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30 March 2021

Our goal is to improve our understanding of classical iterative solvers for linear
systems of equations. We will reimplement the Jacobi solver from Weeks 7 and
8, but without the overloaded operators from the Vector and Matrix classes,
and then implement a Gauss-Siedel solver. However, you don’t have to submit
any work this week.

In our next (and final) lab, after Easter, we’ll return to classes and operator
overloading to simplify the Gauss-Siedel solver.
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Part 1: Jacobi’s Method

In class we discussed Jacobi’s method for solving a linear system of equations,
and presented an example of how it could be implemented. This
implementation is in 02Jacobi.cpp from Week08. It makes use of the code in
Vector08.h, Matrix08.h, Vector08.cpp, and Matrix08.cpp. To run it,
you’ll need to create a project with all 5 files. They can be downloaded from
https://bitbucket.org/niallmadden/2021-cs319 or
http://www.maths.nuigalway.ie/~niall/CS319/Week08/

To verify that you understand how the code works, adapt the 02Jacobi.cpp

program to solve the following problem:

6x1 − 2x2 + x3 + x4 = −7 (1)

x1 + 7x2 − 2x3 + x4 = −9 (2)

−x1 + 2x2 + 8x3 − 2x4 = 4 (3)

−x1 + x2 + x3 + 9x4 = 20 (4)

(Remember: mathematically, we usually index vectors and matrices from 1 to
N, but in C++ we index them from 0 to N − 1).
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Part 1: Jacobi’s Method A simpler implementation

Jacobi’s method is designed to solve linear system of N equations in N
unknowns: find x1, x2, . . . , xN , such that

a11x1 + a12x2 + · · ·+ a1NxN = b1

a21x1 + a22x2 + · · ·+ a2NxN = b2

...

aN1x1 + aN2x2 + · · ·+ aNNxN = bN .

We expressed this as a matrix-vector equation: Find x such that

Ax = b,

where A is a N × N matrix, and b and x are (column) vector with N entries.
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Part 1: Jacobi’s Method A simpler implementation

However, a simpler, if less elegant presentation is possible: choose x(0) and set

x
(k+1)
1 =

1

a11
(b1 − a12x

(k)
2 − a13x

(k)
3 − · · · − a1Nx

(k)
N )

x
(k+1)
2 =

1

a22
(b2 − a21x

(k)
1 − a23x

(k)
3 − · · · − a2Nx

(k)
N )

...

x
(k+1)
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1
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(k)
1 − · · · − aN,N−1x

(k)
N−1)

This can be programmed with two (or so) nested for loops, rather than
explicit matrix multiplication.
Implement this version of Jacobi’s method, using for loops, but without the
AddVec or MatVec functions from 02Jacobi.cpp. Verify that you get the same
results as with the original Jacobi solver.
(You can, if you choose, use Vector and Matrix objects to store the data, but
it is not essential. Similarly, it is OK to use AddVec and MatVec to compute
the residual, if you wish).
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Part 2: Improving Jacobi

Jacobi’s method is not particularly efficient. Heuristically, you argue that it
could be improved as follows. In Jacobi’s method, we compute x

(k+1)
1 from

x
(k+1)
1 =

1

a11

(b1 − a12x
(k)
2 − a13x

(k)
3 − · · · − a1Nx

(k)
N )

We expect that it is a better estimate for x1 than x
(k)
1 .

Next we compute

x
(k+1)
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1

a22
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(k)
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(k)
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(k)
N )

However, here we used the “old” value x
(k)
1 even though we already know the

new, improved x
(k+1)
1 . That is, we could use

x
(k+1)
2 =

1

a22
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(k)
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(k)
N )
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Part 2: Improving Jacobi The Gauss-Seidel method

More generally, in Jacobi’s method we set

x
(k+1)
i =

1

aii

(
bi −

N∑
j=1,j 6=i

aijx
(k)
j

)
.

The Gauss-Seidel method uses

x
(k+1)
i =

1
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(
bi −

i−1∑
j=1

aijx
(k+1)
j −

N∑
j=i+1

aijx
(k)
j

)
.

Implement this method as new function called
GaussSeidel. Verify that it is more efficient than the Jacobi method, in the
sense that fewer iterations are required to achieve the same level of accuracy.
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Part 3: A test problem

You should now have working code for the Jacobi and Gauss-Seidel methods.
Test these functions for problems of at least size N = 10. According to the
theory, these methods are guaranteed to converge if the system matrix is
diagonally dominant. This means that, in each row, the magnitude of the
diagonally entry, |aii |, must be greater than the sum of the other terms: i.e.,

|aii | >
∑
j 6=i

|aij |.

Keep this in mind when you are choosing a test problem.
Ideally, your programme should

I Generate a random matrix that is diagonally dominant. (Have a look at
03TestOverload.cpp from Week 8 to see an example of a vector with
random entries).

I Choose a simple solution vector x, e.g., x = (1, 0, 1, 0, 1, . . . ).

I Set b = Ax

I Use your Gauss-Seidel solver to compute and estimate for x.

I Compute how close this estimate is to the true solution.
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Part 4: Exercises

You don’t have to submit any work this week. Nonetheless, you should
complete the following exercises before next week.

1. Produce a working program that implements the Jacobi and Gauss-Seidel
methods.

2. Even though most books present the Gauss-Seidel method as an
improvement upon Jacobi’s, it is actually the (slightly) older of the two
methods (it is from 1826, whereas Jacobi’s is from 1845). Jacobi’s
preferred his slower method, however, because it is easier to parallelise.
Explain why this is the case.
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