
CS319: Scientific Computing (with C++)

Week 9: More Operator Overloading; Network Analysis

9am, 13 April, and 4pm, 14 April, 2021

1 Part 1: Recapping on Operator Overloading
2 Part 2: Unary Operators
3 Part 3: Preprocessor Directives

#define

#include

#ifndef

4 Part 4: Overloading * for MatVec
Jacobi (yet again)

5 Part 5: friend functions
Overloading the insertion operator

6 Part 6: Linear Algebra
Eigenthings
Computing Eigenvalues and Eigenvectors

7 Part 7: PageRank
Computing the PageRank

8 Exercise

1

4

2

3

5

CS319 — Week 9: More Operator Overloading; Network Analysis 1/43

Usual reminders...

Mon Tue Wed Thu Fri
9 – 10 LECTURE 7

10 – 11 LAB
11 – 12
12 – 1
1 – 2 LAB
2 – 3
3 – 4
4 – 5 LECTURE

1. Two recorded classes this week: Tuesday at 09.00, and Wednesday at
16.00.

2. Lab times: Tuesday 10.00-10:50, and 13.00-13.50. You should try to
attend at least one of these.

CS319 — Week 9: More Operator Overloading; Network Analysis 2/43

Part 1: Recapping on Operator Overloading

CS319 – Week 9: More Operator Overloading; Network Analysis

Start of ...

PART 1: Recapping on Operator Overloading

Here is a short summary of what we covered on Operator Loading before the
Easter break

CS319 — Week 9: More Operator Overloading; Network Analysis 3/43

Part 1: Recapping on Operator Overloading

In Week 8 we began study of a major aspect of Object Oriented Programming:
“Operator overloading” .

We saw how to overload the assignment (=) operator, and the addition (+)
operator for vectors. Now we”ll overload (*) for matrix-vector multiplication.

First we’ll summarise some of the major points from Week 8.

. .
See also “extras” section of Week 8 lectures for more examples of classes and overloading (points,
dates, complex numbers); Code for these is in the Week08/extras/ folder on the
repository/website.

These slides do not include all issues concerning operator overloading. Among the topics omitted
are:

I overloading the unary ++ and -- operators. There are complications because they work in
both prefix and postfix form.

I Overloading the ternary operator: ? :

I Important: overloading the [] operator.

CS319 — Week 9: More Operator Overloading; Network Analysis 4/43

Part 1: Recapping on Operator Overloading

I To overload an operator we create an operator function – usually as a
member of the class.

I The general form of the operator function is:

return -type class -name:: operator #(args ...)
{
// operations to be performed.

};

I return-type of a operator is usually the class for which it is defined, but
it can be any type.

I operator is a new keyword. The operator being overloaded is substituted
for #

I Almost all C++ operators can be overloaded (see notes from Week 8 for
full list) but not . :: .* ?

I Operator precedence cannot be changed: * is still evaluated before +

I The number of arguments that the operator takes cannot be changed,
e.g., the ++ operator will still take a single argument, and the / operator
will still take two.

CS319 — Week 9: More Operator Overloading; Network Analysis 5/43

Part 1: Recapping on Operator Overloading

I The original meaning of an operator is not changed; its functionality is
extended.

I Operator overloading is always relative to a user-defined type (in our
examples, a class).

I The assignment operator, =, is automatically overloaded, but in a way that
usually fails except for very simple classes (see notes from Week 8)

I For binary operators that belong to a class, the left argument is passed
implicitly; an example of this is overloading the binary + operator for
Vector class.

I If w is a pointer, then w->N is equivalent to (*w).N.

I To explicitly reference the implicitly passed object, use the this pointer,
which is a pointer to the object itself.

CS319 — Week 9: More Operator Overloading; Network Analysis 6/43

Part 1: Recapping on Operator Overloading

CS319 – Week 9: More Operator Overloading; Network Analysis

END OF PART 1

CS319 — Week 9: More Operator Overloading; Network Analysis 7/43

Part 2: Unary Operators

CS319 – Week 9: More Operator Overloading; Network Analysis

Start of ...

PART 2: Unary Operators

A binary operator is one that takes two arguments, for example the
multiplication operator.

But some operators are unary, meaning they take a single argument.

CS319 — Week 9: More Operator Overloading; Network Analysis 8/43

Part 2: Unary Operators

So far we have discussed just the binary operator, +. By “binary”, we mean it
takes two arguments.

