/ |
CS319: Scientific
Computing (with C++)

Week 7: The

Ooooonooooooooon g

(COMON
(NmH;lm&() ORDER

WAS IT TROMBONE? NG,
ROUGADOR. AND ONE OF

Password Problem
Vectors & Matrices
M

9am, 23 March, and 4pm,
24 March, 2021

UNKNO\-’N THE Os WAS A ZERQ?
\
AND THERE WAS
Tr‘@ub4d or &3
s ¢ NOMERA
- u:EWONS 5o DIFRicOLTY To GoESSs: | | DIFFICLTY To REMEMBER
SupenT ' || o :
(YU (AN A0 A FBy PoRE B To P(NGUH;I"DN !
(oupuroon HARD
15 0Nt ONE OF A Few Common ORMATS)
~HH BITS OF ENTROPY
correct horse battery stople
correct horse St

0ooooo goooon
el Doooo . 0ooa

o

COMMON WORDS

DIFFCOLTY T0 GUESS:

HARD

YOUVE ALREADY
MEMOR'ZED IT'

DIFFICULTY TO REMEMBER:

.

[Originally, the Week 6 class was titled “The Password Problem”

get 'round to it!]

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS Tb GUESS,

http://xkcd.com/936

; but I didn't actually

CS319 — Week 7: The Password Problem; Vectors & Matrices

1/56

Usual reminders...

Mon Tue Wed Thu | Fri

9-10 X
10-11 LAB
11 -12

12-1

1-2 LAB

2-3

3-4

4 -5

1. Two recorded classes this week: Tuesday at 09.00, and Wednesday at

16.00.

2. Lab times: Tuesday 10.00-10:50, and 13.00-13.50. You should try to
attend at least one of these.

3. lab doe Menday ak spml!!

CS319 — Week 7: The Password Problem; Vectors & Matrices

2/56

Usual reminders...

Part 0: Feedback on Feedback

Part 1: The Password Problem
= Algorithm (high-level) TUQDM
m Implementation

Part 2: Vectors and Matrices

Part 3: A vector class
m Vectors
m C++ “Project”
m Adding two vectors

m Exercise
Part 4: Solving Linear Systems lo
m Introduction)

m Jacobi's Method
m Implementation

@A Part 5: A matrix class
m MatVec

Part 6: Coding Jacobi's method
m Exercise

CS319 — Week 7: The Password Problem; Vectors & Matrices 3/56

Part 0: Feedback on Feedback

CS319 — Week 7
Week 7: The Password Problem; Vectors & Matrices

Start of ...

PART 0: Feedback on Feedback

CS319 — Week 7: The Password Problem; Vectors & Matrices

4/56

Part 0: Feedback on Feedback

» Thank-you to the 8 of you that completed the feedback form circulated by
Noelle Cannon.

» On average, it took 1 minutes, 49 seconds to complete.

v

Mostly very positive.

» A small number of people are “unsure” or “disagree somewhat” with the
statement that “The feedback | have received is helping me to improve my
learning”. Which is fair! (Will do better!).

» The "live-but-recorded” lectures seem to be popular (which | was unsure
v of, since the quality is not very high).
» Some good suggestions for improvement, including
> “An example of longer code from start to finish, | find it hard to see how
the code works as a whole when | only see snippets of code”. [Response:
Fair point. Although the entire code is made available separately, and the
snippets have line-numbers, | will do some start-to-finish examples soon.]

CS319 — Week 7: The Password Problem; Vectors & Matrices 5/56

Part 0: Feedback on Feedback

CS319 — Week 7
Week 7: The Password Problem; Vectors & Matrices J

END OF PART 0

~N

CS319 — Week 7: The Password Problem; Vectors & Matrices 6/56

Part 1: The Password Problem

CS319 — Week 7
Week 7: The Password Problem; Vectors & Matrices J

Start of ...

PART 1: The Password Problem (finally!)

CS319 — Week 7: The Password Problem; Vectors & Matrices l 7/56

Part 1: The Password Problem ,

(wWeeh?t) 7

Recall from last week that our aim is to take a very ong list of passwords and
to determine the most common.

The source of the data is the infamous RockYou password file, a list of over
30,000,000 unencrypted passwords stolen from RockYou in 2009, and now
widely available online.

