CS319: Scientific Computing (with C4+)

Niall Madden (Niall.Madden@ONUIGalway.ie)

CS319 Lab 7: Solving Linear Systems Il
13 April 2021

Goal: to develop expertise in operator overloading and to demonstrate this by
developing a new implementation of the Gauss-Seidel method from Lab 6.

Deadline: 5pm, Tuesday 27 April

You should upload a single archive file, such as a zip or tar-ball, that contains
all the necessary source files.

Don’t forget to include your name, ID number, and NUI Galway Email
address in all files!

CS319 — CS319 Lab 7: Solving Linear Systems Il

1/9

Part 1: Recall Jacobi's method

In Lab 6 you developed implementations of the Jacobi and Gauss-Seidel
algorithms for solving a linear system of N equations in N unknowns: find
X1, X2, ..., Xn, Such that

ajpx1 + apxe + -+ agnXn = by

A X1+ apxe + -+ axn = by

ani1X1 + a2 X2 + -4+ AN XN = b/\[.
We expressed this as a matrix-vector equation: Find x such that
Ax = b,

where A is a N x N matrix, and b and x are (column) vectors with N entries.

CS319 — CS319 Lab 7: Solving Linear Systems Il 2/9

Part 1: Recall Jacobi's method

Then Jacobi's method is: choose x(© and set

1

X§k+1) =—(b - alzxék) - 313X§k) - alNX/(vk))
11
1

Xékﬂ) = —(b— 321X§k) - 323X§k) - a2NXI(Vk))
an
1

X/(vkﬂ) = —(bn — 3N1X{k)] N—IXI(\/kll)
ANy ’

There is also a matrix-version of this iteration. We set D and T to be the

matrices
a; I=j 0 i=j
dy = 4% i b = i
0 otherwise. —a; otherwise.

So A= D — T. Then Jacobi’'s method can be written neatly in matrix form:

x* = Db+ Tx™M). (1)

CS319 — CS319 Lab 7: Solving Linear Systems Il 3/9

Part 1: Recall Jacobi's method

In Week 8, and this week, we moved towards a neater implementation, based
on operator overloading.

» We overloaded the assignment operator = for Vectors.
» We overloaded the Vector addition operator.
» We overloaded the Matrix-Vector multiplication operator.

Our next step is to implement Jacobi's method with overloaded versions of the
vector addition operator, +, and multiplication operator, *, for matrices and
vectors, and in just a few lines:

do
{
count ++;
x = Dinv*(b+T*x);
r=b-A*x; // set r=b-Axr
} whiles (r.norm() > tol)j

This is implemented in the program RunJacobi.cpp. Download it, from
https://bitbucket.org/niallmadden/2021-cs319/src/master/lab7/ and
try it. You will need Matrix09.h, Vector09.h, Matrix09.cpp and
Vector09.cpp from Week 9.

CS319 — CS319 Lab 7: Solving Linear Systems Il 4/9

https://bitbucket.org/niallmadden/2021-cs319/src/master/lab7/

Part 2: Triangular systems

Some systems of equations are very easier to solve than others. Suppose the
system is Lx = b, but L is a lower triangular matrix. The associated system of
equations looks like this:

hix =b

hix1 + hoxo =

Bix1 4 haxo + h3x3 =b

Inixt + Inoxe + -+ - + Innxn = by.

To solve this,
> first set x1 = by /h1.
> Now substitute this into the second equation to get x> = (b2 — hix1)/h2.
» Next we use x3 = (b3 — hix1 — hox2)/hs3,
»> and so on.

In fact, this is quite like Jacobi's method, except we don't have to iterate.

CS319 — CS319 Lab 7: Solving Linear Systems Il 5/9

Part 2: Triangular systems

Since we write Lx = b, it is reasonable to write x = b/L.

Overload the “/" operator so that, if L is lower triangular, then x is computed
as outlined above.

We will make this operator a friend of the matrix class, meaning that it is
not a member of the class, but is “known” to it.

Modify the Matrix09.h header file to include the following function prototype
in the class definition:

friend vector operator/(vector u, matrix L);

Note that we are explicitly passing both arguments.

CS319 — CS319 Lab 7: Solving Linear Systems Il

6/9

Part 2: Triangular systems

Then, in the Matrix09.cpp file, add the code for the operator function. The
first line might be

vector operator/(vector b, matrix L){
int N = L.size();
vector x(N); // = solves L*z=b

// you add the rest of the code here

}

Important: the friend keyword appears only in the function prototype, and
not in the function definition itself.

CS319 — CS319 Lab 7: Solving Linear Systems Il

7/9

Part 3: Gauss-Seidel, again

Recall that the Gauss-Seidel method is choose x(©) and set

k+1 1 k+1 K K
X:f+):—(b17312X§+)7313X§)7---731NXI(V))
an
k+1 1 k+1 k+1 K
Xé+):*(b2—321><}+)—323X§+)—"'—32NX/(V))
GoP)
k+1 1 k+1 k+1
X/(v+)= —(bv — alef LA aN,Nflxl(\ljl))
ann

In the same way as we did for Jacobi's method, we can write this in a succinct
matrix-vector form: we set L and U to be the matrices

| a; i>] 0 i>j
Y 0 otherwise. v —a; otherwise.

So A= L — U. Then the Gauss-Seidel method can be written as
Lx*) = p 4 Ux™), (2)

Note that this involves solving a linear system where L is the coefficient matrix.
However, we have overloaded the “/” operator to do just that.

CS319 — CS319 Lab 7: Solving Linear Systems Il

8/9

Assignment

Write a programme, based on RunJacobi.cpp. It should achieve all of the

following.

1. Use both the Jacobi and Gauss-Seidel methods to solve the linear system;

2. Implement the Gauss-Seidel method using your overloaded “/" operator;

3. Verify that the Gauss-Seidel method is more efficient (assuming they both
converge);

4. Allows the user to specify the convergence tolerance for the residual (i.e.,
stop when ||b — Ax|| < TOL);

5. Allows the user to specify the maximum number of iterations to use.

Submit your solution through the “Lab 7" section of the Blackboard module.
You should include all necessary files for your program to compile: even if they
are unchanged from the versions your downloaded from the website. Including
the project file or, even better, a Makefile, is helpful, but not necessary.

You should upload a single archive file, such as a zip or tar-ball, that contains
all the necessary source files.

Don’t forget to include your name, ID number, and NUI Galway Email
address in all files!

Deadline: 5pm, Tuesday 27 April

CS319 — CS319 Lab 7: Solving Linear Systems Il 9/9

	Part 1: Recall Jacobi's method
	Part 2: Triangular systems
	Part 3: Gauss-Seidel, again
	Assignment