But many C++ operators are unary: they take only one argument.

The most common examples of unary operators are ++ and --, but for our
Vector class, we’ll first over load the - (minus) operator. Note that this can
be used in two ways:

I c = −a (unary).

I c = a− b (binary)

In the first case here, “minus” is an example of a prefix operator. (See Week 8
“Extras” for example of overloading postfix operators, like a++, which are a
little more complicated).

After that we will then define the binary minus operator, by using addition and
unary minus.

CS319 — Week 9: More Operator Overloading; Network Analysis 9/43

Part 2: Unary Operators

See Vector09.cpp for more details

// Overload the unary minus (-) operator. As in b=-a;
114 Vector Vector ::operator -(void)

{
116 Vector b(N); // Make b the size of a

for (unsigned int i=0; i<N; i++)
118 b.entries[i] = -entries[i];

return(b);
120 }

122 // Overload the binary minus (-) operator. As in c=a-b
// This implementation reuses the unary minus (-) operator

124 Vector Vector ::operator -(Vector b)
{

126 Vector c(N); // Make b the size of a
if (N != b.N)

128 std::cerr << "Vector :: operator - : dimension mismatch!"
<< std::endl;

130 else
c = *this + (-b);

132 return(c);
}

CS319 — Week 9: More Operator Overloading; Network Analysis 10/43

Part 2: Unary Operators

CS319 – Week 9: More Operator Overloading; Network Analysis

END OF PART 2

CS319 — Week 9: More Operator Overloading; Network Analysis 11/43

Part 3: Preprocessor Directives

CS319 – Week 9: More Operator Overloading; Network Analysis

Start of ...

PART 3: Preprocessor Directives

CS319 — Week 9: More Operator Overloading; Network Analysis 12/43

Part 3: Preprocessor Directives Overloading for the matrix class

As with the Vector class, we would like to overload some functions and
arithmetic operators for Matrix . In the files Matrix09.h and Matrix09.cpp

examples are given for

I defining the copy constructor;

I overloading the assignment operator.

They follow the same ideas as the corresponding components of the vector

class.

With those done, we can think about overloading the multiplication operator
for Matrix -Vector multiplication.

This introduces a few small new complications:

I the return type is different from the class type;

I if we use multiple source files, how do we know where exactly to place the
#include directives?

So, before we can proceed, we need to take a short detour to consider
preprocessor directives.

CS319 — Week 9: More Operator Overloading; Network Analysis 13/43

Part 3: Preprocessor Directives The C/C++ preprocessor

The preprocessor in C++ is a hang-over over from early versions of C.
Originally, that language did not have a construct for defining constants and
including header files. To get around this, an early version of C introduced the
preprocessor. This is a program that

I reads and modifies your source code by checking for any lines that being
with a hash symbol (#);

I carries out any operations required by these lines;

I forms a new source code that is then compiled.

We usually don’t get to see this new file, though you can view it by compiling
with certain options (with g++, this is -E).

The preprocessor is separate from the compiler, and has its own syntax.

CS319 — Week 9: More Operator Overloading; Network Analysis 14/43

Part 3: Preprocessor Directives #define

The simplest preprocessor directive is #define. This is used for defining global
constants, and doing a simple search-and-replace. For example,

#define SIZE 10

will find every instance of the word (well, token, really) SIZE and replaces it
with 10.

In general, this use of the #define directive to define identifiers to be used like
“global variables” is not very good practice. However, it can be very useful as a
way of checking if a piece of code has already been compiled.

CS319 — Week 9: More Operator Overloading; Network Analysis 15/43

Part 3: Preprocessor Directives #include

The most familiar preprocessor is #include, e.g.,

#include <iostream >
#include "Vector09.h"

This tells the preprocessor to take the named file(s) and insert them into the
current file.

If the name is contained in angle brackets, as in iostream, this means the
preprocessor will look in “the usual place” – where the compiler is installed on
your system.

If the named file is in quotes, it looks in the current directory, or in the
specified location.

CS319 — Week 9: More Operator Overloading; Network Analysis 16/43

Part 3: Preprocessor Directives #ifndef

Finally, we have conditional compilation.

Suppose we want to write a member function for the Matrix class that
involves the Vector class.

