
CS319: Scientific Computing (with C++)
Niall Madden (Niall.Madden@NUIGalway.ie)

Week 10: Sparse Matrices, and The STL
9am, 20 April, and 4pm, 21 April, 2021

1 Part 0: Assessment for CS319
The Projects

2 Part 1: Sparse Matrices
Triplet

3 Part 2: Coding triplet

4 Part 3: CCS
5 Part 4: The Standard Template Library

Containers
Iterators

6 Part 5: sets and multisets
7 Part 6: vector

Other vector methods
Range-based for loops

8 Part 7: Algorithm
The password frequency problem

CS319 — Week 10: Sparse Matrices, and The STL 1/58

https://en.wikipedia.org/wiki/The_Triplets_of_Belleville


CS319 – Week 10: Sparse Matrices, and The STL

Start of ...

PART 0: Assessment for CS319

CS319 — Week 10: Sparse Matrices, and The STL 2/58



Part 0: Assessment for CS319

I have tweaked the original assessment plan for CS319:

1. 50% based on lab assignments:
I 10% for each of Lab 2 and Lab 3;
I 15% for each of Lab 4+5 and Lab 7.

2. 50% based on your project work.

IS THAT OK?

CS319 — Week 10: Sparse Matrices, and The STL 3/58



Part 0: Assessment for CS319 The Projects

Projects: Your project will consist of

1. An idea you select/propose, in (1:1) discussion with me;

2. A demonstration of various programming techniques in C++, including,
minimally, coding your own class(es);

3. You will submit an initial, 250 word project proposal by Friday. (Word
count is indicative: I won’t check).

4. You will submit a 3 page project report along with your code.
(DEADLINE???)

5. The report should be organised as follows.
5.1 A summary of what you have done. This should be 300-500 words, and

written in a non-technical style: anyone should be able to understand it.
The emphasis should be on the problem solved, and why it is interesting,
and not on the code.

5.2 A technical discussion of the code.
5.3 A note on what you have learned/discovered.
5.4 An example of typical input and output.
5.5 Details any limitations of your code that you have noted, and a comparison

with your original project proposal.
5.6 The highlights of your code: What took the most effort? What are you

most proud of?

The report must be in PDF and submitted here (via TurnItIn)

CS319 — Week 10: Sparse Matrices, and The STL 4/58



Part 0: Assessment for CS319 The Projects

The code for your project is a chance for your to show your skills in C++
programming, and in scientific computing.
Each project will be independently negotiated with Niall.
Each will involve, at the very least, all of the following

1. An external data source, so that you can show your expertise in read from
and/or writing to files.

2. A class (or set of classes) that you design yourself

3. An algorithm that preforms some type of useful calculation

The projects will be graded, and will contribute 50% to the over-all grade for
CS319. The break-down of marks is as follows.

(a) Negotiating the project topic with Niall completed by 17:00, Friday 23
April [5 Marks]

(b) The project proposal completed by 17:00, Monday 26 April [5 Marks]

(c) C++ code [25 Marks]

(d) The Project report [15 Marks]

CS319 — Week 10: Sparse Matrices, and The STL 5/58



Part 0: Assessment for CS319 The Projects

Some ideas for projects
Here is a random selection of topics. Their purpose is to stimulate discussion.

1. A class for storing symmetric matrices, and an implementation of the
Conjugate Gradients algorithm for solving linear systems.

2. LU-decomposition for linear systems.

3. Problems in Cryptography I: Shift encryption, and decyphering it with a
frequency analysis.

4. Other cryptography methods?

5. Algorithms on Graphs: minimum spanning trees, computing the chromatic
number, searching (depth-first V breath-first), shortest path on weighted
graphs, ...

6. Prime factorization with arbitrary precision integers.

7. Image enhancement: edge detection.

8. Data analysis - clustering methods

9. Triangulation of points in R2 (Delaunay).

10. ???

