
Operator overloading:
extra examples

CS319: Scientific
Computing (with C++)

Niall Madden

Week 8: some extra
examples, to supplement
what was covered in class

1 Eg 1: Points in the (x , y)-plane
Overloading operator+

Overloading operator+ again
2 Unary operators
3 The Conditional Operator ?:
4 Prefix and Postfix ++
5 Overloading ++

Example: Date
6 friend functions
7 Another example: complex

numbers
8 Constants
9 friends again

CS319 — Operator overloading: extra examples 1/27

Eg 1: Points in the (x , y)-plane

We will create an object to represent points in the (x , y)-plane:

I with two private members: floats x and y ,

I constructor to initialise x and y ; it will have default values.

I a public function Get, used to find the values of x and y ,

I a public function Set that can be used to set the values of x and y ,

I a public overloaded operator + to add two points.

CS319 — Operator overloading: extra examples 2/27

Eg 1: Points in the (x , y)-plane

Our first version of
class declaration is
shown opposite.
The constructor
function is defined in
the declaration of the
class, and has default
values.

01Points.cpp

1 class Point {
private:

3 float x,y;
public:

5 Point(float i=0, float j=0) { x=i; y=j;};
void Set(float i, float j) {x=i; y=j;};

7 void Get(float &i, float &j) {i=x; j=y;};
};

If an object of type Point is declared as Point a; then a.Point() is
called as if it was Point(0.0, 0.0).

If a is declared as: Point a(-2,3); then these two floats are passed
to the constructor.

The public Set() allows us to set the values of a.x and a.y

In the definition of Get(), the integer variables are passed by reference and
not by value – therefore the value of i and j are modified by the function.

CS319 — Operator overloading: extra examples 3/27

Eg 1: Points in the (x , y)-plane Overloading operator+

Now we add the code for the + operator.

First, to the class definition we add the declaration of the operator:

Point operator+(Point b);

So now the class definition is

class Point {
2 private:

float x,y;
4 public:

Point(float i=0, float j=0) { x=i; y=j;};
6 void Set(float i, float j) {x=i; y=j;};

void Get(float &i, float &j) {i=x; j=y;};
8 Point operator +(Point b);

};

Notice that it seems to suggest that + takes just one argument...

CS319 — Operator overloading: extra examples 4/27

Eg 1: Points in the (x , y)-plane Overloading operator+

And then we give the definition:

10 Point Point:: operator +(Point b)
{

12 Point temp;
temp.x = x + b.x;

14 temp.y = y + b.y;
return temp;

16 }

The first thing to
notice is that, although
+ is a binary operator,
our function takes only
one argument.

This is because, when we call the operator, e.g., c = a + b

then a is passed implicitly to the function and b is passed explicitly.
Therefore a.x is known to the function simply as x.

The temporary object temp is used inside the object to store the result. It is
this object that is return.
Neither a or b are modified..

CS319 — Operator overloading: extra examples 5/27

Eg 1: Points in the (x , y)-plane Overloading operator+ again

We’ll now try overloading the + operator again, for the purpose of introducing
the *this pointer.

Suppose that we have a point b = (3.1, 2.2). If we write a = b + 0.5 and mean
that we want to set a = (3.6, 2.7).

class Point

{

private:

float x,y;

public:

Point(float i=0, float j=0) { x=i; y=j;};

void Set(float i, float j) {x=i; y=j;};

void Get(float &i, float &j) {i=x; j=y;};

Point operator+(Point b);

Point operator+(float p);

};

CS319 — Operator overloading: extra examples 6/27

Eg 1: Points in the (x , y)-plane Overloading operator+ again

And the rest of the code would be

Point Point::operator+(float p)

{

Point temp;

temp.x = this->x + p;

temp.y = this->y + p;

return temp;

}

or

Point Point::operator+(float p)

{

Point temp(*this);

temp.x += p;

temp.y += p;

return temp;

}

CS319 — Operator overloading: extra examples 7/27

Unary operators

So far we have discussed just the binary operator +. That is, it is an example
of an operator that takes two arguments.

