 }
InFile.clear ();

136 InFile.seekg(std::ios::beg); // Rewind
return(LineCount);

138 }

CS319 — Week 7: The Password Problem; Vectors & Matrices 11/56

Part 1: The Password Problem Implementation

Now read the file (again) and store the passwords in an array. Again, we write
a single stand-alone function to do this.

00SortPasswords.cpp

150 void ReadPasswords(std:: ifstream &InFile , std:: string *Passwords ,
unsigned int &LineCount , unsigned int LongestLine)

152 {
int WordsRead =0;

154 char *c_string_word = new char [LongestLine +1];
for (unsigned int Line =0; Line < LineCount; Line ++)

156 {
InFile.getline(c_string_word , LongestLine +1);

158 Passwords[Line] = c_string_word;
if (Passwords[Line]. length () == 0) // that was a blank line

160 Line --;
else

162 WordsRead ++;
}

164 LineCount = WordsRead;
delete [] c_string_word;

166 }

CS319 — Week 7: The Password Problem; Vectors & Matrices 12/56

Part 1: The Password Problem Implementation

The next step (main, Line 55) is to call the MergeSort() function. We then
have the task of finding which word occurs most frequently. The approach is to
create to new arrays:

(a) a new list of strings, called UniqueWords, where each password appears,
but only once.

(b) a corresponding int array WordFreq. When we are done, if
WordFreq[k]=x, then UniqueWords[k] appeared x times in the original
list.

00SortPasswords.cpp

std:: string *UniqueWords = new std:: string [LineCount +1];
66 unsigned int *WordFreq = new unsigned int [LineCount +1];

unsigned int UniqueWordsFound;

// The first one can’t already be on the list
70 UniqueWords [0] = Passwords [0];

WordFreq [0] = 1;
72 UniqueWordsFound =1;

continued...

CS319 — Week 7: The Password Problem; Vectors & Matrices 13/56

Part 1: The Password Problem Implementation

00SortPasswords.cpp

74 for (unsigned int i=0; i<LineCount; i++)
{

76 if (Passwords[i] != UniqueWords[UniqueWordsFound -1])
{ // We have found a new word

78 UniqueWords[UniqueWordsFound] = Passwords[i];
WordFreq[UniqueWordsFound] = 1;

80 UniqueWordsFound ++;
}

82 else
WordFreq[UniqueWordsFound -1]++;

84 }

Explanation:

CS319 — Week 7: The Password Problem; Vectors & Matrices 14/56

Part 1: The Password Problem Implementation

Our next step is to create a list to the 10 most frequently used. This
information will be stored in two arrays:
string Top10[10];

int Top10Freq[10];

We will keep this list ordered. Then iterate through the UniqueWords list. If
we find a word that occurs more often than the (current) 10th most common,
we insert it into the list:

00SortPasswords.cpp

// Insert the 1st into list and set rest to 0
90 Top10 [0]= UniqueWords [0];

Top10Freq [0]= WordFreq [0];
92 for (int i=1; i<10; i++)

{
94 Top10[i]="";

Top10Freq[i]=0;
96 }

// See if this is at least as freq as the 10th most
98 for (unsigned int i=1; i<UniqueWordsFound; i++)

if (WordFreq[i] > Top10Freq [9])
100 Insert(Top10 , Top10Freq , UniqueWords[i], WordFreq[i]);

CS319 — Week 7: The Password Problem; Vectors & Matrices 15/56

Part 1: The Password Problem Implementation

To finish, we’ll see how the Insert function works:

00SortPasswords.cpp

// Insert NewString into the list Top10, ordered by
226 // NewCount in Top10Freq, bumping anything if needed

void Insert(std:: string *Top10 , unsigned int *Top10Freq ,
228 std:: string NewString , unsigned int NewCount)

{
230 if (NewCount <= Top10Freq [9])

std::cerr << "Error: new entry would not make top 10" << std::endl;
232 else

{
234 Top10 [9]= NewString;

Top10Freq [9]= NewCount;
236 for (int i=8; i>=0; i--)

{
238 if (Top10Freq[i]<NewCount)

{
240 Top10[i+1] = Top10[i];

Top10Freq[i+1] = Top10Freq[i];
242 Top10[i]= NewString;

Top10Freq[i]= NewCount;
244 }

}
246 }

}

CS319 — Week 7: The Password Problem; Vectors & Matrices 16/56

Part 1: The Password Problem Implementation

CS319 – Week 7
Week 7: The Password Problem; Vectors & Matrices

END OF PART 1

CS319 — Week 7: The Password Problem; Vectors & Matrices 17/56

Part 2: Vectors and Matrices

CS319 – Week 7
Week 7: The Password Problem; Vectors & Matrices

Start of ...

PART 2: Vectors and Matrices

Motivation

CS319 — Week 7: The Password Problem; Vectors & Matrices 18/56

Part 2: Vectors and Matrices

This is a course in Scientific Computing. “Sci-Comp” problems that we’ve
looked at so far include

� optimisation;

� searching and list processing.