CS319 — Week 10: Sparse Matrices, and The STL 6/58



Part 0: Assessment for CS319 The Projects

CS319 – Week 10: Sparse Matrices, and The STL

END OF PART 0

CS319 — Week 10: Sparse Matrices, and The STL 7/58



Part 1: Sparse Matrices

CS319 – Week 10: Sparse Matrices, and The STL

Start of ...

PART 1: Sparse Matrices

CS319 — Week 10: Sparse Matrices, and The STL 8/58



Part 1: Sparse Matrices

In Week 9 we looked at a social network analysis algorithm, PageRank For the
problem to be interesting, our network should have thousands, perhaps
millions, of nodes/vertices.

Compared to the over-all number of entries in the matrix, the number of
non-zeros (NNZs) is relatively small. So it does not make sense to store them
all. Instead, one uses one of the following formats:

I Triplet (which we’ll look at presently),

I Compressed Row Storage (CRS) (after triplet)

I Compressed Column Storage (CCS)

And the following formats for very specialised matrices, which we won’t study
in CS319:

I Block Compressed Row/Column Storage

I Compressed Diagonal Storage

I Skyline

CS319 — Week 10: Sparse Matrices, and The STL 9/58



Part 1: Sparse Matrices What is a matrix sparse?

Although the representation and manipulation of sparse matrices is an major
topic in Scientific Computing, there isn’t a universally agreed definition of an
(abstract) sparse matrix.

This is because, when coding, we should ask the question: “When is it worth
the effort to store a matrix in a sparse format, rather than in standard
(dense) format?”

The answer is often context-dependent. But roughly, use a sparse formal when

I The memory required by the sparse format is less then the “dense” (or
“full”) one;

I The expense of updating the sparse format is not excessive;

I Computing a MatVec is faster for a sparse matrix.

CS319 — Week 10: Sparse Matrices, and The STL 10/58



Part 1: Sparse Matrices Triplet

The basic idea for triplet form is: to store a sparse matrix with NNZ non-zeros
we ...

I define integer arrays I[NNZ] and J[NNZ],

I a double array X[NNZ].

I Then entry aij is stored as I[k]=i, J[k]=j, X[k]=aij , for some k.

Example: write down the triplet form of the following matrix:
1 0 11 0
1 0 2 0
9 19 0 29
0 0 0 5



CS319 — Week 10: Sparse Matrices, and The STL 11/58



Part 1: Sparse Matrices Triplet

Our next goal is implement a triplet matrix as a class. The main tasks are:

I Decide what private data elements are needed.

I Decide what public methods are needed.

I Implement a matrix-vector multiplication algorithm.

Discussion...

CS319 — Week 10: Sparse Matrices, and The STL 12/58



Part 1: Sparse Matrices Triplet

CS319 – Week 10: Sparse Matrices, and The STL

END OF PART 1

CS319 — Week 10: Sparse Matrices, and The STL 13/58



Part 2: Coding triplet

CS319 – Week 10: Sparse Matrices, and The STL

Start of ...

PART 2: Coding triplet

CS319 — Week 10: Sparse Matrices, and The STL 14/58



Part 2: Coding triplet

Triplet.h

1 // Triplet.h: For 2021- CS319 Week 10
// Author: Niall Madden

3
#ifndef _TRIPLET_H_INCLUDED

5 #define _TRIPLET_H_INCLUDED

7 #include "Vector09.h"
#include "Matrix10.h"

CS319 — Week 10: Sparse Matrices, and The STL 15/58



Part 2: Coding triplet

Triplet.h

10 class Triplet {
friend Triplet full2Triplet(Matrix &F, unsigned int NNZ_MAX );

12 private:
unsigned int *I, *J;

14 double *X;
unsigned int N;

16 unsigned int NNZ;
unsigned int NNZ_MAX;

18
public:

20 Triplet (unsigned int N, unsigned int nnz_max ); // Constructor
Triplet (const Triplet &t); // Copy constructor

22 ~Triplet(void);

24 Triplet &operator =(const Triplet &B); // overload assignment operator

CS319 — Week 10: Sparse Matrices, and The STL 16/58



Part 2: Coding triplet

Triplet.h

26 unsigned int size(void) {return (N);};
int where(unsigned int i, unsigned int j); // negative return on error

