CS319: Scientific Computing (with C++)

CS319 Lab 2: int, float and double
02 March 2021

Goal: To study the computer representation of numbers — particularly
ints, floats and doubles.

Assignment: Submit your code as a single C++ program for Q3 and
Q4. Upload it to the “Assignments... Lab 2" section of the CS319
Blackboard module.

It is very important that your code include comments with your name,
email address, ID number, date written.

The assignment will be graded taking into account if the program
compiles, if it solves Q3 and Q4, and if it includes the requested data.

CS319 — CS319 Lab 2: int, float and double 1/4

Q1. The following code snippet finds the largest int that is correctly
representable by your computer. It also computes the time taken.
(Full code at Lab2-Q1.cpp [link]).

18 clock_t start;
float diff, diff_seconds;
20 start=clock () ;
22 int i=1;
int j=i+1;
24 while (i<j)
{
26 i++;
j=i+1;
28 }
diff = (float)(clock()-start);
30 diff_seconds = diff/CLOCKS_PER_SEC;
std::cout << "QOverflow at i="<< i << std::endl;
32 std::cout << "Computation took " << diff_seconds
<< " seconds." << std::endl;

CS319 — CS319 Lab 2: int, float and double

https://www.maths.nuigalway.ie/~niall/CS319/lab2/Lab2-Q1.cpp

Q1(a) Read the code carefully, and make sure you understand it. Test it,
making sure you compile without any optimisations. Do the results
agree with the theory covered in class?

Q1L(b) There are other types of integers available in C++, for example,
short int, unsigned int and long int. Try this program using
short ints and unsigned int. Do you get the expected results?

Q1(c) Suppose you wanted to use this program to test the largest long
int your C++ programs can represent. Estimate how long your
program would take to run.

CS319 — CS319 Lab 2: int, float and double 3/4

Q2.

Q3.

Q4.

Write a programme to tries to compute the smallest float greater
than zero that your computer can represent. For example, you could
initialise a float, x, as 1.0. Then, for as long as your computer
thinks that x/2 > 0, divide x by 2. When you are done, x should be
a good approximation of the smallest number representable.

Does the answer given by your code agree with theory? If not, can
you give a reason why?

Compute the smallest float, x, such that we can distinguish
between 1 and 1 + x. Write a C++ program to do this. (Hint: the
thing you are computing is called machine epsilon. The Wikipedia
entry for this is rather good).

Write a C++ programme that computes the machine epsilon for the
double data type.

CS319 — CS319 Lab 2: int, float and double

