
CS319: Scientific Computing (with C++)
Niall Madden (Niall.Madden@NUIGalway.ie)

Week 8: Linear Systems, and Operator Overloading

9am, 30 March, and 4pm, 31 March, 2021

1 Part 1: Solving Linear Systems (again)
Jacobi’s method
Implementation

2 Part 2: A matrix class

MatVec
3 Part 3: Coding Jacobi’s method
4 Part 4: Copy Constructors

A new constructor
5 Part 5: Operator Overloading

Eg 1: Adding two vectors
6 Part 6: The ->, this, and = operators

The -> operator
The this pointer
Overloading =

See “extras” section of today’s lectures for more
examples of classes and overloading (points, dates,
complex numbers); Code for these is in the
Week08/extras/ folder on the repository/website.

These slides do not include all issues concerning
operator overloading. Among the topics omitted are:

� overloading the unary ++ and -- operators.
There are complications because they work in
both prefix and postfix form.

� Overloading the ternary operator: ? :

� Important: overloading the [] operator.

CS319 — Week 8: Linear Systems, and Operator Overloading 1/48

Annotated slides

Usual reminders...

Mon Tue Wed Thu Fri
9 – 10 LECTURE ✗

10 – 11 LAB
11 – 12
12 – 1
1 – 2 LAB
2 – 3
3 – 4
4 – 5 LECTURE

1. Two recorded classes this week: Tuesday at 09.00, and Wednesday at
16.00.

2. Lab times: Tuesday 10.00-10:50, and 13.00-13.50. You should try to
attend at least one of these.

CS319 — Week 8: Linear Systems, and Operator Overloading 2/48

Part 1: Solving Linear Systems (again)

CS319 – Week 8
Week 8: Linear Systems, and Operator Overloading

Start of ...

PART 1: Solving Linear Systems (again)

This continues from where we left off in Week 7

CS319 — Week 8: Linear Systems, and Operator Overloading 3/48

Part 1: Solving Linear Systems (again)

Our eventual goal is the solve systems of N simultaneous equations in N
unknowns: find x1, x2, . . . , xN , such that

a11x1 + a12x2 + · · ·+ a1NxN = b1

a21x1 + a22x2 + · · ·+ a2NxN = b2

...

aN1x1 + aN2x2 + · · ·+ aNNxN = bN .

We expressed this as a matrix-vector equation: Find x such that

Ax = b,

where A is a N × N matrix, and b and x are (column) vector with N entries.

We could do this with Gaussian Elimination (or LU-factorization, etc). But
instead we use a method that is easier to program: Jacobi’s method.

CS319 — Week 8: Linear Systems, and Operator Overloading 4/48

Part 1: Solving Linear Systems (again) Jacobi’s method

The idea is to choose an initial “guess”, which call x(0).

The we try to compute an improved guess, called call x(1).

And we improve that again, to get x(2).

Eventually, we have a sequence of estimates

{x (0), x (1), x (2), x (3), . . . , x (k), . . . }

If could do this an infinite number of times, then

as k → ∞, we get x(k) → x.

But in practice, we just iterate until x(k) is “close enough” to x.

CS319 — Week 8: Linear Systems, and Operator Overloading 5/48

Part 1: Solving Linear Systems (again) Jacobi’s method

The algorithm (i.e., the method of “improving” the x(k)) comes from the
observation that, since (for example)

a11x1 + a12x2 + · · ·+ a1NxN = b1,

then

x1 =
1

a11
(b1 − a12x2 − a13x3 − · · ·− a1NxN)

So we can be optimistic that if x
(k)
2 , x

(k)
2 , . . . , x

(k)
N are a good estimates for x2,

x2, . . . , xN , then

x
(k+1)
1 =

1

a11
(b1 − a12x

(k)
2 − a13x

(k)
3 − · · ·− a1Nx

(k)
N)

will be an even better one for x1.

