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The Problem

The following is the problem as posed by Seshu Tirupathi of IBM Research.
Shallow water equations describing unsteady open channel flows are typically used to

model river flows. Conservative form of the equations are difficult to numerically formulate
and apply in real test cases. The conservative form of the equations are given by
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where η is the total fluid column height (instantaneous fluid depth as a function of x,
y and t), and the 2D vector (u,v) is the fluid’s horizontal flow velocity, averaged across
the vertical column. Further, g is acceleration due to gravity and ρ is the fluid density.
On the other hand, the non conservative form of the equations are easier to formulate
numerically. These are written as follows:
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where u is the velocity in the x direction, v is the velocity in the y direction, h is the
height deviation of the horizontal pressure surface from its mean height H: η = H+h, H
is the mean height of the horizontal pressure surface, g is the acceleration due to gravity,
f is the Coriolis coefficient associated with the Coriolis force, on Earth equal to 2Ωsin(φ),
where Ω is the angular rotation rate of the Earth (π/12 radians/hour), φ is the latitude,
b is the viscous drag coefficient, and ν is the kinematic viscosity.

There have been various attempts to handle both these formulations. It is important
to note that the one dimensional model decreases the computational cost significantly to
model river flows to a reasonable accuracy as compared to a more comprehensive 2D reso-
lution. The problem becomes tricky when there is confluence of river segments/channels.
Work has been done to handle merging of flows from different channels into a single chan-
nel by using a 2D formulation at the junction. For this workshop, can you comment on
some or all of the following aspects (assuming continuous flow):

1. In general, are there any disadvantages of using the non-conservative form of the
equations even if the flow is continuous?

2. For flow at a junction, is it possible to come up with internal boundary condi-
tions/constraints without the necessity to solve the 2D shallow water equations?
How do the boundary conditions compare with a 1D-2D coupling at the junction?
See Figure 1.
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Figure 1: Flow at a junction

3. How do the internal boundary conditions/constraints compare when the flow merges
at a cross section? See Figure 2.

Figure 2: Flow at a cross section

4. Can you come up with a rigorous analysis for questions 1 to 3 assuming rectangu-
lar/trapezoidal/parabolic cross sections?

5. What other novel methods can you come up with to handle merging flows while
keeping the formulation limited to 1D?

Approach

1D shallow water rectangular cross section

We first consider the 1D shallow water equations for a rectangular cross section perpen-
dicular to the flow. Let the square cross section vary with x, the direction along the river
flow, and time t according to

A(x, t) = w(x)h(x, t), (1)

where w(x) is the channel width, which is known, and h(x, t) is the channel height which
is unknown.

The 1D shallow water equations then become
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where u(x, t) is the flow velocity, b(x) is the height of the river bed and τ(x, t) is the
wall shear stress along the river basin. For an open channel, the Darcy–Weisbach friction
becomes

τ(x, t) =
fD
8
ρu(x, t)2, (4)

where fD is the Darcy friction factor and u(x, t) is the mean flow velocity along the basin.
What do we get for constant width w and the river bed height b(x) = βx, where β

is constant? Substituting 4 into 3, and assuming a steady flow, so that u is constant in
both x and t, and constant height h gives
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g
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The sign of β is determined by the direction of the slope of the channel. The larger
the incline and gravity, the faster the flow u. Finally, the larger the volume ratio to
perimeter, and smaller the friction, the faster the flow. Note: fD → 0 doesn’t make sense
as we assume the flow velocity is constant and without friction this would not be possible
(gravity would accelerate the flow).

How far can we get using b(x) = βx and w(x) = ωx + w0? With these constraints,
the 1D equations are as follows:

(ωx+ w0)
∂h(x, t)

∂t
+ ωh(x, t) + (ωx+ ω0)

∂h(x, t)

∂x
= 0, (6)

∂u

∂t
+ u

∂u

∂x
+ g(

∂h

∂x
+ β) = −(2h+ w)

hw

fD
8
u(x, t)2. (7)

A 3D fluid

The correct way to do this is to solve the full 3D fluid equations for a constant uniform
flow. The 1D shallow water equations are the result of averaging this solution. However,
to pose balance of momentum in 3D, we would need to revert back to the true 3D solution
of a uniform flow. This is quite straightforward, but for simplicity we will use just the
averaged 1D shallow water solution.

