
CS319: Scientific Computing (with C++)
Niall Madden (Niall.Madden@NUIGalway.ie)

Week 11: static, const and inheritance
9am, 27 April, and 4pm, 28 April, 2021

1 Part 1: The STL again
Algorithm
The password frequency problem

2 Part 2: static
(i) static variables
(ii) static variable in a class
(iii) static functions

3 Part 3: const
const functions
const function parameters

4 Part 4: Inheritance
protected

Replacing members

CS319 — Week 11: static, const and inheritance 1/45

Annotated slides

Reminder: Assessment for CS319

The assessment for CS319 is based on

1. 50% based on lab assignments:
� 10% for each of Lab 2 and Lab 3;
� 15% for Lab 4+5 and
� 15% for Lab 7 (due today at 5pm).

2. 50% based on your project work:
(i) Initial Project Plan/Discussion [5 Marks]
(ii) 250 word Project Proposal [5 Marks], detailing

(a) An external data source, so that you can show your expertise in read from
and/or writing to files.

(b) A class (or set of classes) that you design yourself
(c) An algorithm that preforms some type of useful calculation

(iii) 3 page project report [15 Marks]
(iv) Project code [25 Marks]

Proposed deadline for report and code is 5pm, Friday 13 May. THOUGHTS???

CS319 — Week 11: static, const and inheritance 2/45

Part 1: The STL again

CS319 – Week 11: static, const and inheritance

Start of ...

PART 1: The STL again

The Standard Template Library is a collection of storage types, and
algorithms to work with them.

CS319 — Week 11: static, const and inheritance 3/45

Part 1: The STL again

Last week, we introduced the Standard Template Library (STL). It provides

(1) Containers: ways of collecting/storing items of some type (template....).
The most important types of containers are:

vector: an indexed sequence. All the items are of the same type.
It can be resized, and have new items added to the end.

set: a collection of unique items (of the same type), stored in
order. When defined relative to a user-defined class, an
overloaded operator::operator< (less than) must be
provided for correct operation.

multiset: an ordered collection, like a set, but can have repeated
values.

list: a doubly linked list.
stack: a stack.

We looked at sets, multisets and vectors.

(2) Iterators: an object used to select (or move between) elements in a
container. They are various types:
� forward, reverse, and bidirectional iterators;
� random-access/indexed-access iterators;
� input and output iterators;

CS319 — Week 11: static, const and inheritance 4/45

Part 1: The STL again

(3) Algorithms: for operating on the contents of containers, such as finding a
particular item, or sorting (a subset) of them. (Today!)

(4) functors: (also called “function objects”). Essentially, a class which
defines the operator(). (Not covered in CS319).

CS319 — Week 11: static, const and inheritance 5/45

Part 1: The STL again Algorithm

To use algorithm, we must

#include <algorithm >

Useful functions that this provides include

� for each

� sort and partial sort

� search

� copy and fill

� merge

� set union, set difference

� etc.

CS319 — Week 11: static, const and inheritance 6/45

Part 1: The STL again The password frequency problem

Remember the Password Frequency Problem from Week 7: Given a file with
30,000,000 passwords, construct a list of unique words (i.e., no repetition),
listed in order of frequency.

With the STL we can make a simple(r) solution to this.

1. Write a class, pwd, that represents a password, and its frequency. Write a
function that compares such objects according to their frequency;

2. Construct a multiset of strings to store the passwords.

3. Construct a vector of pwds; copy each password (once), and its
frequency, into it.

4. Sort the vector by pwd frequency.

Full code is in 01SortPasswordsSTL.cpp. Here is a summary...