CS319 — Week 8: Linear Systems, and Operator Overloading 6/48

Part 1: Solving Linear Systems (again) Jacobi’s method

Applying the same idea to the rest of the equations, we get

x
(k+1)
1 =

1

a11
(b1 − a12x

(k)
2 − a13x

(k)
3 − · · ·− a1Nx

(k)
N)

x
(k+1)
2 =

1

a22
(b2 − a21x

(k)
1 − a23x

(k)
3 − · · ·− a2Nx

(k)
N)

...

x
(k+1)
N =

1

aNN
(bN − aN,1x

(k)
1 − · · ·− aN,N−1x

(k)
N−1)

This can be programmed with two (or so) nested for loops (which is the topic
of Lab 6). But it can also be expressed in a simple way, using matrices and
vectors.

CS319 — Week 8: Linear Systems, and Operator Overloading 7/48

Part 1: Solving Linear Systems (again) Jacobi’s method

See video or annotated slides

CS319 — Week 8: Linear Systems, and Operator Overloading 8/48

Part 1: Solving Linear Systems (again) Jacobi’s method

See video or annotated slides

CS319 — Week 8: Linear Systems, and Operator Overloading 9/48

Part 1: Solving Linear Systems (again) Jacobi’s method

See video or annotated slides

CS319 — Week 8: Linear Systems, and Operator Overloading 9/48

Part 1: Solving Linear Systems (again) Implementation

Now that we know the method, let us summarise the steps, so as to work out
what standard operations on vectors and matrices we need.

We expressed the problem as a matrix-vector equation: Find x such that

Ax = b,

where A is a N × N matrix, and b and x are (column) vector with N entries.

We then derived Jacobi’s method: choose x(0) and set

x (k+1) = D−1(b + Tx (k)).

where D = diag(A) and T = D − A.

Looking at this we see that the fundamental operations are: vector addition
and matrix-vector multiplication.

CS319 — Week 8: Linear Systems, and Operator Overloading 10/48

Part 1: Solving Linear Systems (again) Implementation

CS319 – Week 8
Week 8: Linear Systems, and Operator Overloading

END OF PART 1

CS319 — Week 8: Linear Systems, and Operator Overloading 11/48

Part 2: A matrix class

CS319 – Week 8
Week 8: Linear Systems, and Operator Overloading

Start of ...

PART 2: A matrix class

CS319 — Week 8: Linear Systems, and Operator Overloading 12/48

Part 2: A matrix class

Since we already have Vector class from last week, our next step is to write a
class implementation for a matrix, along with the associated functions.

Then we need to define a function to multiply a matrix by vector.

First though, we consider the matrix representation. The most natural
approach might seem to be to construct a two dimensional array. This can be
done as follows (see Lab 4):

double ** entries = new double *[N];
for (int i=0; i<N; i++)

entries[i] = new double N;

A simpler, faster approach is to store the N2 entries of the matrix in a single,
one-dimensional, array of length N2, and then take care how the access is done:

CS319 — Week 8: Linear Systems, and Operator Overloading 13/48

Part 2: A matrix class

Matrix.h

// File: Matrix.h (W07.1)
2 // Author: Niall Madden (NUI Galway) Niall.Madden@NUIGalway.ie

// Date: Week of 2021-CS319)
4 // What: Implementation of "Matrix": a class of square matrices

// See also: Matrix.cpp and 02TestMatrix.cpp

class Matrix {
8 private:

double *entries;
10 unsigned int N;

public:
12 Matrix (unsigned int Size =2);

~Matrix(void) { delete [] entries; };

unsigned int size(void) {return (N);};
16 double getij (unsigned int i, unsigned int j);

void setij (unsigned int i, unsigned int j, double x);

void print(void);
20 };

CS319 — Week 8: Linear Systems, and Operator Overloading 14/48

Part 2: A matrix class

from Matrix.cpp

Matrix :: Matrix (unsigned int Size)
10 {

N = Size;
12 entries = new double [N*N];

}

void Matrix :: setij (unsigned int i, unsigned int j, double x)
16 {

if (i<N && j<N)
18 entries[i*N+j]=x;

else
20 std::cerr << "Matrix :: setij (): Index out of bounds."