The file contains one password per line, in no particular order. The first few are

password (ﬁu:"wu-z’l&) sov Lowes ove Mo b)
meksterill A{sa'- no FDOSSUOO’V‘A m SPCLCM)

meksterll
progré4sm

Khas8950 Tuere ote on bl

emiliol

holiday?2 hitlhwe EQL Ry o

caitlinl -

Ser, ¢4
UserAccount-le6.txt

CS319 — Week 7: The Password Problem; Vectors & Matrices 8/56

Part 1: The Password Problem Algorithm (high-level)

Given a list of/30,000,000/passwords, how shall we work out which

10 (say) occur most frequently?

Idea:
. . v
@ Read the list of passwordslfrom the file. ("‘b’ e {Wbﬂ l Mé >)

2.(Sort lthe list alphabetically.
E Calculate the frequency of each word, while removing duplicates.

@ Make a new list of the unique words, and their frequencies.

5. Sort this list by frequency.
. @ ?;0 w 2_0/4'4 y DW

((A)I“ rekurn wa
MUV 2 1LWW|Plut€/a>
/ he
(5, dphibicolly | waan lowioqor %f
oo com Wik i@gl(dﬁm%iés.hma

L

9/56

CS319 — Week 7: The Password Problem; Vectors & Matrices

Part 1: The Password Problem Implementation

The first step is to open the file, and count the number of lines, and the length
of the longest line. .

. ;II~ Mk lbﬁ
R R o ——

std:{?istream InFile;
C : a3
36 std::string InFileName="UserAccount -[led)txt";
38 InFile.open(InFileName.c_str()); COM.IBL (‘_W +o, aﬁ/
if (InFile.fail()) —_— le3
40 { /
std::cerr << "Error: Cannot open " << InFileName << laé
42 " for reading." << std::endl;
exit (1); .
44 ¥
46 // Need to know the s, and the length'of the longest one
unsigned int LineCount, LongestLine; C
48 LineCount = FilelLength(InFile, LongestLine); l ,
[t -2 —
, . ‘Mo ok cfe).
(SK.‘;FMQ\ + IVLC(UJZZS h-&c_LQJOlﬂ ,
/
v
I~

CS319 — Week 7: The Password Problem; Vectors & Matrices 10/56

Part 1: The Password Problem Implementation

00SortPasswords.cpp

116| int FileLength(std::ifstream &InFile, unsigned int &LongestLine)

{ 4 b =)
18| TaFile.clear(); —> fesab o IC/Mp , €4 End-of - il
InFile.seekg(std::ios::beg); // Rewind to the start of the file ~ wel/o'— 5
120 char c¢; T '
InFile.get(c); .

122 unsigned int LineCount=0, ThisLineLength=0;
LongestLine=0;

124| while(! InFile.eof()) { .

if (e 1= An2) < gndk oX ling.

126 ThisLineLength++; ,
else { [C IS ’\y) -
128 LineCount++;
if (LongestLine<ThisLineLength)
130 LongestLine = ThisLinelength;

ThisLineLength=0;

132 ¥ :
InFile.get(c); & ﬂo,a.o?.[vug one cla ot 78 J"’VLD--

134 }

InFile.clear();

136 InFile.seekg(std::ios::beg);/ // Rewind

return(LineCount);

138 ¥

CS319 — Week 7: The Password Problem; Vectors & Matrices / 11/56

Part 1: The Password Problem Implementation

Now read the file (again) and store the passwords in an array. Again, we write
a single stand-alone function to do this.
g Stove poid uumr‘lﬁ

00SortPasswords.cpp A

150] void ReadPasswords(std::ifstream &InFile, std::string(iziigﬂgzgi;>
unsigned int &LineCount, unsigned int LongestLine)

152 { =

int WordsRead=0;

154 char *c_string_word = new char [mwl];

for (unsigned int Line=0; Line < LineCount; Line++)

156] { -

InFile.getline(c_string_word, LongestLine+1);

158 PasswordStCine] = c_string_word;

if (Passwords[Linel.length() == 0) // that was a blank line
else o
162 (WOrdsRead++§ N
¥

164 LineCount = WordsRead;
delete [l c_string_word;

166 }

{

CS319 — Week 7: The Password Problem; Vectors & Matrices

12/56

Part 1: The Password Problem Implementation

The next step (main, Line 55) is to call the MergeSort () function. We then
have the task of finding which word occurs most frequently. The approach is to
create to new arrays: .

(a) a new list of strings, called UniqueWords, where each password appears,
but only once.