01SortPasswordsSTL.cpp

#include <set > // multiset
16 #include <vector > // vector

#include <algorithm > // sort

CS319 — Week 11: static, const and inheritance 7/45

Part 1: The STL again The password frequency problem

01SortPasswordsSTL.cpp

class pwd {
20 private:

std:: string word;
22 int freq;

public:
24 pwd(std:: string s, int f) {word=s; freq=f;};

std:: string getword(void) const {return(word);};
26 int getfreq(void) const {return(freq);};

};

bool compare (pwd p, pwd q)
30 {

return (p.getfreq () > q.getfreq ());
32 }

34 int FileLength(std:: ifstream &InFile , int &LongestWord);

CS319 — Week 11: static, const and inheritance 8/45

Part 1: The STL again The password frequency problem

01SortPasswordsSTL.cpp

36 int main(void)
{

38 std:: ifstream InFile;
std:: string InFileName="UserAccount -1e5.txt";

40 std:: multiset <std::string > multi_pwd;
std:: multiset <std::string >:: iterator multi_pwd_i;

42 std:: vector <pwd > vector_pwd;

44 InFile.open(InFileName.c_str ());
if (InFile.fail())

46 {
std::cerr << "Error: Cannot open " << InFileName <<

48 " for reading." << std::endl;
exit (1);

50 }

52 // Need to know the number of lines, and the length of the longest one
int LineCount =0, LongestLine;

54 LineCount = FileLength(InFile , LongestLine);
std::cout << InFileName << " has " << LineCount << " lines .\n";

56 std::cout << "\tThe longest has " << LongestLine << " characters .\n";

CS319 — Week 11: static, const and inheritance 9/45

Part 1: The STL again The password frequency problem

01SortPasswordsSTL.cpp

58 // Read the lines
char *c_string_word;

60 c_string_word = new char [LongestLine +1];
for (int i=0; i<LineCount; i++)

62 {
InFile.getline(c_string_word , LongestLine +1);

64 multi_pwd.insert(c_string_word);
}

CS319 — Week 11: static, const and inheritance 10/45

Part 1: The STL again The password frequency problem

01SortPasswordsSTL.cpp

// Copy the passwords to the pwd vector
76 multi_pwd_i = multi_pwd.begin ();

vector_pwd.push_back(
78 pwd(* multi_pwd_i , multi_pwd.count (* multi_pwd_i)));

multi_pwd_i ++;
80 while (multi_pwd_i != multi_pwd.end ())

{
82 if ((vector_pwd.back ()). getword () != *multi_pwd_i)

vector_pwd.push_back(
84 pwd(* multi_pwd_i , multi_pwd.count (* multi_pwd_i)));

multi_pwd_i ++;
86 }

CS319 — Week 11: static, const and inheritance 11/45

Part 1: The STL again The password frequency problem

01SortPasswordsSTL.cpp

88 std::sort (vector_pwd.begin(), vector_pwd.end(), compare);

90 std::cout << "Top 10 passwords are: " << std::endl;
for (unsigned int i=0; i<10; i++)

92 std::cout << std::setw (12) << (vector_pwd[i]). getword () <<
std::setw (6) << (vector_pwd[i]). getfreq () << std::endl;

InFile.close ();
96 return (0);

CS319 — Week 11: static, const and inheritance 12/45

Part 1: The STL again The password frequency problem

CS319 – Week 11: static, const and inheritance

END OF PART 1

CS319 — Week 11: static, const and inheritance 13/45

Part 2: static

CS319 – Week 11: static, const and inheritance

Start of ...

PART 2: static

Basically, a variable that is shared by every instance of the class.

CS319 — Week 11: static, const and inheritance 14/45

Part 2: static

Next we introduce a new C++ keyword: static.

Usually, variables exist only in their scope. That means that it exists only
within the program block in which it is defined.

For example, if a variable is local to a function, every time that function is
called, a new instance of the variable is created, and every time the function
ends, the variable (and its value) are lost.

However, if a variable is declared to the static then it can persist.

There are three uses of static

1. A static variable within a block/function.

2. A static member variable in a class.

3. A static member function in a class.

CS319 — Week 11: static, const and inheritance 15/45

Part 2: static (i) static variables

A static variable belongs to a function. It can be accessed only within that
function, but it retains its value between calls.

