CS319: Scientific Computing (with $\mathrm{C}++$)
 Week 7: The Password Problem; Vectors \& Matrices

9am, 23 March, and 4pm, 24 March, 2021

~ 44 BITS OF ENTROPY

$2^{44}=550$ YEARS AT 1000 GUESSES/SEC

Difficultr to guess: HARD

DIFFICULTY TO REMEMIBER: HARD

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THIAT ARE HARD FOR HUMANS

TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.
http://xkcd.com/936
[Originally, the Week 6 class was titled "The Password Problem"; but I didn't actually get 'round to it!]

	Mon	Tue	Wed	Thu	Fri
$9-10$		LECTURE	x		
$10-11$		LAB			
$11-12$					
$12-1$					
$1-2$		LAB			
$2-3$					
$3-4$					
$4-5$			LECTURE		

1. Two recorded classes this week: Tuesday at 09.00, and Wednesday at 16.00 .
2. Lab times: Tuesday $\mathbf{1 0 . 0 0} \mathbf{- 1 0 : 5 0}$, and $\mathbf{1 3 . 0 0} \mathbf{- 1 3 . 5 0}$. You should try to attend at least one of these.
3. Lab due monday at 5pm!!

CS319 - Week 7
 Week 7: The Password Problem; Vectors \& Matrices

Start of ...

PART 0: Feedback on Feedback

- Thank-you to the 8 of you that completed the feedback form circulated by Noelle Cannon.
- On average, it took 1 minutes, 49 seconds to complete.
- Mostly very positive.
- A small number of people are "unsure" or "disagree somewhat" with the statement that "The feedback I have received is helping me to improve my learning". Which is fair! (Will do better!).
- The "live-but-recorded" lectures seem to be popular (which I was unsure of, since the quality is not very high).
- Some good suggestions for improvement, including
(${ }^{\triangleright}$ "An example of longer code from start to finish, I find it hard to see how the code works as a whole when I only see snippets of code". [Response: Fair point. Although the entire code is made available separately, and the snippets have line-numbers, I will do some start-to-finish examples soon.]

CS319 - Week 7

Week 7: The Password Problem; Vectors \& Matrices

END OF PART 0

CS319 - Week 7

Week 7: The Password Problem; Vectors \& Matrices

Start of ...
PART 1: The Password Problem (finally!)

Part 1: The Password Problem
(wee ks)
Recall from last week that our aim is to take a very long list of passwords and to determine the most common.
The source of the data is the infamous RockYou password file, a list of over 30,000,000 unencrypted passwords stolen from RockYou in 2009, and now widely available online.
The file contains one password per line, in no particular order. The first few are

$$
\left\{\begin{array}{l}
\left.\left.\begin{array}{l}
\text { password } \\
\text { mekster11 } \\
\text { mekster11 } \\
\text { progr4sm } \\
\text { khas8950 } \\
\text { emilio } \\
\text { holiday 2 } \\
\text { caitlin }
\end{array}\right\} \begin{array}{c}
\text { (although, sone lines ore blank) } \\
\text { Also: no password hers spaces) } \\
\text { These ore in the } \\
\text { bitbucket Repro } \\
\text { see, Eg, } \\
\text { UserAccount-1e6.txt }
\end{array}\right]
\end{array}\right.
$$

Given a list of $30,000,000$ passwords, how shall we work out which 10 (say) occur most frequently?

Idea:
(1) Read the list of passwords, from the file. (into a long array).
2. Sort the list alphabetically.
3.) Calculate the frequency of each word, while removing duplicates.
(4) Make a new list of the unique words, and their frequencies.
5. Sort this list by frequency.
(will return in a fer weeks, otter more templates)
(By alphembetically, mean lexiographically) we con write if (string $1<$ string 2) $\{$ — $\}$;

The first step is to open the file, and count the number of lines, and the length of the longest line.

(Skipped \# includes, vaciciable Lets, $\varepsilon t c$).

```
116 int FileLength(std::ifstream &InFile, unsigned int &LongestLine)
InFile.clear(); }->\mathrm{ resets any "flags", &g End-of-file
    InFile.seekg(std::ios::beg); // Rewind to the start of the file }->\mathrm{ Weer, 
    char c;
    InFile.get( c );
    unsigned int LineCount=0, ThisLineLength=0;
    LongestLine=0;
    while( ! InFile.eof() ) {
        if (c !='\\n')}<<\mathrm{ End of line.
            ThisLineLength++;}\\mp@subsup{n}{}{\prime})
                LineCount++;
                if (LongestLine<ThisLineLength)
                    LongestLine = This,LineLength;
            ThisLineLength=0;
        }
        InFile.get ( c ); }\longleftrightarrow\mathrm{ Reading one cher at a 
    }
    InFile.clear();
    InFile.seekg(std::ios::beg); // Rewind
    return(LineCount);
}
```

Now read the file (again) and store the passwords in an array. Again, we write a single stand-alone function to do this.