(b) a corresponding int array WordFreq. When we are done, if
WordFreq[k]=x, then UniqueWords[k] appeared x times in the original
—_——

. —
list.
00SortPasswords.cpp
std::string *UniqueWords = new std::string [LineCount+1];
66 unsigned int *WordFreq = new unsigned int [LineCount+1];

unsigned int UniqueWordsFound;

// The first one can’t already be on the list
70 UniqueWords [0] = Passwords [0];
WordFreq[0] = 1;

72 UniqueWordsFound=1;

~—

-) continued...

CS319 — Week 7: The Password Problem; Vectors & Matrices 13/56

Part 1: The Password Problem Implementation

0OSortPasswords.cpp

74 for (unsigned int i=0; i<LineCount; i++)
{
76 if (Passwords[i] != UniqueWords[UniqueWordsFound-1])
{ // We have found a new word
78 UniqueWords [UniqueWordsFound] = Passwords[il;
WordFreq[UniqueWordsFound] = 1;
80 UniqueWordsFound++;
}
82 else 7/
WordFreq[UniqueWordsFound -1]++;
84 }
Explanation:

M Gor loop © iCoraking over every wawi}/@
267 IF Ua conant posbword o -Vi&,, te 5
a» pmviou\b Q. -'LJ" L lvuuﬁ_ s
2¢ add U to e st of vaigue PRS-
29: Sob frog ok e pwd - fo 4.
'mc,mM tle

&s: Otlorwiv CLQJ nk o Vw ‘”‘ﬂ&) breq, vulve.

CS319 — Week 7: The Password Problem; Vectors & Matrices® 14/56

Part 1: The Password Problem Implementation

90

92

94

96

98

100

Our next step is to create a list to the 10 most frequently used. This
information will be storesq in two arrays:

string Top10[10];

int ToplOFreq[10];

We will keep this list ordered. Then iterate through the UniqueWords list. If
we find a word that occurs more often than the (current) 10th most common,
we insert it into the list:

0OSortPasswords.cpp

// Insert the 1st into list and set rest to 06—
Top10 [0]=UniqueWords [0]; . oA 1‘
Clach l'F e Cory!

Topl0Freq [0]=WerdFreq [0];
for (int i=1; i<10; i++) UQO’VOL S\LO'JIJ loQ_ wA
‘G‘n 10 JLU’{'; .

{
ToplO[i]l="";
Topl0Freq[i]=0;

¥
// See if this is at least as freq as the 10th most
for (unsigned int i=1; i<UniqueWordsFound; i++)
if (WordFreq[i]l > Top1OFreql[9]) :
Insert (Topl0, ToplOFreq, UniqueWords[i], WordFreqlil); ‘(

CS319 — Week 7: The Password Problem; Vectors & Matrices

15/56

Part 1: The Password Problem Implementation

226

228

230

232

234

236

238

240

242

244

246

To finish, we'll see how the Insert function works:

“ . 00SortPasswords.cpp

// Insert NewString into the list ToplO, ordered by
// NewCount in ToplOFreq, bumping anything if needed
void Insert(std::string *Topl0O, unsigned int *ToplOFreq,

std::string NewString, unsigned int NewCount)
{
if (NewCount <= ToplOFreq[9])
std::cerr << "Error: new entry would not make top 10" << std::
else
{

Top10[9]=NewString;
Topl0Freq[9]=NewCount ;
for (int i=8; i>=0; i--)
{
if (ToplOFreq[il<NewCount)
{
Top10[i+1] = Top10[il;
Topl0Freq[i+1] = ToplO0Freqlil;
Topl0[i]=NewString;
Topl0Freq[i]l=NewCount;

end

CS319 — Week 7: The Password Problem; Vectors & Matrices

16/56

Part 1: The Password Problem Implementation

CS319 — Week 7
Week 7: The Password Problem; Vectors & Matrices J

END OF PART 1

CS319 — Week 7: The Password Problem; Vectors & Matrices 17/56

Part 2: Vectors and Matrices

.
Week 7: The Passw! Problem; Vectors & Matrices

Start of ...

PART 2: Vectors and Matrices

Motivation

CS319 — Week 7: The Password Problem; Vectors & Matrices

18/56

Part 2: Vectors and Matrices

This is a course in Scientific Computing. “Sci-Comp” problems that we've

looked at so far include
» optimisation; (La,!, 3?>
» searching and list processing. (F‘*”ﬁ“’w

A onbl%,,) .

Many of the more advanced and more general problems in Scientific Computing
are based around vectors and matrices. So one of our goals is to implement
C++ classes for such structures, along with standard operations such as
matrix-vector multiplication.

