
CS319: Scientific Computing (with C++)

CS319 Lab 1: Numbers and Programming
23 Feb 2021

Goal To gain familiarity with the conceptsof

I basic C++ program structure;

I input and output,

I Computer representation of number – particularly ints, floats and
doubles.

I Also: some flow-of-control (if) and loops (for)

You don’t have to submit anything this week; your first homework
assignment will be in Lab 2 (next week).
The exercises in Q1 and Q2 can be done using an online compiler, such
as http://cpp.sh/. However, other would take too long to run online,
so must be run on your own PC.

CS319 — CS319 Lab 1: Numbers and Programming 1/7

http://cpp.sh/

Q1. (if/else if/else-statements) Write a C++ program that
prompts the user to enter two integers, x , y , and then reports which
in quadrant the point (x , y) is found, or if (x , y) is on an axis (i.e.,
one or both are zero. (Tip: see https:

//en.wikipedia.org/wiki/Quadrant_(plane_geometry) for a
definition of quadrants I , II , III and IV .

CS319 — CS319 Lab 1: Numbers and Programming 2/7

https://en.wikipedia.org/wiki/Quadrant_(plane_geometry)
https://en.wikipedia.org/wiki/Quadrant_(plane_geometry)

Q2. (for-loops) Recall that a prime number is one that has exactly two
(distinct) divisors: 1 and itself. Write a program that computes all
the prime numbers between 2 and 99 using the Sieve of
Eratosthenes. It should declare an int array, P, of size 100, and
initialise it so that P[i] = i . Then, using the algorithm described in
https://brilliant.org/wiki/sieve-of-eratosthenes/ set
P[i] = 0 where i is not prime.
When complete, your code should list all primes less than 100.

CS319 — CS319 Lab 1: Numbers and Programming 3/7

https://brilliant.org/wiki/sieve-of-eratosthenes/

Q3. The following code snippet finds the largest int that is correctly
representable by your computer. It also computes the time taken.
(Full code at Lab1-Q3.cpp).

18 clock_t start;

float diff , diff_seconds;

20 start=clock ();

22 int i=1;

int j=i+1;

24 while (i<j)

{

26 i++;

j=i+1;

28 }

diff = (float)(clock()-start);

30 diff_seconds = diff/CLOCKS_PER_SEC;

std::cout << "Overflow at i="<< i << std::endl;

32 std::cout << "Computation took " << diff_seconds

<< " seconds." << std::endl;

CS319 — CS319 Lab 1: Numbers and Programming 4/7

https://www.maths.nuigalway.ie/~niall/CS319/lab1/Lab1-Q3.cpp

Q3(a) Read the code carefully, and make sure you understand it. Test it,
making sure you compile without any optimisations. Do the results
agree with the theory covered in class?

Q3(b) There are other types of integers available in C++, for example,
short int, unsigned int and long int. Try this program using
short ints and unsigned int. Do you get the expected results?

Q3(c) Suppose you wanted to use this program to test the largest long
int your C++ programs can represent. Estimate how long your
program would take to run.

CS319 — CS319 Lab 1: Numbers and Programming 5/7

Q4. Write a programme to tries to compute the smallest float greater
than zero that your computer can represent. For example, you could
initialise a float, x , as 1.0. Then, for as long as your computer
thinks that x/2 > 0, divide x by 2. When you are done, x should be
a good approximation of the smallest number representable.
Does the answer given by your code agree with theory? If not, can
you give a reason why?

CS319 — CS319 Lab 1: Numbers and Programming 6/7

Q5. Next we want to compute the largest float representable. This is a
little more tricky; where as small floats are eventually rounded to
zero (which is a number), large ones tend to infinity (which is not).
Try a similar approach as in Question 4, but include the header file
math.h (and include the h); and use the function isfinite to test
if x is finite or not. Depending on your compiler, you may have to
compile against the math library.

CS319 — CS319 Lab 1: Numbers and Programming 7/7