28 unsigned int nnz(void) {return (NNZ );};
unsigned int nnz_max(void) {return (NNZ_MAX );};

30
double getij (unsigned int i, unsigned int j);

32 void setij (unsigned int i, unsigned int j, double x);

34 unsigned int getI (unsigned int k) { return I[k];};
unsigned int getJ (unsigned int k) { return J[k];};

36 double getX (unsigned int k) { return X[k];};

38 Vector operator *( Vector u);
void print(void);

40 };
#endif

CS319 — Week 10: Sparse Matrices, and The STL 17/58



Part 2: Coding triplet

Triplet.cpp

1 // Triplet.cpp for 2021- CS319 Week 10
// What: Methods for the Triplet class

3 // Author: Niall Madden
#include <iostream >

5 #include <iomanip >
#include "Vector09.h"

7 #include "Matrix10.h"
#include "Triplet.h"

CS319 — Week 10: Sparse Matrices, and The STL 18/58



Part 2: Coding triplet

Triplet.cpp (Constructor)

10 // Standard constructor.
Triplet :: Triplet (unsigned int N, unsigned int nnz_max) {

12 this ->N = N;
this ->NNZ_MAX = nnz_max;

14 this ->NNZ = 0;

16 X = new double [nnz_max ];
I = new unsigned int [nnz_max ];

18 J = new unsigned int [nnz_max ];
for (unsigned int k=0; k<nnz_max; k++) {

20 I[k]=-1;
J[k]=-1;

22 X[k]=( double)NULL;
}

24 }

CS319 — Week 10: Sparse Matrices, and The STL 19/58



Part 2: Coding triplet

When using a Triplet object to represent a matrix, T , we often need to find
where in the array X, the value of ti,j is stored. That is done by the following
function.

Triplet.cpp (where)

int Triplet ::where(unsigned int i, unsigned int j)
56 {

unsigned int k=0;
58 do {

if ( (I[k]==i) && (J[k]==j) )
60 return(k);

k++;
62 } while (k<NNZ);

return (-1);
64 }

CS319 — Week 10: Sparse Matrices, and The STL 20/58



Part 2: Coding triplet

Triplet.cpp (setij)

void Triplet ::setij (unsigned int i, unsigned int j, double x)
68 {

if (i>N-1)
70 std::cerr << "Triplet ::setij (): i Index out of bounds." << std::endl;

else if (j>N-1)
72 std::cerr << "Triplet ::setij (): j Index out of bounds." << std::endl;

else if (NNZ > NNZ_MAX -1)
74 std::cerr << "Triplet ::setij (): Matrix full." << std::endl;

else
76 {

int k=where(i,j);
78 if (k == -1)

{
80 I[NNZ]=i;

J[NNZ]=j;
82 X[NNZ]=x;

NNZ ++;
84 }

else
86 X[k]=x;

}
88 }

CS319 — Week 10: Sparse Matrices, and The STL 21/58



Part 2: Coding triplet

Triplet.cpp (operator *)

Vector Triplet :: operator *( Vector u)
180 {

Vector v(N); // v = A*u, where A is the implicitly passed Triplet
182 v.zero ();

if (N != u.size ())
184 std::cerr << "Error: Triplet :: operator* - dimension mismatch"

<< std::endl;
186 else

for (unsigned int k=0; k<NNZ; k++)
188 v.seti(I[k], v.geti(I[k]) + X[k]*u.geti(J[k]));

return(v);
190 }

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To demonstrate the use of the Triplet class, I’ve included a program called
01triplet example which shows how to use the Jacobi method to solve a
linear system where the matrix is stored in triplet format.

CS319 — Week 10: Sparse Matrices, and The STL 22/58



Part 2: Coding triplet

CS319 – Week 10: Sparse Matrices, and The STL

END OF PART 2

CS319 — Week 10: Sparse Matrices, and The STL 23/58



Part 3: CCS

CS319 – Week 10: Sparse Matrices, and The STL

Start of ...