But many operators in C/C++ are Unary: they take only one argument.

The most common examples of unary operators are ++ and --, but we’ll first
over load the - (minus) operator. Note that this can be used in two ways:

I c = a − b (binary)

I c = −a (unary).

In the second case here, “minus” is an example of a prefix operator. These are
the easiest.

CS319 — Operator overloading: extra examples 8/27

Unary operators

//////////////////////

// Overloading BINARY minus

Point Point::operator-(Point b)

{

Point temp;

temp.x = x - b.x;

temp.y = y - b.y;

return temp;

}

// Overloading UNARY minus

Point Point::operator-(void)

{

Point temp;

temp.x = -x;

temp.y = -y;

return temp;

}

CS319 — Operator overloading: extra examples 9/27

The Conditional Operator ?:

C and C++ have a selection of

I unary operators, e.g., +, -, !, ++ and --.

I And binary operators, e.g., +, -, *, /, %, =, <, >, +=, etc.

But it has only one ternary operator (one that takes 3 arguments), and that is
the conditional operator ?:.

Syntax: Cond ? Op of Cond True : Op if Cond False

CS319 — Operator overloading: extra examples 10/27

The Conditional Operator ?:

See 02Ternary.cpp for more details

8 int Score;
std:: string Grade , Outcome;

std::cout << "Enter your score: ";
12 std::cin >> Score;

14 (Score >= 40) ? Grade="Pass" : Grade="Fail";
std::cout << "You have " << Grade << "ed." << std::endl;

// Alternative
18 std::cout << "Enter another score: ";

std::cin >> Score;
20 Outcome = (Score >= 40) ? "will not" : "will";

std::cout << "You " << Outcome << " have to come back in Augest!"
22 << std::endl;

CS319 — Operator overloading: extra examples 11/27

Prefix and Postfix ++

We all know that in C/C++ one can use the ++ and -- operators in prefix and
post fix forms, e.g.,

I ++a (prefix)
I a++ (postfix)

But what is the difference?

In C/C++, all expressions – including assignments such as a++ – must evaluate
as something. So

I ++a evaluates as a+1, the value after incrementation,
I a++ evaluates as a, the value before incrementation.

int a, b;
2 a=1; b=(a++);

std::cout << "a=" << a << ", b=" << b << endl;

a=1; b=(++a);
6 std::cout << "a=" << a << ", b=" << b << endl;

output

a=2, b=1

a=2, b=2

CS319 — Operator overloading: extra examples 12/27

04PrefixPostfix.cpp

Prefix and Postfix ++

And there is a further distinction between the preincrement (++a) and
postincrement (a++) operators: the preincrement operator can be used as the
left operand in an assignment.

// Use prefix and postfix ++
2 #include <iostream >

int main(void)
4 {

int a, b;

a=10; b=20;
8 // The following would be illegal

// (a++)=b;
10 (++a)=b; // <- But this is OK!

std::cout << "a=" << a << ", b=" << b << std::endl;
12 return (0);

}

CS319 — Operator overloading: extra examples 13/27

Overloading ++

Overloading both the prefix and postfix versions of ++ involve a number of
technicalities, specifically

(1) There has to be a way of distinguishing between the two forms. This is
achieved by giving the postincrement operator a dummy int as an
argument. That way the two versions have different signatures.

(2) We may wish to maintain the usual way the operators work (i.e., whether
they evaluate as the original or incremented version, and if they can be
used as left values in assignment operations).
This is achieved as follows:
(a) The postincrement operator makes a copy of the object before the

increment, and then returns the (original, unincremented) copy.
(b) Typically, preincrement operator will return a reference (address), and the

postincrement operator will return a value. This allows the preincrement op
to be used as the left value in an assignment.

The example we’ll use to study this is a class to implement the current date.