<< std::endl;
22 }

CS319 — Week 8: Linear Systems, and Operator Overloading 15/48

Part 2: A matrix class

from Matrix.cpp

24 double Matrix ::getij (unsigned int i, unsigned int j)
{

26 if (i<N && j<N)
return(entries[i*N+j]);

28 else
{

30 std::cerr << "Matrix :: getij (): Index out of bounds."
<< std::endl;

32 return (0);
}

34 }

36 void Matrix :: print (void)
{

38 // std::cout << "Matrix is of size " << M << "-by-"
// << N << std::std::endl;

40 for (unsigned int i=0; i<N; i++)
{

42 for (unsigned int j=0; j<N; j++)
std::cout << "[" << entries[i*N+j] << "]";

44 std::cout << std::endl;
}

CS319 — Week 8: Linear Systems, and Operator Overloading 16/48

Part 2: A matrix class MatVec

We’ll test this by implementing matrix-vector multiplication function:

02TestMatrix.cpp

// File: 01 TestMatrix.h (Set v=A*u)
2 // Author: Niall Madden (Niall.Madden@NUIGalway.ie)

// Date: Week 8 of 2021- CS319)
4 // What: Test the implementation Matrix class

48 void MatVec(Matrix &A, Vector &u, Vector &v)
{

50 unsigned int N;
N = A.size ();

52 if ((N != u.size ()) || (N != v.size()))
std::cerr << "dimension�mismatch�in�MatVec�" << std::endl;

54 else
for (unsigned int i=0; i<N; i++)

56 {
double x=0;

58 for (unsigned int j=0; j<N; j++)
x += A.getij(i,j)*u.geti(j);

60 v.seti(i,x);
}

62 }

CS319 — Week 8: Linear Systems, and Operator Overloading 17/48

Part 2: A matrix class MatVec

CS319 – Week 8
Week 8: Linear Systems, and Operator Overloading

END OF PART 2

CS319 — Week 8: Linear Systems, and Operator Overloading 18/48

Part 3: Coding Jacobi’s method

CS319 – Week 8
Week 8: Linear Systems, and Operator Overloading

Start of ...

PART 3: Coding Jacobi’s Method

CS319 — Week 8: Linear Systems, and Operator Overloading 19/48

Part 3: Coding Jacobi’s method

Now we can implement Jacobi’s method. The specific example coded, we will
solve N = 3 equations whose matrix representation is

9x1 + 3x2 + 3x3 = 15 (1)

3x1 + 9x2 + 3x3 = 15 (2)

3x1 + 3x2 + 9x3 = 15 (3)

This problem is constructed so that the solution is x1 = x2 = x3 = 1.

Have a look at the main() function in 03Jacobi.cpp to see how the problem
is set up, and how the Jacobi solver is called. Here we will focus on that solver.

CS319 — Week 8: Linear Systems, and Operator Overloading 20/48

Part 3: Coding Jacobi’s method

See 02Jacobi.cpp for more details

100 // Use Jacobi’s method to solve Ax=b,
// On entry : x is the initial guess

102 // On exit : x is the estimate for the solution
void Jacobi(Matrix &A, Vector &b, Vector &x,

104 unsigned int &count , double tol)
{

106 unsigned int N=A.size ();
count =0;

108 if ((N != b.size ()) || (N != x.size()))
std::cout << "Jacobi: error - A must be the same size as b,x"

110 << std::endl;

CS319 — Week 8: Linear Systems, and Operator Overloading 21/48

Part 3: Coding Jacobi’s method

See 02Jacobi.cpp for more details

112 Matrix Dinv(N), T(N); // The diagonal and off-diagonal matrices
for (unsigned int i=0; i<N; i++)

114 for (unsigned int j=0; j<N; j++)
if (j != i)

116 {
T.setij(i,j, -A.getij(i,j));

118 Dinv.setij(i,j ,0.0);
}

120 else
{

122 T.setij(i,j, 0.0);
Dinv.setij(i,j, 1.0/A.getij(i,j));

124 }

CS319 — Week 8: Linear Systems, and Operator Overloading 22/48

Part 3: Coding Jacobi’s method

See 02Jacobi.cpp for more details

126 // Now implement the algorithm:
Vector d(N), r(N);

128 do
{

130 count ++;
MatVec(T,x,d); // Set d=T*x

132 VecAdd(d, b, d); // set d=b+d (so d=b+T*x)
MatVec(Dinv , d, x); // set x = inverse(D)*(b+T*x)

MatVec(A, x, r); // set r=A*x
136 VecAdd(r, b, r, 1.0, -1.0); // set r=b-A*r

138 } while (r.norm() > tol);

. .