Many of the more advanced and more general problems in Scientific Computing
are based around vectors and matrices. So one of our goals is to implement
C++ classes for such structures, along with standard operations such as
matrix-vector multiplication.

Along the way, we’ll learn about

� operator overloading;

� friend functions and the this pointer;

� static variables.

� and much more

CS319 — Week 7: The Password Problem; Vectors & Matrices 19/56

Part 2: Vectors and Matrices Motivation

Our first step will be to study some problems and applications so that, before
we design any classes or algorithms, we’ll know what we will use them for.
These problems include:

1. Basic analysis of matrices, for example with applications to image
processing, graphs and networks.

2. Solution of linear systems of equations, for example with applications to
data fitting;

3. Estimation of (certain) eigenvalues, for example with applications to
search engine analysis.

CS319 — Week 7: The Password Problem; Vectors & Matrices 20/56

Part 2: Vectors and Matrices Motivation

Of these problems, probably the most ubiquitous is the solution of (large)
systems of simultaneous equations.

That is, we want to solve a linear system of 3 equations in 4 unknowns: find
x1, x2, x3, such that

3x1 + 2x2 + 4x3 = 19

x1 + 2x2 + 3x3 = 14

5x1 + 1x2 + 6x3 = 25

This can be expressed as a matrix-vector equation:

CS319 — Week 7: The Password Problem; Vectors & Matrices 21/56

Part 2: Vectors and Matrices Motivation

More generally, the linear system of N equations in N unknowns: find
x1, x2, . . . , xN , such that

a11x1 + a12x2 + · · ·+ a1NxN = b1

a21x1 + a22x2 + · · ·+ a2NxN = b2

...

aN1x1 + aN2x2 + · · ·+ aNNxN = bN .

This, as a matrix-vector equation is:

a11 a12 . . . a1N
a21 a22 . . . a2N
...

. . .
...

aN1 aN2 . . . aNN

x1
x2
...
xN

 =

b1
b2
...
bN

So, to proceed, we need to be able to represent vectors and matrices in our
codes.

CS319 — Week 7: The Password Problem; Vectors & Matrices 22/56

Part 2: Vectors and Matrices Motivation

CS319 – Week 7
Week 7: The Password Problem; Vectors & Matrices

END OF PART 2

CS319 — Week 7: The Password Problem; Vectors & Matrices 23/56

Part 3: A vector class

CS319 – Week 7
Week 7: The Password Problem; Vectors & Matrices

Start of ...

PART 3: A vector class

CS319 — Week 7: The Password Problem; Vectors & Matrices 24/56

Part 3: A vector class Vectors

Our first focus will be on defining a class of vectors. Intuitively, we know it
needs the following components:

CS319 — Week 7: The Password Problem; Vectors & Matrices 25/56

Part 3: A vector class Vectors

Our first focus will be on defining a class of vectors. Intuitively, we know it
needs the following components:

CS319 — Week 7: The Password Problem; Vectors & Matrices 25/56

Part 3: A vector class C++ “Project”

Due to the level of detail in the matrix and vector classes, the following
example is divided into three source files:

1. Vector.h, the header file which contains the class definition. Include this
header file in another source file with:
#include "Vector.h"

Note that this is not <Vector.h>

2. Vector.cpp, which includes the code for the methods in the Vector class;

3. 01TestVector.cpp, a test stub.

The test stub can be compiled from the command line with
g++ -Wall Vector.cpp 01TestVector.cpp

Using Code::blocks you need to create a new “project” and include all three
source files.

CS319 — Week 7: The Password Problem; Vectors & Matrices 26/56

Part 3: A vector class C++ “Project”

See Vector.h for more details

// File: Vector.h (Version W07.1)
2 // Author: Niall Madden (NUI Galway) Niall.Madden@NUIGalway.ie

// Date: Week 7 of 2021-CS319
4 // What: Header file for vector class

// See also: Vector.cpp and 01TestVector.cpp
6 class Vector {

private:
8 double *entries;

unsigned int N;
10 public:

Vector(unsigned int Size =2);
12 ~Vector(void);

14 unsigned int size(void) {return N;};
double geti(unsigned int i);

16 void seti(unsigned int i, double x);

18 void print(void);
double norm(void); // Compute the 2-norm of a vector

20 void zero(void); // Set entries of vector to zero.
};

CS319 — Week 7: The Password Problem; Vectors & Matrices 27/56

Part 3: A vector class C++ “Project”

Vector.cpp

12 Vector :: Vector(unsigned int Size)
{

14 N = Size;
entries = new double[Size];

16 }

18 Vector ::~ Vector ()
{

20 delete [] entries;
}

22
void Vector ::seti(unsigned int i, double x)

24 {
if (i<N)

26 entries[i]=x;
else

28 std::cerr << "Vector ::seti ():�Index�out�of�bounds."
<< std::endl;

30 }

CS319 — Week 7: The Password Problem; Vectors & Matrices 28/56

Part 3: A vector class C++ “Project”

Vector.cpp continued

32 double Vector ::geti(unsigned int i)
{

34 if (i<N)
return(entries[i]);

36 else {
std::cerr << "Vector ::geti ():�Index�out�of�bounds."