PART 3: CSS

The Compressed Column Sparse Format

CS319 — Week 10: Sparse Matrices, and The STL 24/58



Part 3: CCS

If we know that the entries in our matrix are stored in order, then it is possible
to store the matrix more efficiently that in Triplet format. One way of doing
this is to use CCS: Compressed Column Storage, also known as
Harwell-Boeing

The matrix is stored in 3 vectors:

I a double array, x of length nnz (“number of nonzero entries”) storing the
non-zero entries matrix, in column-wise order.

I an int array, r of length nnz storing row index of the entries. That is,
x [k] would be found in row r [k] of the full matrix.

I an int array, c of length N + 1, where c[k] stores that starting point of
column k as it appears in the arrays x and r , and c[N] = nnz .

CS319 — Week 10: Sparse Matrices, and The STL 25/58



Part 3: CCS

Example

Show how the matrix below would be stored in CCS
2 −1 0 −2
−3 5 −1 0
0 −2 4 0
−3 0 0 4



CS319 — Week 10: Sparse Matrices, and The STL 26/58



Part 3: CCS Matrix-vector multiplication

The process of multiplying a matrix (in CCS) by a vector is rather simple:

int index =0;
for (int col=0; col <N; col++)

for (j=c[col]; j<c[col +1]; j++)
{

i=r[index ];
v[i] += x[index ]*b[j];
index ++;

}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I don’t provide code for implementing a CCS class here: that is an exercise.

CS319 — Week 10: Sparse Matrices, and The STL 27/58



Part 3: CCS Matrix-vector multiplication

CS319 – Week 10: Sparse Matrices, and The STL

END OF PART 3

CS319 — Week 10: Sparse Matrices, and The STL 28/58



Part 4: The Standard Template Library

CS319 – Week 10: Sparse Matrices, and The STL

Start of ...

PART 4: The Standard Template Library
(STL)

Or “How not to reinventing the wheel

CS319 — Week 10: Sparse Matrices, and The STL 29/58



Part 4: The Standard Template Library Not reinventing the wheel

During the semester, we’ve focused on designing classes that can be used to
solve problems. These included classes: Stack, Vector and Matrix.

However, most of you worked out that, to some extent, these are already
supported in C++. The motivations for reinventing them included

I our implementation is simple to use;

I we learned important aspects of C++/OOP;

I we needed to achieve specific tasks efficiently: this is particularly true of
our design of sparse matrix classes.

Now we’ll look at how to use the built-in implementation that comes with the
C++ Standard Template Library (STL).

CS319 — Week 10: Sparse Matrices, and The STL 30/58



Part 4: The Standard Template Library The STL

The STL provides

(1) Containers: ways of collecting/storing items of some type (template....)

(2) Iterators: for accessing items in the containers

(3) Algorithms: for operating on the contents of containers, such as finding a
particular item, or sorting (a subset) of them.

(4) functors: essentially, a class which defines the operator(). We won’t say
more than this right now.

We’ll now look at examples of (1)–(3), and then consider an application to our
Password Frequency Problem from a few weeks ago.

It has to be noted, though: the STL is not that easy to use. In particular the
error messages generated are rather verbose and unhelpful.

CS319 — Week 10: Sparse Matrices, and The STL 31/58



Part 4: The Standard Template Library Containers

A container stores objects/elements. These elements can have basic data-type
(e.g., char, int, double, ...) or can be objects (e.g., string, or user-defined
objects).

The most important types of containers are:

vector: an indexed sequence (often called “random access”, though
this would be better called “arbitrary access”. All the items are
of the same type. It can be resized, and have new items added
to the end. One can also add items to positions not the end,
but this is slow.

set: a collection of unique items (of the same type), stored in order.
When defined relative to a user-defined class, an overloaded
operator< (less than) must be provided for correct operation.

multiset: an ordered collection, like a set, but can have repeated values.

list: a doubly linked list.

CS319 — Week 10: Sparse Matrices, and The STL 32/58



Part 4: The Standard Template Library Containers

stack: a stack.

... etc...

We’ll focus on sets, multisets and vectors.