02staticVarInFunction.cpp

void Example1(void)
10 {

static int count =0;
12 count ++;

14 std::cout << "Function Example 1 has been called " <<
count << " times." << std::endl;

16 }

18 int main(void)
{

20 Example1 ();
Example1 ();

22 Example1 ();
return (0);

24 }

This is a trivial example. A much better use would be to count the number of
function evaluations in out optimization problem from Lab 3.

CS319 — Week 11: static, const and inheritance 16/45

Part 2: static (ii) static variable in a class

Every data member of an object is unique to that object (recall: an object is an
instance of a class).

Suppose we have a class defined as

10 c l a s s Student
{

12 p r i v a t e :
s t d : : s t r i n g name ;

14 s t d : : s t r i n g u n i v e r s i t y ;
p u b l i c :

16 void set name (s t d : : s t r i n g n) {name=n ; } ;
void s e t u n i v e r s i t y (s t d : : s t r i n g u) { u n i v e r s i t y=u ; } ;

18 s t d : : s t r i n g get name (void) { r e t u r n (name) ; } ;
s t d : : s t r i n g g e t u n i v e r s i t y (void) { r e t u r n (u n i v e r s i t y) ; } ;

20 } ;

But if all Students are enroled in the same University, a name change of the
institution for one student should change them for all.

CS319 — Week 11: static, const and inheritance 17/45

Part 2: static (ii) static variable in a class

So there are cases where we would like objects to share a data member. This is
achieved using a static variable.

Static data members of a class are also known as class variables, because
there is only one unique value for all the objects of that same class. Their
content is not different from one object of this class to another.

This means that

� The static variable is created when the class is defined.

� Therefore, it exists even before a object of that class type is declared.

� It must be initialised outside the class, in the global scope, using the
scope resolution operator.

CS319 — Week 11: static, const and inheritance 18/45

Part 2: static (ii) static variable in a class

03staticVarInClass.cpp

10 c l a s s Student
{

12 p r i v a t e :
s t d : : s t r i n g name ;

14 s t a t i c s t d : : s t r i n g u n i v e r s i t y ;
p u b l i c :

16 void set name (s t d : : s t r i n g n) {name=n ; } ;
void s e t u n i v e r s i t y (s t d : : s t r i n g u) { u n i v e r s i t y=u ; } ;

18 s t d : : s t r i n g get name (void) { r e t u r n (name) ; } ;
s t d : : s t r i n g g e t u n i v e r s i t y (void) { r e t u r n (u n i v e r s i t y) ; } ;

20 } ;

22 // the s t a t i c m e m b e r must be i n i t i a l i s e d in g l o b a l s p a c e

s t d : : s t r i n g Student : : u n i v e r s i t y=”QCG” ;

CS319 — Week 11: static, const and inheritance 19/45

Part 2: static (ii) static variable in a class

03staticVarInClass.cpp

Student A, B, C;

A.set_name("Alice Perry"); // Set the values of A.name
30 std::cout << "Object A: \t\t" << A.get_name () <<

" is a student at " << A.get_university () << std::endl;

// Set the values of B.name and B.university
34 B.set_name("Breandan O hEithir"); B.set_university("UCG");

std::cout << "Object B: \t\t" << B.get_name () <<
36 " is a student at " << B.get_university () << std::endl;

38 // And check the values of A again
std::cout << "Now the data for A is : " << A.get_name () <<

40 " is a student at " << A.get_university () << std::endl;

Output

1 Object A : A l i c e Pe r r y i s a s t uden t at QCG
Object B : Breandan O hE i t h i r i s a s t uden t at UCG

3 Now the data for A i s : A l i c e Pe r r y i s a s t ud en t at UCG

CS319 — Week 11: static, const and inheritance 20/45

Part 2: static (ii) static variable in a class

Another, less trivial example of the use of static variables, is to associate with
the class an integer variable that counts the number of objects that have been
created.

This is done (in this example) by having a static int count variable in the
class. It is initialised to zero and incremented when the constructor is called.