Store passwords

00SortPasswords.cpp

```
void ReadPasswords(std:: ifstream &InFile, std::string(*Passwords
{
    int WordsRead=0;
    char *c_string_word = new char [LongestLine+1];
    for (unsigned int Line=0; Line < LineCount; Line++)
    {
        InFile.getline(c_string_word, LongestLine+1);
        Passwords[Line] = c_string_word;
        if (Passwords[Line].length() == 0) // that was a blank line
            Line--;
        else
    }
    LineCount = WordsRead;
    delete [] c_string_word;
}
```

The next step (main, Line 55) is to call the MergeSort () function. We then have the task of finding which word occurs most frequently. The approach is to create to new arrays:
(a) a new list of strings, called UniqueWords, where each password appears, but only once.
(b) a corresponding int array WordFreq. When we are done, if WordFreq $[\mathrm{k}]=\mathrm{x}$, then UniqueWords [k] appeared x times in the original list.

00SortPasswords.cpp

continued...

00SortPasswords.cpp

Explanation:
74: for loop: iterating over every password.
76: IF the current password is not the some as previous one: it is "new"
78: add this to the list of unique puds.
74 : Set freq of this pard to 1.
83: Otherwise (ie, not a new word) increment the freq valve.

Our next step is to create a list to the 10 most frequently used. This information will be stored in two arrays: string Top10[10];
int Top10Freq[10];
We will keep this list ordered. Then iterate through the UniqueWords list. If we find a word that occurs more often than the (current) 10th most common, we insert it into the list:

00SortPasswords.cpp

To finish, we'll see how the Insert function works:

CS319 - Week 7

Week 7: The Password Problem; Vectors \& Matrices

END OF PART 1

Start of ...
 PART 2: Vectors and Matrices

Motivation

Part 2: Vectors and Matrices
This is a course in Scientific Computing. "Sci-Comp" problems that we've looked at so far include

- optimisation; (Lab 3?)
- searching and list processing. (Password problem).

Many of the more advanced and more general problems in Scientific Computing are based around vectors and matrices. So one of our goals is to implement C ++ classes for such structures, along with standard operations such as matrix-vector multiplication.
Along the way, we'll learn about
operator overloading; Eg, how to define + for

- friend functions and the this pointer;
- static variables.
- and much more

Our first step will be to study some problems and applications so that, before we design any classes or algorithms, we'll know what we will use them for. These problems include:

1. Basic analysis of matrices, for example with applications to image processing, graphs and networks.
$\left\{\begin{array}{l}\text { 2. Solution of linear systems of equations, for example with applications to } \\ \text { data fitting; }\end{array}\right\}$
2. Estimation of (certain) eigenvalues, for example with applications to search engine analysis.

Of these problems, probably the most ubiquitous is the solution of (large) systems of simultaneous equations.

- That is, we want to solve a linear system of 3 equations in 4 unknowns: find x_{1}, x_{2}, x_{3}, such that

$$
\begin{aligned}
3 x_{1}+2 x_{2}+4 x_{3} & =19 \\
x_{1}+2 x_{2}+3 x_{3} & =14 \\
5 x_{1}+0 x_{2}+6 x_{3} & =25
\end{aligned}
$$

$$
\left(\begin{array}{rl}
\text { Clench } & \text { : Solution } \\
\text { is } x_{1} & =1 \\
x_{2} & =2 \\
x_{3} & =3 \\
& -
\end{array}\right)
$$

This can be expressed as a matrix-vector equation:

$$
\begin{array}{rl}
\left(\begin{array}{lll}
3 & 2 & 4 \\
1 & 2 & 3 \\
5 & (1) & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{c}
19 \\
14 \\
25
\end{array}\right) \\
A & x
\end{array}
$$

More generally, the linear system of N equations in N unknowns: find $x_{1}, x_{2}, \ldots, x_{N}$, such that

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 N} x_{N}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 N} x_{N}=b_{2} \\
\vdots \\
a_{N 1} x_{1}+a_{N 2} x_{2}+\cdots+a_{N N} x_{N}=b_{N}
\end{gathered}
$$

This, as a matrix-vector equation is:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 N} \\
a_{21} & a_{22} & \ldots & a_{2 N} \\
\vdots & & \ddots & \vdots \\
a_{N 1} & a_{N 2} & \ldots & a_{N N}
\end{array}\right)\left(\begin{array}{c}
x \\
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{N}
\end{array}\right)
$$

A is a square $N \times N$ matrix.

N Entries.

So, to proceed, we need to be able to represent vectors and matrices in our codes.