CS319 — Week 10: Sparse Matrices, and The STL 33/58



Part 4: The Standard Template Library Iterators

An iterator is an object used to select (or move between) elements in a
container.

We can think of them as pointers, that allow us to reference particular
elements.

They come in particular flavours:

I forward, reverse, and bidirectional iterators;

I random-access/indexed-access iterators;

I input and output iterators;

CS319 — Week 10: Sparse Matrices, and The STL 34/58



Part 4: The Standard Template Library Iterators

CS319 – Week 10: Sparse Matrices, and The STL

END OF PART 4

CS319 — Week 10: Sparse Matrices, and The STL 35/58



Part 5: sets and multisets

CS319 – Week 10: Sparse Matrices, and The STL

Start of ...

PART 5: sets and multisets

CS319 — Week 10: Sparse Matrices, and The STL 36/58



Part 5: sets and multisets

To use a set or multiset, we must

#include <set >

Suppose we want to create a multiset to store strings (which just happen to
be passwords...), and an iterator for it, we could define

1 std:: multiset <std::string > multi_pwd;
std:: multiset <std::string >:: iterator multi_pwd_i;

To add an item to the (multi)set, we could used

multi_pwd.insert(MyString );

This will add the new string to the multiset, automatically choosing its
position so that it remains ordered. (If we use a set, it gets inserted into the
correct position, providing this does not result in duplication).

CS319 — Week 10: Sparse Matrices, and The STL 37/58



Part 5: sets and multisets

Other important methods include

I begin() (returns an iterator that points to the first element)

I end() (returns an iterator that points to one past the end of the set).

I clear() (remove contents)

I count() (count number of occuences)

I empty() (is the set empty?)

I erase() (remove an element, or range of elements)

I find() (locate an element; return an iterator)

I size() (number of elements)

I swap() (swap contents of two sets of same type)

I for each() (apply a particular function to each item in a container)

CS319 — Week 10: Sparse Matrices, and The STL 38/58



Part 5: sets and multisets

An example of using begin and end with a set and multiset:

01set and multiset.cpp

10 int main(void )
{

12 std::set <int > set_int;
std::set <int >:: iterator set_int_i;

14 std:: multiset <int > multi_int;
std:: multiset <int >:: iterator multi_int_i;

16
for (int i=0; i<=20; i+=3) // (0,3,6,9,12,15,18)

18 {
set_int.insert(i);

20 multi_int.insert(i);
}

22 for (int i=20; i>0; i-=2) // (20 ,18,16,...,4,2)
{

24 set_int.insert(i);
multi_int.insert(i);

26 }

CS319 — Week 10: Sparse Matrices, and The STL 39/58



Part 5: sets and multisets

First, we will see how to iterate over the multiset:

01set and multiset.cpp

28 std::cout << "The multiset has " << multi_int.size() <<
" items." << std::endl;

30 std::cout << "\t They are: ";
for (multi_int_i = multi_int.begin ();

32 multi_int_i != multi_int.end();
multi_int_i ++)

34 std::cout << std::setw (3) << *multi_int_i;
std::cout << std::endl;

36 std::cout << "\t 6 occurs " << multi_int.count (6) <<
" time(s)." << std::endl;

The output is

1 The multiset has 17 items.

They are: 0 2 3 4 6 6 8 9 10 12 12 14 15 16 18 18 20

3 6 occurs 2 times.

CS319 — Week 10: Sparse Matrices, and The STL 40/58



Part 5: sets and multisets

Next we will iterate over the set:

02set and multiset.cpp

std::cout << "The set has " << set_int.size() <<
40 " items." << std::endl;

std::cout << "\t They are: ";
42 for (set_int_i = set_int.begin ();

set_int_i != set_int.end();
44 set_int_i ++)

std::cout << std::setw (3) << *set_int_i;
46 std::cout << std::endl << "\t 6 occurs " << set_int.count (6)

<< " time(s)." << std::endl;

The output is

1 The set has 14 items.

They are: 0 2 3 4 6 8 9 10 12 14 15 16 18 20

3 6 occurs 1 time.