Along the way, we'll learn about . @A"
howo Lo Mlmﬂ, +

> operator overloading; ES, Suwr Guww C[M_

» friend functions and the this pointer;
» static variables.

» and much more

CS319 — Week 7: The Password Problem; Vectors & Matrices 19/56

Part 2: Vectors and Matrices Motivation

Our first step will be to study some problems and applications so that, before
we design any classes or algorithms, we'll know what we will use them for.
These problems include:

1. Basic analysis of matrices, for example with applications to image
processing, {graphs and networks.
rocessi

. e e . . .
2. Solution of linear systems of equations, for example with applications to
data fitting;

3. Estimation of (certain) eigenvalues, for example with applications to
search engine analysis.

CS319 — Week 7: The Password Problem; Vectors & Matrices 20/56

Part 2: Vectors and Matrices Motivation

Of these problems, probably the most ubiquitous is the solution of (large)
systems of simultaneous equations.

That is, we want to solve a linear system of 3 equations in 4 unknowns: find

X1, X2, X3, such that Clach : solvbio™
3X1+2X2+@3=19 W x,=t1
x1 +2x2 + 3x3 = 14 Xy =2
bxy +@X2 + 6x3 = 25 x& =3

This can be expressed as a matrix-vector equation:

32 (9 .
o2 3 [) = |
. © 6 Xy 25

b.

\l

A X

CS319 — Week 7: The Password Problem; Vectors & Matrices 21/56

Part 2: Vectors and Matrices Motivation

More generally, the linear system of|N\equations in@unknowns: find
X1, X2, ..., Xn, Such that .
A o

N
maki 1% .

X £ L

auxi + awxe + -+ + ainxy = b

anxi + anxe + -+ + aanxy = b2

anixt + anz2x2 + - -+ + annxn = bw.

This, as a matrix-vector equation is: x AN
A 0ro
ail ain . ain X1 b1 (‘%‘W}
asi ax» ... N X2 by U <
: . : S I I withh
ani an2 ... amn XN by A EV\A‘VI.J/) .

So, to proceed, we need to be able to represent vectors and matrices in our
codes.

CS319 — Week 7: The Password Problem; Vectors & Matrices

22/56

Part 2: Vectors and Matrices Motivation

Ax= b .
—|
B4t wnok ced x= A b.

CS319 — Week 7 .
Week 7: The Rassword Problem; Vectors & Matrices J
’ END OF PART 2

CS319 — Week 7: The Password Problem; Vectors & Matrices 23/56

Part 3: A vector class

CS319 — Week 7 J

Week 7: The Passwiord Problem; Vectors & Matrices)

Start of ...

PART 3: A vector class

Qo.wv&d" Wed @ [l'P

CS319 — Week 7: The Password Problem; Vectors & Matrices 24/56

Part 3: A vector class Vectors

Our first focus will be on defining a class of vectors. Intuitive_I&we linow it
needs the following components: L

Ro_mu Elunk o Ve%w U’ & [I/Lir/be ' "{

14" YIUMkMS ; €4 b

J= U’) (2 - l/ed’mf) by

23 b,

o= ;j (3—vekar) || .
~3- k159 '

Z - 9.F3% (L-vector) S,
2-11l N -~ vector

o999 where afl tug,

[b srg numbrs

(£ (oaﬂ's B

CS319 — Week 7: The Password Problem; Vectors & Matrices 25/56

Part 3: A vector class Vectors

Our fitst focus will be on defining a class of vectors. Intuitively, we know it
needs the following components:

(q) Size o te vedor (= ordev, &CMM‘.‘M),

(b’\/ 50‘!7]@/3 — e:AQ valoes ﬁéUV'QAQ, w Ehe
vae Lov

O porak.onis * Z,DC,
FaAMIL‘;c)ﬂ-’ 2= %+t (a,& VQLS{“WS
o Scalor M\,{,H".P'.'(, 0N * 2 =X («

o Some Number)
o NOorM oy veCltor

CS319 — Week 7: The Password Problem; Vectors & Matrices 25/56

Part 3: A vector class C++ “Project”

Due to the level of detail in the matrix and vector classes, the following
example is divided into three source files:

1. Vector.h, the header file which contains the class definition. Include this
header file in another source file with:
#include *Vector.hM
Note that this is not €Vector.hy

2. Vector.cpp, which includes the code for the methods in the Vector class;
3. O1TestVector.cpp, a test stub.

The test stub can be compiled from the command line with
g++ -Wall Vector.cpp OlTestVector.cpp

Using Code: :blocks you need to create a new “project” and include all three
source files.