So we will solve .

$$
A x=b .
$$

$$
\text { But not aces } x=A^{-1} b \text {. }
$$

CS319 - Week 7
Week 7: The Password Problem; Vectors \& Matrices

END OF PART 2

CS319 - Week 7

Week 7: The Password Problen; Vectors \& Matrices

Start of ...
PART 3: A vector class
Recordal Wed © $4 p$

7

Our first focus will be on defining a class of vectors. Intuitively, we know it needs the following components:
Recall that a vector is a "list" of
n numbers, εy

$$
\begin{aligned}
& \text { (floats) }
\end{aligned}
$$

Our first focus will be on defining a class of vectors. Intuitively, we know it needs the following components:
(a) Size of the vector (=order, dimension)
(b) Entries - tine values stored in the vector

Operations:

- Addition: $z=x+y \quad\left(\begin{array}{ll}z, x, y \\ \text { all vectors }\end{array}\right.$
- Scalar multiplication: $z=\propto x \quad \delta o c$ io some number)
- norm of vector

Due to the level of detail in the matrix and vector classes, the following example is divided into three source files:

1. Vector .h, the header file which contains the class definition. Include this header file in another source file with:
\#include l"Vector. $h^{\prime \prime}$
Note that this is not <Vecto r.h》
2. Vector.cpp, which includes the code for the methods in the Vector class;
3. 01 TestVector.cpp, a test stub.

The test stub can be compiled from the command line with g++ -Wall Vector.cpp 01TestVector.cpp
Using Code: :blocks you need to create a new "project" and include all three source files.

See Vector. h for more details

```
// File: Vector.h (Version W07.1)
// Author: Niall Madden (NUI Galway) Niall.Madden@NUIGalway.ie
// Date: Week 7 of 2021-CS319
// What: Header file for vector class
// See also: Vector.cpp and 01TestVector.cpp
class Vector {
private:
    double *entries; }->\mathrm{ array where we store Elements
    unsigned int N; }\longrightarrow\mathrm{ number of Entries
public:
    Vector(unsigned int Size=2); }->\mathrm{ constructur
    ~Vector(void);
    unsigned int sizg(void) {return N;}; &included code
    double geti(unsigned int i); }~\mathrm{ r) retuRn the ith
    void seti(unsigned int i, double x);
    void print(void); Set ith Entry.
    double norm(void); // Compute the 2-norm of a vector
    void zero(void); // Set entries of vector to zero.
};
```


Vector.cpp continued

```
3 2
double Vector::geti(unsigned int i)
{
    if (i<N)
        return(entries[i]);
    else {
        std::cerr << "Vector::geti():\sqcupIndex ¢out 
                                << std::endl;
        return(0);
    }
}
void Vector::print(void)
{
    for (unsigned int i=0; i<N; i++)
        std::cout << "[" << entries[i] << "]" << std::endl;
}
```


Vector.cpp continued

Here is a simple implementation of a function that computes $\mathbf{c}=\alpha \mathbf{a}+\beta \mathbf{b}$
See 01TestVector.cpp for more details

```
14 // c = alpha*a + beta*b where a,b are vectors; alpha, beta are scalars
void VecAdd (vector &c, vector &a, vector &b,
    double alpha, double beta)
{
    N= a.size(); < check a cock & b owe offthe
    if ( (N != b.size()) ) & some size
        std::cerr << "dimension mismatch in VecAdd " << std::endl;
    else
    {
        for (unsigned int i=0; i<N; i++)
                c.seti(i, alpha*a.geti(i)+beta*b.geti(i) );
    }
}
    \varepsilong if }Q=(\begin{array}{l}{1}\\{2}\\{3}\end{array}),b=(\begin{array}{c}{-1}\\{4}\\{0}\end{array}),\alpha=-1,\beta=
C=(-1)(\begin{array}{l}{1}\\{2}\\{3}\end{array})+(2)(\begin{array}{c}{-1}\\{4}\\{0}\end{array})=(\begin{array}{c}{-3}\\{6}\\{-3}\end{array})
```


Exercise (7.1)

The method Vector: :norm() computes the Euclidian norm of a vector:

$$
\|v\|_{2}=\left(\sum_{i=1}^{n}\left(v_{i}\right)^{2}\right)^{1 / 2}=\sqrt{1_{1}^{2}+U_{2}^{2}+\cdots+V_{N}^{2}}
$$