So we need to include Vector09.h in Matrix09.h. But then if our main
source file includes both Matrix09.h and Vector09.h we could end up
defining it twice.

To get around this we use conditional compilation.

In the files we can have such lines as the following in Vector09.h

#ifndef _VECTOR_H_INCLUDED
#define _VECTOR_H_INCLUDED
// stuff goes here
#endif

CS319 — Week 9: More Operator Overloading; Network Analysis 17/43

Part 3: Preprocessor Directives #ifndef

In another use, we might want the compiler to behave in particular ways for
particular operating systems. E.g.,

#ifndef linux
system("PAUSE");
#endif

. .

Other applications of preprocessor directives include defining parameterized
macro (which is like a function), and #pragma directives for certain compilers.
The latter is used a lot in parallel computing.

CS319 — Week 9: More Operator Overloading; Network Analysis 18/43

Part 3: Preprocessor Directives #ifndef

CS319 – Week 9: More Operator Overloading; Network Analysis

END OF PART 3

CS319 — Week 9: More Operator Overloading; Network Analysis 19/43

Part 4: Overloading * for MatVec

CS319 – Week 9: More Operator Overloading; Network Analysis

Start of ...

PART 4: Overloading * for MatVec

Finally, we get around to being able to multiply matrices and vectors using *

CS319 — Week 9: More Operator Overloading; Network Analysis 20/43

Part 4: Overloading * for MatVec

Finally, we are ready to overload operator* for multiplication of a vector by a
matrix: c = A ∗ b, where A is an N × N matrix, and c and b are vectors with
N entries.

Since the left operand is a matrix, we’ll make this operator a member of the
Matrix class, and add this line to the definition in Matrix09.h :

Vector operator *(Vector b);

CS319 — Week 9: More Operator Overloading; Network Analysis 21/43

Part 4: Overloading * for MatVec

The code from Matrix09.cpp is given below. Compare with MatVec

84 // Overload the operator multiplication (*) for a Matrix-Vector
// product. Matrix is passed implicitly as "this", the Vector is

86 // passed explicitly. Will return v=(this)*u
Vector Matrix :: operator *(Vector u)

88 {
Vector v(N); // v = A*u, where A is the implicitly passed Matrix

90 if (N != u.size ())
std::cerr << "Error: Matrix :: operator* - dimension mismatch"

92 << std::endl;
else

94 for (unsigned int i=0; i<N; i++)
{

96 double x=0;
for (unsigned int j=0; j<N; j++)

98 x += entries[i*N+j]*u.geti(j);
v.seti(i,x);

100 }
return(v);

102 }

CS319 — Week 9: More Operator Overloading; Network Analysis 22/43

Part 4: Overloading * for MatVec Jacobi (yet again)

Equipped with this, we can now write a neater version of the Jacobi function:

Old Version

Vector d(N), r(N);
2 do {

count ++;
4 MatVec(T,x,d);

VecAdd(d, b, d);
6 MatVec(Dinv , d, x);

8 MatVec(A, x, r);
VecAdd(r, b, r, 1.0, -1.0);

10 } while (r.norm() > tol);

New Version

Vector r(N);
2 do {

count ++;
4 x = Dinv*(b+T*x);

r = b-A*x;
6 } while (r.norm() > tol);

CS319 — Week 9: More Operator Overloading; Network Analysis 23/43

Part 4: Overloading * for MatVec Jacobi (yet again)

CS319 – Week 9: More Operator Overloading; Network Analysis

END OF PART 4

CS319 — Week 9: More Operator Overloading; Network Analysis 24/43

Part 5: friend functions

CS319 – Week 9: More Operator Overloading; Network Analysis

Start of ...

PART 5: friend functions

A methods of a class have access to other methods. But we can grant the
same access to external functions by making them friends.

CS319 — Week 9: More Operator Overloading; Network Analysis 25/43

Part 5: friend functions

In all the examples that we have seen so far, the only functions that may access
private data belonging to an object has been a member function/method of
that object.

However, it is possible to designate non-member as being a friend of a class.

For non-operator functions, there is nothing that complicated about friends.
However, care must be taken when overloading operators as friends.

In particular:

I All arguments are passed explicitly to friend functions/operators.

I Certain operators, particularly the insertion/put-to << and
extraction/get-from >> operators can only be overloaded as friends.