CS319 — Week 10: Sparse Matrices, and The STL 41/58



Part 5: sets and multisets

CS319 – Week 10: Sparse Matrices, and The STL

END OF PART 5

CS319 — Week 10: Sparse Matrices, and The STL 42/58



Part 6: vector

CS319 – Week 10: Sparse Matrices, and The STL

Start of ...

PART 6: vector

CS319 — Week 10: Sparse Matrices, and The STL 43/58



Part 6: vector

To use vector, we must

#include <vector >

Unlike a set, we can access a vector by index. Moreover, by default it is not
sorted, though there are algorithms to sort its contents.

Since it is unordered, a new item usually gets added to the end, using
push back

This can be removed, using pop back

Other important methods include

I at

I operator[]

I back (not the same as end)

CS319 — Week 10: Sparse Matrices, and The STL 44/58



Part 6: vector

03STL vector.cpp

10 #include <vector > // vector
#include <algorithm > // sort

12 void print_int (int i) { std::cout << std::setw (3) << i; }
int main(void )

14 {
std:: vector <int > vec_int;

16 std:: vector <int >:: iterator vec_int_i;
std::cout << "Vector has " << vec_int.size() <<

18 " elements." << std::endl ;

20 for (int i=3; i>=0; i--)
vec_int.push_back(i*3); // (9,6,3,0)

std::cout << "Vector has " << vec_int.size() << " elements: ";
24 for (unsigned int i=0; i<vec_int.size (); i++)

std::cout << std::setw (3) << vec_int[i];

Output (so far):

1 Vector has 0 elements.
Vector has 4 elements: 9 6 3 0

CS319 — Week 10: Sparse Matrices, and The STL 45/58



Part 6: vector

This snippet demonstrates the use of

I the find and insert methods;

I the for each iterate through an entire container.

03STL vector.cpp

vec_int_i = find (vec_int.begin(),vec_int.end(),3);
28 vec_int.insert(vec_int_i ,10);

30 std::cout << std::endl;
std::cout << "Vector has " << vec_int.size() << " elements: ";

32 for_each (vec_int.begin(), vec_int.end(), print_int );

Output (continued):

1 Vector has 0 elements.
Vector has 4 elements: 9 6 3 0

3 Vector has 5 elements: 9 6 10 3 0

CS319 — Week 10: Sparse Matrices, and The STL 46/58



Part 6: vector

Finally, we show how to sort the items in the list:

03STL vector.h

std::cout << "Sorting the vector ..." << std::endl;
36 sort(vec_int.begin(), vec_int.end ());

std::cout << "Now vector is: ";
38 for_each (vec_int.begin(), vec_int.end(), print_int );

Output (all):

1 Vector has 0 elements.
Vector has 4 elements: 9 6 3 0

3 Vector has 5 elements: 9 6 10 3 0
Sorting the vector ...

5 Now vector is: 0 3 6 9 10

CS319 — Week 10: Sparse Matrices, and The STL 47/58



Part 6: vector Other vector methods

Other important methods include

I begin() (returns an iterator that points to the first element)

I end() (returns an iterator that points to one past the end of the set).

I clear() (remove contents)

I count() (count number of occuences)

I empty() (is the set empty?)

I erase() (remove an element, or range of elements)

I find() (locate an element; return an iterator)

I size() (number of elements)

I swap() (swap contents of two sets of same type)

I for each() (apply a particular function to each item in a container)

CS319 — Week 10: Sparse Matrices, and The STL 48/58



Part 6: vector Range-based for loops

The ranged-based for loop is a recent addition to C++, so it might not work
with old compilers. With g++, you may need to enable the c++11 option.

In the code above, the line

1 for_each (vec_int.begin(), vec_int.end(), print_int );

could be replaced with

1 for (int i : vec_int)
print_int(i);

CS319 — Week 10: Sparse Matrices, and The STL 49/58



Part 6: vector Range-based for loops

CS319 – Week 10: Sparse Matrices, and The STL

END OF PART 6

CS319 — Week 10: Sparse Matrices, and The STL 50/58



Part 7: Algorithm

CS319 – Week 10: Sparse Matrices, and The STL

Start of ...