Of course, the above code would be a lot neater, and much more readable, if
we were able to write, for example, r=A*x instead of MatVec(A,x,r)

CS319 — Week 8: Linear Systems, and Operator Overloading 23/48

Part 3: Coding Jacobi’s method Exercise

Exercise (8.1)

Write a method Matrix::norm() that returns the “Entry-wise” 2-norm of a
matrix (also called the Frobenius or Hilbert–Schmidt norm) :

�A�p =
� n�

i=1

n�

j=1

|Ai,j |p
�1/p

.

and the max-norm:
�A�0 = max

i,j
|Ai,j |.

CS319 — Week 8: Linear Systems, and Operator Overloading 24/48

Part 4: Copy Constructors

CS319 – Week 8
Week 8: Linear Systems, and Operator Overloading

Start of ...

PART 4: Copy Constructors

CS319 — Week 8: Linear Systems, and Operator Overloading 25/48

Part 4: Copy Constructors Introduction

In the next section, we will introduce the idea of Operator Overloading. But
to get this to work, we need to study copy constructors.

This is a very technical area of C++ programming, but is unavoidable.

As we already know, constructor is a method associated with a class that is
called automatically whenever an object of that class is declared.

But there are time when objects are implicitly declared, such as when passed
(by value) to a function.

Since this will happen often, we need to write special constuctors to handle it.

CS319 — Week 8: Linear Systems, and Operator Overloading 26/48

Part 4: Copy Constructors Recall: Vector

Last week we defined a
class for vectors:

� It stores a vector of
N doubles in a
dynamically assigned
array called
entries ;

� The constructor
takes care of the
memory allocation.

// From Vector.h (Week 7)
2 class Vector {

private:
4 double *entries;

unsigned int N;
6 public:

Vector (unsigned int Size =2);
8 ~Vector(void);

10 unsigned int size(void) {return N;};
double geti (unsigned int i);

12 void seti (unsigned int i, double x);
// print(), zero() and norm() not shown

14 };

16 // Code for the constructor from Vector.cpp
Vector :: Vector (unsigned int Size) {

18 N = Size;
entries = new double[Size];

20 }

CS319 — Week 8: Linear Systems, and Operator Overloading 27/48

Part 4: Copy Constructors Recall: Vector

We then wrote some functions that manipulate vectors, such as AddVec in
Week07/01TestVector.cpp

1 vo id VecAdd (Vecto r &c , Vecto r &a , Vecto r &b ,
2 double a lpha =1.0 , double beta =1 .0) ;

Note that the Vector arguments are passed by reference...

CS319 — Week 8: Linear Systems, and Operator Overloading 28/48

Part 4: Copy Constructors Recall: Vector

What would happen if we tried the following, seemingly reasonable piece of
code?

Vector a(4);
a.zero (); // sets entries of a all to 0
Vector c=a; // should define a new vector, with a copy of a

This will cause problems for the following reasons:

CS319 — Week 8: Linear Systems, and Operator Overloading 29/48

Part 4: Copy Constructors Recall: Vector

CS319 — Week 8: Linear Systems, and Operator Overloading 30/48

Part 4: Copy Constructors A new constructor

The solve this problem, we should define our own copy constructor. A copy
constructor is used to make an exact copy of an existing object. Therefore, it
takes a single parameter: the address of the object to copy. For example:

See Vector08.cpp for more details

// copy constructor (Version W08.1)
20 // Class definition in Vector08.h has also changed

Vector :: Vector (const Vector &old_Vector)
22 {

N = old_Vector.N;
24 entries = new double[N];

for (unsigned int i=0; i<N; i++)
26 entries[i] = old_Vector.entries[i];

}

CS319 — Week 8: Linear Systems, and Operator Overloading 31/48

Part 4: Copy Constructors A new constructor

The copy constructor can be called two ways:

(a) explicitly, .e.g,

Vector V(2);
V.seti (0)=1.0; V.seti (1)=2.0;
Vector W(V); // W is a copy V

(b) implicitly, when ever an object is passed by value to a function. If we have
not defined our own copy constructor, the default one is used, which
usually causes trouble.