CS319 — Week 9: More Operator Overloading; Network Analysis 26/43

Part 5: friend functions Overloading the insertion operator

In last week’s version of the Vector class, we could output its elements using
the print() method. E.g.:

Vector v;
v.zero()
std::cout << "v has values ";
v.print ();

But it would be much more convinient just to do

std::cout << "v has values " << v;

But the insertion operator was not defined for our class.

We can fix that, by overloading it. However, the << operator belongs to
std::cout, not to Vector. So it cannot access its entries member.

Here is how we resolve this...

CS319 — Week 9: More Operator Overloading; Network Analysis 27/43

Part 5: friend functions Overloading the insertion operator

We add the following line to the class definition in Vector09.h

1 friend std:: ostream &operator <<(std:: ostream &, Vector &v);

And the we define:

1 std:: ostream &operator <<(std:: ostream &output , Vector &v)
{

3 output << "[";
for (unsigned int i=0; i<v.size ()-1; i++)

5 output << v.entries[i] << ",";
output << v.entries[v.size ()-1] << "]";

return(output);
9 }

Now we can display a vector using std::cout directly.

CS319 — Week 9: More Operator Overloading; Network Analysis 28/43

Part 5: friend functions Overloading the insertion operator

CS319 – Week 9: More Operator Overloading; Network Analysis

END OF PART 5

CS319 — Week 9: More Operator Overloading; Network Analysis 29/43

Part 6: Linear Algebra

CS319 – Week 9: More Operator Overloading; Network Analysis

Start of ...

PART 6: Linear Algebra

CS319 — Week 9: More Operator Overloading; Network Analysis 30/43

Part 6: Linear Algebra

This is a course about programming and scientific computing. The idea is the
study some standard algorithms in computational science, and along the way
master the necessary components of C++ to allow us to implement them.

Much of this involves numerical linear algebra: algorithms for working with
matrices and vectors. Last week, we looked a the Jacobi and Gauss-Seidel
methods for solving linear systems. Today we’ll look at the other major topic
associated with numerical linear algebra: computing eigenvalues and
eigenvectors.

After that, you’ll learn about matrix storage methods, and some related ideas.

CS319 — Week 9: More Operator Overloading; Network Analysis 31/43

Part 6: Linear Algebra Recall... Matrices

As we know, a matrix is a rectangular array of numbers.

In C++, an N × N matrix of doubles can be declared as:
double A[5][5];

Then its members are
A[0][0] A[0][1] A[0][2] A[0][3] A[0][4]
A[1][0] A[1][1] A[1][2] A[1][3] A[1][4]
A[2][0] A[2][1] A[2][2] A[2][3] A[2][4]
A[3][0] A[3][1] A[3][2] A[3][3] A[3][4]
A[4][0] A[4][1] A[4][2] A[4][3] A[4][4]

However, it is simpler if we store the matrix as a one dimensional array...

Instead of the 2D array we had before, we’ll store our matrices as
one-dimensional arrays. If this is done row-wise we get:

A[0] A[1] A[2] A[3] A[4]
A[5] A[6] A[7] A[8] A[9]

A[10] A[11] A[12] A[13] A[14]
A[15] A[16] A[17] A[18] A[19]
A[20] A[21] A[22] A[23] A[24]

(However, there are many other ways of storing a matrix: see Week 10)

CS319 — Week 9: More Operator Overloading; Network Analysis 32/43

Part 6: Linear Algebra Eigenthings

Definition (Eigenvalues and Eigenvectors)

Let A be an N × N matrix.

A (real or complex-valued) number λ is an eigenvalue of A if there is
a nonzero vector v ∈ RN such that Av = λv.

The vector v is then called an eigenvector of A corresponding to the
eigenvalue λ.

The name comes from the German: “eigen” can be translated as
“characteristic”, meaning that the eigenvalues of a matrix represent some of
its intrinsic properties.

Note: If v is an eigenvector corresponding to λ, so too is the vector αv, for
any number α 6= 0.

CS319 — Week 9: More Operator Overloading; Network Analysis 33/43

Part 6: Linear Algebra Eigenthings

Example (
2 2
3 1

)(
1
1

)
=

(
4
4

)
= 4

(
1
1

)
.

So λ = 4 is an eigenvalue with a corresponding eigenvector (1, 1)T .