We also have a static function called getCount() . Because this is static, it
can be called before an instance of the object is declared.

The following example is adapted from Deitel, C++ How to Program, 4th Ed,
Example 7.17.

CS319 — Week 11: static, const and inheritance 21/45

Part 2: static (ii) static variable in a class

04Employee.cpp

12 class Employee {
public:

14 Employee(const std::string , const std:: string); // constructor
~Employee(void); // destructor

16 const std:: string getGivenName () const {return (GivenName);};
const std:: string getFamilyName () const {return (FamilyName);};

18 static int getCount () {return(count);};

20 private:
std:: string GivenName;

22 std:: string FamilyName;
static int count; // number of objects instantiated

24 };

26 // Define and initialize static data member
int Employee ::count = 0;

CS319 — Week 11: static, const and inheritance 22/45

Part 2: static (ii) static variable in a class

04Employee.cpp

// The constructor sets values of (string) GivenName
30 // and (string) FamilyName , and it increments the counter

Employee :: Employee(const std:: string given ,
32 const std:: string family){

GivenName = given;
34 FamilyName = family;

count ++; // increment static count of employees
36 }

38 // denstructor decrements the count variable
Employee ::~ Employee(void){

40 count --; // decrement static count of employees
}

CS319 — Week 11: static, const and inheritance 23/45

Part 2: static (ii) static variable in a class

04Employee.cpp

44 std::cout << "Number of employees before instantiation is "
<< Employee :: getCount () << std::endl; // use class name

46
Employee Driver("Bob", "Wood");

48 std::cout << "Now the number of employees is " <<
Employee :: getCount () << std::endl;

50
{ // New Block. Tom will be local to this block.

52 Employee Cleaner("Tom", "Broom");

54 std::cout << "Employee 1: " << Driver.getGivenName () << " "
<< Driver.getFamilyName () << std::endl;

56
std::cout << "Employee 2: " << Cleaner.getGivenName () << " "

58 << Cleaner.getFamilyName () << std::endl;

60 std::cout << "Cleaner.getCount () returns " <<
Cleaner.getCount () << std::endl;

CS319 — Week 11: static, const and inheritance 24/45

Part 2: static (iii) static functions

Finally, we mention that it is possible to define a static function member of a
class.

This means that the function belongs to the class, rather than an instance of
the class. So

� It can be called even if no instance of the class is defined;

� The *this pointer is not defined within the function;

� It can only act on other static members;

� It should be considered to be a member of the class, rather than an
instance of the class.

Exercise

Read up on static functions. Write a function that shows how they are used.

CS319 — Week 11: static, const and inheritance 25/45

Part 2: static (iii) static functions

CS319 – Week 11: static, const and inheritance

END OF PART 2

CS319 — Week 11: static, const and inheritance 26/45

Part 3: const

CS319 – Week 11: static, const and inheritance

Start of ...

PART 3: const

Modifier that ensures a “variable” does not vary

CS319 — Week 11: static, const and inheritance 27/45

Part 3: const

A expression is constant it is value never changes. We are familiar with
literal consants. Examples:

� ’x’

� "Hello"

� (int) 5

� (float) 3.14159

C++ also has three keyword literals: true, false and nullptr.

CS319 — Week 11: static, const and inheritance 28/45

Part 3: const

We can also define our own constants, by putting the qualifier const before a
“variable” declaration:

05const.cpp

const double Pi =3.14159;

16 std::cout << "Pi=" << Pi << std::endl;

18 // Now change Pi

Pi = 3.14; // This will not (and should not) work

std::cout << "Now Pi=" << Pi << std::endl;

Now, if we compile:

01const.cpp: In function ‘int main()’:
01const.cpp:19:8: error: assignment of read-only variable ‘Pi’

Pi = 3.14;
^

CS319 — Week 11: static, const and inheritance 29/45

Part 3: const const functions

We can add the const “type qualifier” (modifier) to any data type, including a
class that we define ourselves.

However, that creates issues.

Specifically, if we write our own class, and then create a const object of this
class, it can only call const methods.