PART 7: Algorithm

CS319 — Week 10: Sparse Matrices, and The STL 51/58



Part 7: Algorithm

To use algorithm, we must

#include <algorithm >

Useful functions that this provides include

I for each

I sort and partial sort

I search

I copy and fill

I merge

I set union, set difference

I etc.

CS319 — Week 10: Sparse Matrices, and The STL 52/58



Part 7: Algorithm The password frequency problem

(See lecture notes for details)

#include <set > // multiset
#include <vector > // vector
#include <algorithm > // sort

CS319 — Week 10: Sparse Matrices, and The STL 53/58



Part 7: Algorithm The password frequency problem

1 class pwd {
private:

3 std:: string word;
int freq;

5 public:
pwd(std:: string s, int f) {word=s; freq=f;};

7 std:: string getword(void) const {return(word );};
int getfreq(void) const {return(freq );};

9 };

11 bool compare (pwd p, pwd q)
{

13 return (p.getfreq () > q.getfreq ());
}

15
int FileLength(std:: ifstream &InFile , int &LongestWord );

CS319 — Week 10: Sparse Matrices, and The STL 54/58



Part 7: Algorithm The password frequency problem

int main(void )
2 {

std:: ifstream InFile;
4 std:: string InFileName="UserAccount -1e5.txt";

std:: multiset <std::string > multi_pwd;
6 std:: multiset <std::string >:: iterator multi_pwd_i;

std:: vector <pwd > vector_pwd;
8

InFile.open(InFileName.c_str ());
10 if (InFile.fail() )

{
12 std::cerr << "Error: Cannot open " << InFileName <<

" for reading." << std::endl;
14 exit (1);

}
16

// Need to know the number of lines , and the length of the longest one
18 int LineCount=0, LongestLine;

LineCount = FileLength(InFile , LongestLine );
20 std::cout << InFileName << " has " << LineCount << " lines .\n";

std::cout << "\tThe longest has " << LongestLine << " characters .\n";

CS319 — Week 10: Sparse Matrices, and The STL 55/58



Part 7: Algorithm The password frequency problem

// Read the lines
char *c_string_word;
c_string_word = new char [LongestLine +1];
for (int i=0; i<LineCount; i++)
{

InFile.getline(c_string_word , LongestLine +1);
multi_pwd.insert(c_string_word );

}

CS319 — Week 10: Sparse Matrices, and The STL 56/58



Part 7: Algorithm The password frequency problem

// Copy the passwords to the pwd vector
multi_pwd_i = multi_pwd.begin ();
vector_pwd.push_back(pwd(* multi_pwd_i ,

multi_pwd.count(* multi_pwd_i )));
multi_pwd_i ++;
while (multi_pwd_i != multi_pwd.end ())
{

if (( vector_pwd.back ()). getword () != *multi_pwd_i)
vector_pwd.push_back(pwd(* multi_pwd_i ,

multi_pwd.count(* multi_pwd_i )));
multi_pwd_i ++;

}

CS319 — Week 10: Sparse Matrices, and The STL 57/58



Part 7: Algorithm The password frequency problem

std::sort (vector_pwd.begin(), vector_pwd.end(), compare );

std::cout << "Top 10 passwords are: " << std::endl;
for (unsigned int i=0; i<10; i++)

std::cout << std::setw (12) << (vector_pwd[i]). getword () <<
std::setw (6) << (vector_pwd[i]). getfreq () << std::endl;

InFile.close ();

return (0);
}

CS319 — Week 10: Sparse Matrices, and The STL 58/58


	Part 0: Assessment for CS319
	The Projects

	Part 1: Sparse Matrices
	What is a matrix sparse?
	Triplet

	Part 2: Coding triplet
	Part 3: CCS
	Matrix-vector multiplication

	Part 4: The Standard Template Library
	Not reinventing the wheel
	The STL
	Containers
	Iterators

	Part 5: sets and multisets
	Part 6: vector
	Other vector methods
	Range-based for loops

	Part 7: Algorithm
	The password frequency problem