CS319 — Week 9: More Operator Overloading; Network Analysis 34/43

Part 6: Linear Algebra Computing Eigenvalues and Eigenvectors

The standard way of finding the eigenvalues and vectors of a matrix is:

1. subtract λ from each diagonal entry,

2. Compute the determinant – this will be a polynomial of degree n.

3. Find its roots: these are the eigenvalues of A.

However,

(a) this is very tedious to do for all, but very small matrices

(b) it only works for small matrices,

(c) there is an easier way if you only want the largest eigenvalue and
corresponding eigenvector.

This easier way is called the “Power Method”. It relies just on matrix-vector
multiplication, scalar-vector multiplication, and computation of vector norms.
However, in the case we are interested in, it is even easier...

CS319 — Week 9: More Operator Overloading; Network Analysis 35/43

Part 6: Linear Algebra Computing Eigenvalues and Eigenvectors

CS319 – Week 9: More Operator Overloading; Network Analysis

END OF PART 6

CS319 — Week 9: More Operator Overloading; Network Analysis 36/43

Part 7: PageRank

CS319 – Week 9: More Operator Overloading; Network Analysis

Start of ...

PART 7: PageRank

And now for a multi-billion dollar algorithm

CS319 — Week 9: More Operator Overloading; Network Analysis 37/43

Part 7: PageRank

Google initial break-through in search engine design was derived from their
PageRank algorithm which gives an objective way of computing the relative
importance of web-pages.

The basic idea is this: the importance of a web-page is the probability that
you are looking at it at any given time.

To see how this works, consider the following example:

1

4

2

3

5

CS319 — Week 9: More Operator Overloading; Network Analysis 38/43

Part 7: PageRank

To summarise:

(1) Form the adjacency matrix, A = (aij)
N
i=1, for the network:

ai,j =

{
1 if the graph has an edge from Node i to Node j ;

0 otherwise.

(2) Make the associated Markov matrix, S = (sij)
N
i=1, where Si,j is the

proportion of vertices in A which start at i and go to j . (That is, divide
the entries in row i by the sum of the entries in that row). If there are no
entries in a given row of A, set the corresponding entries of S to 1/N.

(3) Choose a “damping” value σ, e.g., σ = 0.85.

(4) Set the matrix G to be
(
σS + (1− σ)/N)T .

(5) Now find the eigenvector associated with the eigenvalue that is 1. This
can be done with the Power Method.

CS319 — Week 9: More Operator Overloading; Network Analysis 39/43

Part 7: PageRank

We should mention that there are many other network analysis tools. However,
most of them depend on both

I Formation of the adjacency matrix;

I Multiplication of matrices.

An example of this is finding the number of routes of a given length between
two vertices in a graph.

CS319 — Week 9: More Operator Overloading; Network Analysis 40/43

Part 7: PageRank Computing the PageRank

All we have to do now is get the eigenvector of G associated with the
eigenvalue 1.

The Power Method Algorithm

INPUTS: G (the Google Matrix), TOL
u ← (1/N, 1/N, . . . , 1/N)
v ← (0, 0, . . . , 0)
d ← u − v
while ‖d‖ ≤ TOL do

v ← u
u ← Gv
d ← u − v

end while
RETURN(u)

(This is a simplified version of the Power Method because we know λ = 1.)

CS319 — Week 9: More Operator Overloading; Network Analysis 41/43

Part 7: PageRank Computing the PageRank

From our example earlier, the first few results are:

Iteration 0 1 2 3

u

0.2
0.2
0.2
0.2
0.2

0.4267
0.0867
0.0300
0.3417
0.1150

0.4026
0.0626
0.0300
0.4621
0.0428

0.4742
0.0421
0.0300
0.4109
0.0428

CS319 — Week 9: More Operator Overloading; Network Analysis 42/43

	Usual reminders...
	Part 1: Recapping on Operator Overloading
	Part 2: Unary Operators
	Part 3: Preprocessor Directives
	Overloading for the matrix class
	The C/C++ preprocessor
	#define
	#include
	#ifndef

	Part 4: Overloading * for MatVec
	Jacobi (yet again)

	Part 5: friend functions
	Overloading the insertion operator

	Part 6: Linear Algebra
	Recall... Matrices
	Eigenthings
	Computing Eigenvalues and Eigenvectors

	Part 7: PageRank
	Computing the PageRank

	Exercise