Consider the following code, adpated from Week11/04StaticVarInClass.cpp

CS319 — Week 11: static, const and inheritance 30/45

Part 3: const const functions

Bad example: Part 1

12 class Student

{

14 private:

std:: string name;

16 static std:: string university;

public:

18 Student(std:: string n) {name=n;};

void set_name(std:: string n) {name=n;};

20 void set_university(std:: string u) {university=u;};

std:: string get_name(void) {return(name);};

22 std:: string get_university(void) {return(university);};

};

Bad example: Part 2

34 const Student B("Agnes Perry");

std::cout << "Object B: \t" << B.get_name () <<

36 " is a student at " << B.get_university () << std::endl;

tmp.cpp:35:45: error: passing ‘const Student’ as ‘this’ argument discards qualifiers
std::cout << "Object B: \t" << B.get_name() <<

CS319 — Week 11: static, const and inheritance 31/45

Part 3: const const functions

06constFunction.cpp

12 class Student

{

14 private:

std:: string name;

16 static std:: string university;

public:

18 Student(std:: string n) {name=n;};

void set_name(std:: string n) {name=n;};

20 void set_university(std:: string u) {university=u;};

std:: string get_name(void) const {return(name);};

22 std:: string get_university(void) const {return(university);};

};

CS319 — Week 11: static, const and inheritance 32/45

Part 3: const const function parameters

When writing a function header, we can designate some of the parameters as
const meaning that the copy of the parameter that is passed cannot be
changed in the function.

There are some times when this is necessary. Consider the following example...

07constParam.cpp

class Number

12 {

private:

14 double x;

public:

16 Number () {x=0.0;};

Number(const Number ©) {x=copy.x;}; // notice const

18 void set_x(double X) {x=X;};

double get_x(void) {return(x);};

20 Number operator +(Number &b)

{

22 Number sum;

sum.x = x + b.x;

24 return(sum);

}

26 };

CS319 — Week 11: static, const and inheritance 33/45

Part 3: const const function parameters

07constParam.cpp

int main(void)

30 {

Number a;

32 a.set_x (121.234);

Number b(a+a);

34 std::cout << "a.x= \t" << a.get_x () << std::endl;

std::cout << "b.x= \t" << b.get_x () << std::endl;

36 return (0);

}

Why this works...

CS319 — Week 11: static, const and inheritance 34/45

Part 3: const const function parameters

CS319 – Week 11: static, const and inheritance

END OF PART 3

CS319 — Week 11: static, const and inheritance 35/45

Part 4: Inheritance

CS319 – Week 11: static, const and inheritance

Start of ...

PART 4: Inheritance

Making new classes from old ones

CS319 — Week 11: static, const and inheritance 36/45

Part 4: Inheritance

We’ll finish with one final big idea that we’ll study CS319: Inheritance.

Basic concept in Inheritance

Given a class, construct from it a new class that has the properties of the
original class, plus some new ones.

� The original class is called the base, parent or super class.

� The new one, is called the derived, child or sub class.

The derived class will inherit

� All the data members of the base class, though it may not be able to
access them directly,

� The ordinary function members, but not constructors, destructors, or
assignment operators.

CS319 — Week 11: static, const and inheritance 37/45

Part 4: Inheritance

Some programming/syntax aspects:

� The syntax for defining a derived class

c l a s s Der i v ed : pub l i c Base

Here public means that elements that were public to the base class are
publicly accessible to the derived class. (This is the most typical case.)

c l a s s Der i v ed : p r i v a t e Base

Here private means everything remains private to the base class, and so
can’t be access by the derived class. (Not very useful).

� To the public and private specifiers, we’ll add protected

� virtual functions

CS319 — Week 11: static, const and inheritance 38/45

Part 4: Inheritance

In our first example, 08InheritExample.cpp, we construct a simple base class
that has a single data member. We’ll then make a derived class.

Notice that, although the derived class inherits the base class’s private datum,
it must use the access method SetX() to change it, and GetX() to evaluate it.