CS319 — Operator overloading: extra examples 14/27

Overloading ++ Example: Date

03Date++.cpp

1 // CS319 Week 9 (extras)
// Example of overloading the ++ operator

3 // Implemented class represents a calendar date
#include <iostream >

int StandardDaysMonth [] =
7 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

9 class Date {
public:

11 Date (int d=1, int m=1, int y=1901);
void SetDate(int dd, int mm, int yy);

13 int GetDay(void) {return day;};
int GetMonth(void) {return month ;};

15 int GetYear(void) {return year ;};
bool IsLeapYear(void);

Date &operator ++(void); // prefix version
19 Date operator ++(int Dummy); // postfix

21 private:
int day , month , year;

23 int *DaysMonth;
void Increment(void);

25 };

CS319 — Operator overloading: extra examples 15/27

Overloading ++ Example: Date

28 // Constructor
Date::Date(int d, int m, int y)

30 {
DaysMonth = new int [13];

32 for (int i=0; i<=12; i++)
DaysMonth[i] = StandardDaysMonth[i];

34 SetDate(d,m,y);
}

38 bool Date:: IsLeapYear(void)
{

40 if ((year %400 == 0) ||
((year%4 == 0) && (year %100 != 0)))

42 return true;
else

44 return false;
}

CS319 — Operator overloading: extra examples 16/27

Overloading ++ Example: Date

void Date:: SetDate(int d, int m, int y)
48 {

year=y;
50 if (IsLeapYear ())

DaysMonth [2]=29;

month = ((m>=1) && (m<=12)) ? m : 1;

day = ((d>=1) && (d<= DaysMonth[month])) ? d : 1;
56 }

58 // Will call this in both prefix and postfix versions.
void Date:: Increment(void)

60 {
if (day != DaysMonth[month])

62 day ++;
else if (month != 12)

64 {
month ++; day=1;

66 }
else

68 SetDate(1,1,year +1); // Need to set the leap year
}

CS319 — Operator overloading: extra examples 17/27

Overloading ++ Example: Date

Date &Date:: operator ++(void) // Prefix version
72 {

Increment ();
74 return (*this);

}

Date Date:: operator ++(int Dummy) // Postfix version
78 {

Date temp=*this;
80 Increment ();

return(temp);
82 }

CS319 — Operator overloading: extra examples 18/27

Overloading ++ Example: Date

84 int main(void)
{

86 Date today (01 ,03 ,2017);
Date tomorrow , NextMonday;

cout << "Today is " << today.GetDay () << "/" <<
90 today.GetMonth () << "/" << today.GetYear () << endl;

92 tomorrow =(++ today);
cout << "Tomorrow is " << tomorrow.GetDay () << "/" <<

94 tomorrow.GetMonth () << "/" << tomorrow.GetYear () << endl;

for (int i=1; i<5; i++)
98 ++today;

100 NextMonday = today;
cout << "Next Monday is " << NextMonday.GetDay () << "/" <<

102 NextMonday.GetMonth () << "/" << NextMonday.GetYear () << endl;

104 cout << endl;

106 return (0);
}

CS319 — Operator overloading: extra examples 19/27

friend functions

In all the examples that we have seen so far, the only functions that may access
private data belonging to an object has been a member function/method of
that object.

However, it is possible to designate non-member as being friends of a class.

For non-operator functions, there is nothing that complicated about friends.
However, care must be taken when overloading operators as friends.

In particular:

I All arguments are passed explicitly to friend functions/operators.

I Certain operators, particularly the Put to << and Get from >> operators
can only be overloaded as friends.

CS319 — Operator overloading: extra examples 20/27

friend functions

04DatePutTo.cpp

1 class Date // New version to overload <<
{

3 friend std:: ostream &operator <<(std:: ostream &, const Date &);

5 public:
Date (int d=1, int m=1, int y=1901);

7 .
.