CS319 — Week 8: Linear Systems, and Operator Overloading 32/48

Part 4: Copy Constructors A new constructor

CS319 – Week 8
Week 8: Linear Systems, and Operator Overloading

END OF PART Part 4

CS319 — Week 8: Linear Systems, and Operator Overloading 33/48

Part 5: Operator Overloading

CS319 – Week 8
Week 8: Linear Systems, and Operator Overloading

Start of ...

PART 5: Operator Overloading

CS319 — Week 8: Linear Systems, and Operator Overloading 34/48

Part 5: Operator Overloading Introduction

Recall that, along with Encapsulation (Classes) and Inheritance (deriving new
classes from old), Polymorphism is one of the pillar ideas of Object-Oriented
Programming

So far we have seen two forms of Polymorphism:

(a) we may have two functions with the same name but different argument
lists. This is function overloading.

(b) templates allow us to define a function or class that with arbitrary
data-types, which are not specified until used. In the case of a class

template it is specified when an object of that class is defined.

We’ll cover another form of polymorphism today: “Operator overloading” .

Our main goal is to overload the addition (+) and subtraction (-) operators for
vectors.

CS319 — Week 8: Linear Systems, and Operator Overloading 35/48

Part 5: Operator Overloading Introduction

Last week, we wrote a function to add two Vectors: AddVec.

It is called as AddVec(c,a,b), and adds the contents of vectors a and b , and
stores the result in c .

It would be much more natural redefine the standard addition and assignment
operators so that we could just write c=a+b. This is called operator
overloading.

To overload an operator we create an operator function – usually as a member
of the class. (It is also possible to declare an operator function to be a friend

of a class – it is not a member but does have access to private members of the
class. More about friends later).

CS319 — Week 8: Linear Systems, and Operator Overloading 36/48

Part 5: Operator Overloading Introduction

The general form of the operator function is:

return-type class-name ::operator#(arguments)

{
... // operations to be performed.

};

return-type of a operator is usually the class for which it is defined, but it
can be any type.
Note that we have a new key-word: operator. The operator being overloaded
is substituted for #

CS319 — Week 8: Linear Systems, and Operator Overloading 37/48

Part 5: Operator Overloading Introduction

Almost all C++ operators can be overloaded:

+ - * / % ^ & | ~ !
= < > += -= *= /= %= ^= & =
|= << >> >>= <<= == != <= >= &&
|| ++ -- ->* , − > [] () new delete

but not . :: .* ?

CS319 — Week 8: Linear Systems, and Operator Overloading 38/48

Part 5: Operator Overloading Introduction

� Operator precedence cannot be changed: * is still evaluated before +

� The number of arguments that the operator takes cannot be changed,
e.g., the ++ operator will still take a single argument, and the / operator
will still take two.

� The original meaning of an operator is not changed; its functionality is
extended. It follows from this that operator overloading is always relative
to a user-defined type (in our examples, a class), and not a built-in type
such as int or char.

� Operator overloading is always relative to a user-defined type (in our
examples, a class).

� The assignment operator, =, is automatically overloaded, but in a way that
usually fails except for very simple classes.

CS319 — Week 8: Linear Systems, and Operator Overloading 39/48

Part 5: Operator Overloading Introduction

We are free to have the overloaded operator perform any operation we wish,
but it is good practice to relate it to a task based on the traditional meaning of
the operator. E.g., if we wanted to use an operator to add two matrices, it
makes more sense to use + as the operator rather than, say, *.

We will concentrate mainly on binary operators, but later we will also look at
overloading the unary “minus” operator.

. .

For our first example, we’ll see how to overload operator+ to add two objects
from our vector class.