38 << std::endl;
return (0);

40 }
}

42
void Vector :: print(void)

44 {
for (unsigned int i=0; i<N; i++)

46 std::cout << "[" << entries[i] << "]" << std::endl;
}

CS319 — Week 7: The Password Problem; Vectors & Matrices 29/56

Part 3: A vector class C++ “Project”

Vector.cpp continued

double Vector ::norm(void)
50 {

double x=0;
52 for (unsigned int i=0; i<N; i++)

x+= entries[i]* entries[i];
54 return (sqrt(x));

}
56

void Vector ::zero(void)
58 {

for (unsigned int i=0; i<N; i++)
60 entries[i]=0;

}

CS319 — Week 7: The Password Problem; Vectors & Matrices 30/56

Part 3: A vector class Adding two vectors

Here is a simple implementation of a function that computes c = αa+ βb

See 01TestVector.cpp for more details

14 // c = alpha*a + beta*b where a,b are vectors; alpha, beta are scalars
void VecAdd (vector &c, vector &a, vector &b,

16 double alpha , double beta)
{

18 unsigned int N;
N = a.size ();

if ((N != b.size ()))
22 std::cerr << "dimension mismatch in VecAdd " << std::endl;

else
24 {

for (unsigned int i=0; i<N; i++)
26 c.seti(i, alpha*a.geti(i)+beta*b.geti(i));

}
28 }

CS319 — Week 7: The Password Problem; Vectors & Matrices 31/56

Part 3: A vector class Exercise

Exercise (7.1)

The method Vector::norm() computes the Euclidian norm of a vector:

�v�2 =
� n�

i=1

(vi)
2�1/2.

This is a special case of the so-called p-norm:

�v�p =
� n�

i=1

|vi |p
�1/p

.

where p ≥ 1. Rewrite the Vector::norm() function so that it takes a double p

as an optional second argument, and computes the p-norm of the vector. If p
is not provided, it should default to p = 2. In addition, if p = 0 is given, it
should compute the max-norm:

�v�∞ =
n

max
i=1

|vi |.

CS319 — Week 7: The Password Problem; Vectors & Matrices 32/56

Part 3: A vector class Exercise

CS319 – Week 7
Week 7: The Password Problem; Vectors & Matrices

END OF PART Part 3

CS319 — Week 7: The Password Problem; Vectors & Matrices 33/56

Part 4: Solving Linear Systems

CS319 – Week 7
Week 7: The Password Problem; Vectors & Matrices

Start of ...

PART 4: Solving Linear Systems

We now move towards learning about matrices. When implementing the class,
we will learn about

� operator overloading;

� friend functions and the this pointer;

� static variables.

� and much more

CS319 — Week 7: The Password Problem; Vectors & Matrices 34/56

Part 4: Solving Linear Systems Introduction

One of the most ubiquitous problems in scientific computing is the solution of
(large) systems of simultaneous equations. That is, we want to solve a linear
system of N equations in N unknowns: find x1, x2, . . . , xN , such that

a11x1 + a12x2 + · · ·+ a1NxN = b1

a21x1 + a22x2 + · · ·+ a2NxN = b2

...

aN1x1 + aN2x2 + · · ·+ aNNxN = bN .

CS319 — Week 7: The Password Problem; Vectors & Matrices 35/56

Part 4: Solving Linear Systems Introduction

There are several classic approaches:

1. Gaussian Elimination;

2. Related: LU- and Cholesky factorisation;

3. Stationary Iterative schemes such as Jacobi’s method, Gauss-Seidel and
Successive Over Relaxation (SOR);

4. Krylov subspace methods, of which Conjugate Gradients is the best known;

5. Enhancements of the Methods 3 and 4, using preconditioning with, for
example, MultiGrid and Incomplete LU-factorisation.

Of the approaches listed above, Jacobi’s is by far the simplest to implement,
and so is the one we will study first.

See annotated slides.

CS319 — Week 7: The Password Problem; Vectors & Matrices 36/56

Part 4: Solving Linear Systems Jacobi’s Method

See video or annotated slides

CS319 — Week 7: The Password Problem; Vectors & Matrices 37/56

Part 4: Solving Linear Systems Jacobi’s Method

See video or annotated slides

CS319 — Week 7: The Password Problem; Vectors & Matrices 38/56

Part 4: Solving Linear Systems Jacobi’s Method

See video or annotated slides

CS319 — Week 7: The Password Problem; Vectors & Matrices 39/56

Part 4: Solving Linear Systems Jacobi’s Method

See video or annotated slides

CS319 — Week 7: The Password Problem; Vectors & Matrices 40/56