9 .
std:: ostream &operator <<(std:: ostream &output , const Date &d)

11 {
std:: string MonthName [13]={"", "Jan", "Feb", "Mar", "Apr",

13 "May", "Jun", "Jul", "Aug", "Sep",
"Oct", "Nov", "Dec"};

15 output << d.day << "/" << MonthName[d.month] << "/"
<< d.year;

17 return(output);
}

CS319 — Operator overloading: extra examples 21/27

Another example: complex numbers

In order to increase the number of examples of classes that you have studied,
and to give a framework to consider come technical issues, we introduce a
class for Complex Numbers.

A complex number is

z = a + bi where a and b are real numbers and i =
√
−1.

So our class will have two private data elements for the real and imaginary
parts, as we as methods to get and set their values.

CS319 — Operator overloading: extra examples 22/27

Another example: complex numbers

05Complex.cpp

c l a s s Complex
{
p r i v a t e :

f l o a t r e a l , imag ;
p u b l i c :

Complex (f l o a t r =0.0 , f l o a t i =0.0) {Set (r , i) ; } ;
f l o a t GetRea l (v o i d) { r e t u r n (r e a l) ; } ;
f l o a t GetImag (v o i d) { r e t u r n (imag) ; } ;
v o i d Set (f l o a t r , f l o a t i =0 .0) ;

} ;

v o i d Complex : : Set (f l o a t r , f l o a t i)
{

r e a l=r ; imag=i ;
}

CS319 — Operator overloading: extra examples 23/27

Constants

Constant Variables: We are familiar with the idea of a const “variable”. This
is one whose value can not be changed after initialisation.

Constant Functions: In C++ one may also force a class method to be constant.
This is done by placing the keyword const at the end of the line containing the
function prototype and header. The effect is that the function cannot modify
the object.

Furthermore, if you wish to call a method belonging to a constant object, then
the method must be constant.

In our example, we might define const Complex I(0,1) to represent
i =

√
−1. But a call to I.GetReal() or I.GetImag() as presented above

would give an error, such as

error: passing ‘const Complex’ as ‘this’ argument of

‘float Complex::GetImag()’ discards qualifiers

CS319 — Operator overloading: extra examples 24/27

Constants

c l a s s Complex
{

p r i v a t e :
f l o a t r e a l , imag ;

p u b l i c :
Complex (f l o a t r =0.0 , f l o a t i =0.0) {Set (r , i) ; } ;
f l o a t GetRea l (v o i d) const ;
f l o a t GetImag (v o i d) const ;
v o i d Set (f l o a t r , f l o a t i =0 .0) ;

} ;

f l o a t Complex : : GetRea l (v o i d) const
{

r e t u r n (r e a l) ;
}
f l o a t Complex : : GetImag (v o i d) const
{

r e t u r n (imag) ;
}

CS319 — Operator overloading: extra examples 25/27

friends again

Let’s return to the idea of a friend function. This is a function that does not
belong to the class, but still has access to private elements of a class.

There are two reasons you might want a function to be a friend of a class

I Efficiency: If the called function is not a friend, it will have to use some
method to access private members. This can be slower than being able to
access it directly.

I Overloading: When overloading an member operator for a class, the left
argument must be an object of that class. So, for example,

Complex x (2 . 0 , 3 . 0) , z ;
f l o a t f =3.0 ;
z = x∗x ; // * operator can be a member
z = x∗ f ; // * operator can be a member
z = f ∗x ; // * operator can’t be a member

CS319 — Operator overloading: extra examples 26/27

friends again

It is because the left argument of an overloaded operator mush be an object of
the class, that we can only overload the stream insertion operator << and
stream extraction operator >> as friends.

To see how this is done, have a look at 06ComplexMult.cpp

This example also shows the three ways of overloading the * operator.

Note that,

I for a member operator, the left argument is implicit, and only the right
argument is listed explicitly,

I for a non-member function, both the left and right arguments must be
listed.

CS319 — Operator overloading: extra examples 27/27

	Eg 1: Points in the (x,y)-plane
	Overloading operator+
	Overloading operator+ again

	Unary operators
	The Conditional Operator ?:
	Prefix and Postfix ++
	Overloading ++
	Example: Date

	friend functions
	Another example: complex numbers
	Constants
	friends again