This is a speclal case of the so-called p-norm:

$$
\|v\|_{p}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{1 / p}
$$

where $p \geq 1$. Rewrite the Vector: :norm() function so that it takes a double p as an optional second argument, and computes the p-norm of the vector. If p is not provided, it should default to $p=2$. In addition, if $p=0$ is given, it should compute the max-norm:

$$
\|v\|_{\infty}=\max _{i=1}^{n}\left|v_{i}\right| .
$$

CS319 - Week 7
 Week 7: The Password Problem; Vectors \& Matrices

END OF PART Part 3

CS319 - Week 7
 .Week 7: The Password Problem; Vectors \& Matrices

Start of
 PART 4: Solving Linear Systems

We now move towards learning about matrices. When implementing the class, we will learn about
operator overloading;

- friend functions and the this pointer;
- static variables.
- and much more

One of the most ubiquitous problems in scientific computing is the solution of (large) systems of simultaneous equations. That is, we want to solve a linear system of N equations in N unknowns: find $x_{1}, x_{2}, \ldots, x_{N}$ such that

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 N} x_{N} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 N} x_{N} & =b_{2} \\
\vdots & \\
a_{N 1} x_{1}+a_{N 2} x_{2}+\cdots+a_{N N} x_{N} & =b_{N}
\end{aligned}
$$

$$
A x=b \text {. }
$$

This
means
, e, ge

$$
x=A^{-1} \dot{b}
$$

There are several classic approaches:

1. Gaussian Elimination:-
Projects, maybe
2. Related: LU- and Cholesky factorisation;
3. Stationary Iterative schemes such as Jacobi's method, Gauss-Seidel and Successive Over Relaxation (SOR);
4. Krylov subspace methods, of which Conjugate Gradients is the best known;
5. Enhancements of the Methods 3 and 4, using preconditioning with, for example, MultiGrid and Incomplete $L U$-factorisation.
Of the approaches listed above, Jacobi's is by far the simplest to implement, and so is the one we will study first.

See annotated slides.

Idea:
Suppose we wart to solve

$$
\begin{aligned}
3 x_{1}+2 x_{2}+4 x_{3} & =19 \\
x_{1}+2 x_{2}+3 x_{3} & =14 \\
5 x_{1}+x_{2}+6 x_{3} & =25
\end{aligned}
$$

In matrix -Vector form, this is:

$$
\left(\begin{array}{lll}
3 & 2 & (4) \\
1 & 2 & 3 \\
5 & \text { (1) } & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
19 \\
14 \\
25
\end{array}\right)
$$

$$
\begin{aligned}
\left(3 x_{1}+2 x_{2}+4 x_{3}\right. & =19 \\
x_{1}+2 x_{2}+3 x_{3} & =14 \\
5 x_{1}+x_{2}+6 x_{3} & =25
\end{aligned} \quad \text { See video or annotated slides }
$$

Suppose 1 know $x_{2} \& x_{3}$, and would like to compute x_{1}. Then, from the $1^{\text {st }} \varepsilon_{q_{n}}$

$$
x_{1}=\frac{1}{3}\left(19-2 x_{2}-4 x_{3}\right)
$$

If 1 know x_{1} \& $x_{3}, 1$ con get that

$$
x_{2}=\frac{1}{2}\left(14-x_{1}-3 x_{3}\right)
$$

Similarly

$$
x_{3}=\frac{1}{6}\left(25-5 x_{1}-x_{2}\right)
$$

But we dort know any See video or annotated slides pair of x_{1}, x_{1}, x_{3}. However, if we had a guess for 2 of these, we could use it to get u. guess for the other 2 .
Lets write our initial guess as
$\cdot x_{1}^{(0)}, x_{2}^{(0)}, x_{3}^{(0)}$, and the
set

$$
\begin{aligned}
& x^{(1)}=\frac{1}{3}\left(19-2 x_{2}^{(0)}-4 x_{3}^{(0)}\right) \\
& x_{1}^{(1)}=\frac{1}{2}\left(14-x_{1}^{(0)}-3 x_{3}^{(0)}\right) \\
& x_{2}^{(1)}=\frac{1}{6}\left(25-5 x_{1}^{(0)}-x_{2}^{(0)}\right) \\
& x_{3}^{(1)}
\end{aligned}
$$

It turns out $x_{1}^{(1)}, x_{2}^{(1)}, x_{3}^{(1)}$ ore better estimates, that $x_{1}^{(0)} x_{2}^{(0)} x_{3}(0)$.

See video or annotated slides
The we repeat the process set

$$
\begin{aligned}
& x_{1}^{(2)}=\frac{1}{3}\left(19-2 x_{2}^{(1)}-4 x_{3}^{(1)}\right) \\
& x_{2}^{(2)}=\frac{1}{2}\left(14-x_{1}^{(1)}-3 x_{3}^{(1)}\right) . \\
& x_{3}^{(2)}=\frac{1}{6}\left(25-5 x_{1}^{(1)}-x_{2}^{(1)}\right) .
\end{aligned}
$$

again improving the estimate.
Next (week) well see how to write this in Matrix for m. |Qusetions??