EM Soao, on(tj one L(’b wan

CS319 — Week 7: The Password Problem; Vectors & Matrices

26/56

Part 3: A vector class C++ “Project”

10

12

14

16

18

20

Se for more details

// File: Vector.h (Version WO7.1)

// MAuthor: Niall Madden (NUI Galway) Niall.Madden@NUIGalway.ie

// Date: Week 7 of 2021-CS319

// What: Header file for vector class

// See also: Vector.cpp and OiTestVector.cpp

class Vector {

private: whave we S+ar@, E[Q,MDM,&

public:

double *entries; —p O
unsigned int N; __ ~ nombw \)&_— g./L{-r.Q/O

Vector (unsigned int Size= 2) —D COW- (‘FUO{'LW‘

“Vector (void);

unsigned 1nt[s1z%(v01d) {return N;}; é(!V" ¢ l"aw' COCLQ' il

double geti(unsigned int i); p-e‘-t-ug'/\' 6'.-\0' L

void seti(unsigned int i, double x); Ent
- o Ch gatews - '

void print(void); S 6"- rp

double norm(void); // Compute the 2-norm of a vector

void zero(void); // Set entries of vector to zero.

CS319 — Week 7: The Password Problem; Vectors & Matrices

27/56

Part 3: A vector class C++ “Project”

12

14

16

18

20

22

24

26

28

30

Vector.cpp

Vector::Vector (unsigned int Size)

1 Constroc {TO’Y‘

N = Size;

entries = new double[Sizel;
}
Vector::~Vector ()

{ &LS"]" ro ctor

delete [] entries;
}

void Vector::seti(unsigned int i, double x)
{ \J/‘O_,_/—/
if (i<M) Hive NG Mges <
entries[il=x; o r_Q,% U
else
std::cerr << "Vector::seti():,Index_ out_ of bounds."
<< std::endl;

N

CS319 — Week 7: The Password Problem; Vectors & Matrices

28/56

Part 3: A vector class

C++ “Project”

32

34

36

38

40

42

44

46

Vector.cpp continued

double Vector::geti(unsigned int i)
{
if (i<N)
return (entries[il);
else {

std::cerr << "Vector::geti():yIndex out of bounds."

<< std::endl;
return (0);
}
¥

void Vector::print(void)
{

for (unsigned int i=0; i<N; i++)

std::cout << "[" << entries[i] << "]" << std:

:endl;

CS319 — Week 7: The Password Problem; Vectors & Matrices

29/56

Part 3: A vector class

C++ “Project”

Vector.cpp continued

double Vector::norm(void)
50 |{
double x=0; COWLPMEJ
52 for (unsigned int i=0; i<N; i++)
x+=entries[il*entries[i]; 2. 2 2,
54 return (sqrt(x));)(0 +)<I + re- ‘l“‘)l\b_[
}
56
void Vector::zero(void)
58 |{
for (unsigned int i=0; i<N; i++)
60 entries[i]=0;
}
CS319 — Week 7: The Password Problem; Vectors & Matrices 30/56

Part 3: A vector class Adding two vectors

Here is a simple implementation of a function that computes ¢ = aa + b

See 01TestVector.cpp for more details

14| // c = alpha*a + beta*b where a,b are vectors; alpha, beta are scalars

void VecAdd (vector &c, (vector &a, vector &b,

some. S 3

endl;

16 double alpha, double beta)
{
18 unsigned int N;
N = acsize®); L b ove O'%t%
¢ __ ueck, o o
if ((N != b.size()))
22 std::cerr << "dimension mismatch in VecAdd " << std::
else
24 {
for (unsigned int i=0; i<N; i++)
26 c.seti(i, alpha*a.geti(i)+beta*b.geti(i));
¥
28|}

¥ (] =) e

3 0 3
. (..,) l = - ‘6
C - % + QZJ - -3

0

CS319 — Week 7: The Password Problem; Vectors & Matrices

31/56

Part 3: A vector class Exercise

Exercise (7.1)

The method Vector: :norm() computes the Euclidian norm of a vector:

z z
= 3 v
Iv]l2 = (E (v,-)2)1/2, — Vg g W

i=1

This is a spec/a/ case of the so-called p-norm:

Ivile = (3 1wl?) .

i=1

where p > 1. Rewrite the Vector: :norm() function so that it takes a double p
as an optional second argument, and computes the p-norm of the vector. }f p
is not provided, it should default to p = 2. In addition, if p = 0 is given, it
should compute the max-norm:

[Vlleo = max|vi|-
i=1

CS319 — Week 7: The Password Problem; Vectors & Matrices

32/56

Part 3: A vector class Exercise

CS319 — Week 7
Week 7: The Password Problem; Vectors & Matrices J

END OF PART Part 3

CS319 — Week 7: The Password Problem; Vectors & Matrices 33/56

Part 4: Solving Linear Systems

CS319 — Week 7
+Week 7: The Password Problem; Vectors & Matrices J

Start of—-
PART 4: Solving Linear s@

We now move towards learning about matrices. When implementing the class,
we will learn about

»{ operator overloading; . 6m£’
» friend functions and the this pointer; ‘Mpdr

> static variables. C+ +_

» and much more

CS319 — Week 7: The Password Problem; Vectors & Matrices 34/56

Part 4: Solving Linear Systems

Introduction

One of the most ubiquitous problems in scientific computing is the solution of
(large) systems of simultaneous equations. That is, we want to solve a linear

system of N equations in N unknowns: find such that

a11x1 + anXxe + - -

anxi + axnxs + - -

anixi + anaxe + - - -

Wnle ax
Ax =b

Tk,u: MQaxy /Q'cg_\)

-+ aivxy = b
-
-+ anxy = b2

+ annvXy = bi.

CS319 — Week 7: The Password Problem; Vectors & Matrices

35/56

Part 4: Solving Linear Systems Introduction

There are several classic approaches:
1 (Gaussion Elmination) Prajechs ,maifbe
2. Related: LU- and Cholesky factorisation;

3. Stationary lterative schemes such as|Jacobi’s method,)Gauss-Seidel and
Successive Over Relaxation (SOR); /Prodéct

. Krylov subspace methods, of which(Conjugate Gradienty is the best known;
. Enhancements-of the Methods 3 and 4, using preconditioning with, for
example,and Incomplete LU-factorisation.

Of the approaches listed above, Jacobi's is by far the simplest to implement,
and so is the one we will study first.

N

(&)

See annotated slides.

€5319 — Week 7: The Password Problem; Vectors & Matrices 36/,

Part 4: Solving Linear Systems Jacobi's Method

See video or annotated slides

Ll
S"?PM we uoa/b{' ‘Lc) So[UQ
[
B+ LA+ bxX; = 1
A, + Lwy+IK3 = L
) By, + X2 + §x3 = 25

h WMakitx— Vecksv “(?Efmj two Lo *

32 @\ ([
S [14

i\

CS319 — Week 7: The Password Problem; Vectors & Matrices 37/56

Part 4: Solving Linear S\stems Jacobi's Method

3 g: N sz o b = IQ See video or annotated slides
Ex—f @

Soppoh fowd Ty L Xy, and would [iKE

‘o Compm x, | Thew, o o 7 &u
v oo L(ia o 28— k)

£ 1 kew % & Xs, e gt et
vy L [l — T — 3x3),

S‘rvv\;lmha

5= L (a5 - Fx —*2),

CS319 — Week 7: The Password Problem; Vectors & Matrices 38/56

Part 4: Solving. Linear Systems Jacobi's Method

BUJ: we cﬁacvu? Rnov oy See video or annotated slides
e o, T, Te U E e ad
o quoss ’8&;7- 2,, cin s we cowld v
I 39} . quost zjg,, Lo ofter 2
Lefh wiile our wtial ‘\100,55 ad

1(o) : :Iz(o') ‘Is(oﬁ nd Ha

l
/
o) (o
<ok (') ((‘T — 2%(2—‘&”%39
(©
af;—_ li (1 — I. ~ 3?;3)3
:(?: ((9_5_ - ’;Xl -) ol
Tt tuvs ouk (l(12 X oT0 (90%4/ EQ‘L‘”I() (03 KS/OD'

CS319 — Week 7: The Password Problem; Vectors & Matris 39/56

Part 4: Solving Linear Systems Jacobi's Method

See video or annotated slides

Tuwa w Q. re (Peaﬂc tla Wroce/}%,

7 ' a)
S.Qk DC,(Z— _3!,((? _ Q’%z__@Kg))
G
2L oz 2 3xd),
() L5 (\)

1‘_3‘1): ~é[f(25f 0%, —
aguin mproving tle Estimabe |
Dok (woek) well o oo b
ot o Mbix e m, /a)vgef,'m?;

CS319 — Week 7: The Password Problem; Vectors & Matrices 40/56