CS319 — Week 8: Linear Systems, and Operator Overloading 40/48

Part 5: Operator Overloading Eg 1: Adding two vectors

First we’ll add the declaration of the operator to the class definition in the
header file, Vector08.h:

vector operator +(vector b);

Then to Vector08.cpp, we add the code

See Vector08.cpp for more details

95 // Overload the + operator.
96 Vecto r Vecto r : : ope ra to r+(Vector b)
97 {
98 Vecto r c (N) ; // Make c the size of a
99 i f (N != b .N)

100 s td : : c e r r << ” v e c t o r : :+ : cant add two v e c t o r s o f d i f f e r e n t s i z e ! ”
101 << s t d : : e nd l ;
102 e l s e
103 f o r (uns igned i n t i =0; i<N; i++)
104 c . e n t r i e s [i] = e n t r i e s [i] + b . e n t r i e s [i] ;
105 r e t u r n (c) ;
106 }

CS319 — Week 8: Linear Systems, and Operator Overloading 41/48

Part 5: Operator Overloading Eg 1: Adding two vectors

First thing to notice is that, although + is a binary operator, it seems to take
only one argument. This is because, when we call the operator, c = a + b

then a is passed implicitly to the function and b is passed explicitly.
Therefore, for example, a.N is known to the function simply as N.

The temporary object c is used inside the object to store the result. It is this
object that is returned. Neither a or b are modified.

CS319 — Week 8: Linear Systems, and Operator Overloading 42/48

Part 5: Operator Overloading Eg 1: Adding two vectors

CS319 – Week 8
Week 8: Linear Systems, and Operator Overloading

END OF PART Part 5

CS319 — Week 8: Linear Systems, and Operator Overloading 43/48

Part 6: The ->, this, and = operators

CS319 – Week 8
Week 8: Linear Systems, and Operator Overloading

Start of ...

PART 6: The “pointy”, this, and = operators

CS319 — Week 8: Linear Systems, and Operator Overloading 44/48

Part 6: The ->, this, and = operators The -> operator

We now want to see another way of accessing the implicitly passed argument.
First, though, we need to learn a little more about pointers, and introduce a
new piece of C++ notation.

First, remember that if, for example, x is a double and y is a pointer to
double, we can set y=&x. So now y stores the memory address of x. We then
access the contents of that address using *y.

Now suppose that we have an object of type Vector called v , and a pointer to
vector, w . That is, we have defined

Vecto r v ;
Vecto r ∗w;

Then we can set w=&v. Now accessing the member N using v.N, will be the
same as accessing it as (*w).N.

It is important to realise that (*w).N is not the same as *w.N.

However, C++ provides a new operator for this situation: w->N, which is
equivalent to (*w).N.

CS319 — Week 8: Linear Systems, and Operator Overloading 45/48

Part 6: The ->, this, and = operators The this pointer

When writing code for functions, and especially overloaded operators, it can be
useful to explicitly access the implicitly passed object.

That is done using the this pointer, which is a pointer to the object itself.

. .

As we’ve just noted, since this is a pointer, its members are accessed using
either (*this).N or this->N.

The following simple (but contrived) demonstration shows why we might like
to use the this pointer.

CS319 — Week 8: Linear Systems, and Operator Overloading 46/48

Part 6: The ->, this, and = operators The this pointer

The (original) constructor for our Vector class took an integer argument
called Size:

// Original version
Vector::Vector (unsigned int Size)
{

N = Size;
entries = new double[Size];

}

Suppose, for no good reason, we
wanted to call the passed argument
N: Then we would get the code
below:

// Silly, broken version
Vector::Vector (unsigned int N)
{

N = N;
entries = new double[N];

}

Surprisingly, this will compile, but will
give bizarre results (before crashing).
To get around this we must distinguish
between the local, passed, variable N,
and the class member N.

This can be done by changing the offending line to:

this->N = N;

CS319 — Week 8: Linear Systems, and Operator Overloading 47/48

Part 6: The ->, this, and = operators Overloading =

A much better use of this is for the case where a function must return the
address of the argument that was passed to it. This is the case of the
assignment operator.

See Vector08.cpp for more details

// Overload the = operator.
100 Vector &Vector :: operator =(const Vector &b)

{
102 if (this == &b)

return (*this); // Taking care for self-assignment

delete [] entries; // In case memory was already allocated

N = b.N;
108 entries = new double[b.N];

for (unsigned int i=0; i<N; i++)
110 entries[i] = b.entries[i];

112 return (*this);
}

CS319 — Week 8: Linear Systems, and Operator Overloading 48/48