CS319 — Week 11: static, const and inheritance 39/45

Part 4: Inheritance

08InheritExample.cpp

12 // The base class

class Point1D {

14 private:

int x;

16 public:

Point1D(int X=0) {x=X;};

18 int GetX(void) {return(x);};

void SetX(int X) {x=X;};

20 };

22 // The derived class will inherit x, GetX, SetX

class Point2D : public Point1D {

24 private:

int y;

26 public:

Point2D(int X=0, int Y=0) {SetX(X); y=Y;};

28 int GetY(void) {return(y);};

void SetY(int Y) {y=Y;};

30 void PrintXY(void);

};

void Point2D :: PrintXY(void){

34 std::cout << "(" << GetX() << "," << y << ")" << std::endl;

}

CS319 — Week 11: static, const and inheritance 40/45

Part 4: Inheritance protected

To date, we designated the accessibility every data member and member
function of a class with one of the following access specifiers:

� private: This specifies that the data/function member can only be
accessed from within the class. For data members, this means that the
data can be accessed or modified by a function that is a member or
friend of the class. Similarly, private functions can be called by another
member/friend function of the class. This is the default.
OR

� public: specifies that a data or function member can be accessed from
anywhere in your code.

Now we add: protected:. These members act the same as private ones, except
that they are directly accessible within a derived class.

Compare 09Protected.cpp with our earlier example.

CS319 — Week 11: static, const and inheritance 41/45

Part 4: Inheritance protected

09Protected.cpp

14 class Point1D {

protected: // this was private in 08InheritExample.cpp

16 int x;

public:

18 Point1D(int X=0) {x=X;};

int GetX(void) {return(x);};

20 void SetX(int X) {x=X;};

};

// The derivated class will inherit x, GetX, SetX

24 class Point2D : public Point1D {

private:

26 int y;

public:

28 // Don’t have to use SetX in the constructor

Point2D(int X=0, int Y=0) {x=X; y=Y;};

30 int GetY(void) {return(y);};

void SetY(int Y) {y=Y;};

32 void PrintXY(void);

};

void Point2D :: PrintXY(void)

36 {

// Don’t have to use GetX

38 std::cout << "(" << x << "," << y << ")" << std::endl;

}

CS319 — Week 11: static, const and inheritance 42/45

Part 4: Inheritance Replacing members

Suppose, for example, that a base class has a method void PrintData(void).
It is possible to make a derived class that also contains a (new) method call
void PrintData(void).

The version of PrintData(void) from the derived class will superceed the one
from the base class.

However, the original one does not disappear, it can still be called, but you
need to use the base class name and scope resolution operator.

Note: If the base and derived classes have functions with the same names, but
different “signatures”, then the function is overloaded, not replaced.

CS319 — Week 11: static, const and inheritance 43/45

Part 4: Inheritance Replacing members

10Replacement.cpp

36 class Point2D : public Point1D {

private:

38 int y;

public:

40 Point2D(int X=0, int Y=0) {x=X; y=Y;};

int GetY(void) {return(y);};

42 void SetY(int Y) {y=Y;};

void PrintData(void);

44 };

46 // The Point2D class also has a method

// called PrintData()

48 void Point2D :: PrintData(void)

{

50 std::cout << "(" << x << "," << y << ")\n";

}

CS319 — Week 11: static, const and inheritance 44/45

Part 4: Inheritance Replacing members

10Replacement.cpp

int main(void)

54 {

Point2D d;

d.SetX (1); d.SetY (2);

58 std::cout << "Calling the Point2D version of d.PrintData (): d=";

d.PrintData ();

std::cout << "Calling the Point1D version of d.PrintData (): d=";

62 d.Point1D :: PrintData ();

return (0);

64 }

. .

There are other times when we need to take care which of two functions that
have the same signature and belonging the base and derived class is called, and
need to declare one of them as virtual, but that is beyond the scope of this
class...

CS319 — Week 11: static, const and inheritance 45/45