To apply the conservation of momentum to surfaces we need the full stress tensor:
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where p is the pressure.
Conservation of mass over a control volume Ω becomes

d
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ρdu = −
∫
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(ρ~u).~ndA.

If we assume no source of mass in Ω, then the left-hand side of the above is zero. As the
flows are 1D, we get

~u1 · ~n1 = ±u1, ~u2 · ~n2 = ±u2 and ~u3 · ~n3 = ∓u3 sin γ, (10)
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Figure 3:

which combined in the above give

u1A1 + u2A2 = u3A3 sin γ. (11)

Conservation of momentum:

d

dt

∫
Ω

ρ~udv = −
∫
∂Ω

(ρ~u)~u · ~nda+

∫
Ω

ρ~gdv +

∫
∂Ω

~σ · ~nda, (12)

where the body force, in the coordinate system (x, y, h) shown in Figure 3, is given by
~g = g(sin θ, 0,− cos θ).

Using balance of momentum and incompressibility, we can reduce the above to the
local form,

ρ
∂~u

∂t
+ ρ(~u · ∇)~u = −∇p+ ρµ∇2~u+ ρ~g. (13)

Considering no source of momentum, except gravity, then the lefthand side of the
above is zero. All other terms are known except the shear force on the bottom surface of
∂Ω. If the full equations of uniform flow were solved, we could estimate the flow on the
bottom. We use a no-slip boundary condition on the river bed.

We separate the surface ∂Ω = ∂Ω1 + ∂Ω2 + ∂Ω3 + B + S, where B is the river bed, S
is the river surface, and each Ωi is a face of the prism in Figure 4.
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Figure 4:

The relevant boundary conditions are

~nb(x, y) = (0, 0,−1) , (normal vector to river base), (14)

~ns(x, y) = (0, 0, 1) , (normal vector to river surface), (15)

~u(x, y, 0) · ~nb = 0, (no normal flow through base), (16)

~nb(x, y) · ~σ(x, y, 0) = −p(x, y, 0)~I, (no-slip on river bed), (17)

~u(x, y, 0) · ~ns = −∂ζ(x, y, t)

∂t
, (no normal flow through surface), (18)

~ns(x, y) · ~σ(x, y, h) = 0, (no surface stress). (19)

Taking the first integral on the right from conservation of momentum (12), we get∫
∂Ω1+∂Ω2+∂Ω3

(ρ~u)~u · ~nda = ±ρ~u1A1u1 ± ρ~u2A2u2 ∓ ρ~u3A3u3 sin γ.

Assuming no sources leads to ∂ζ/∂t = 0, the no normal flux boundary conditions lead to∫
B+S

(ρ~u)~u · ~nda = 0,

for the river bed and surface.
To calculate the volume integrals and estimate pressure on the river bed, we will

assume an average height in Ω to be

h̄ =
1

3
(h1 + h2 + h3). (20)

This gives ∫
Ω

ρ~gdv = ~g
ρh̄

2
w1w2 sinα.
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For the traction on the surface ∂Ωi, the stress tensor simplifies to ~σ = −p~I, because the
flow is uniform in each channel, at least up to the surface ∂Ωi. From scaling arguments,
and balance of momentum (13) in the z-direction, we get

p = ρg(ζi − z) = ρg
hi − h
cos θ

, (21)

where we used cos θ(z − b) = h together with ζi − bi = hi/ cos θ.
With the above we find that∫
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where the sin γ appears because the surface ∂Ω3 is not perpendicular to ~u3.
The traction integral over the surface S is zero because of zero traction on surface.

For the river bed, the stress tensor is
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Combining all these integrals into conservation of momentum (12) leads to
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To relate the vectors, angles, and widths we use
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~u3 · ~n1 = u3 sin(τ2 − γ), ~u3 · ~n2 = −u3 sin(τ1 + γ),

where τ1 is the angle opposite w1, τ2 is the angle opposite w2, and sin γ sinα equals the sin
of the angle opposite w3. We remove gravity, which balances with friction and pressure:
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Taking the dot product of the above with ~n1, ~n2, ~n3, and then ~u3, before substituting
A1 = h1w1, A2 = h2w2, A3 = w3h3/ sin γ we get the following equations:
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u1w1h1 + u2w2h2 = u3w3h3. (29)

Results

Equations (28) and (29) are solved for u3 and h3, across varying angles between the
merging rivers, using Julia. This resulted in the output shown in Figure 5.

Figure 5: Changing the angle between the merging rivers

These equations are input into Julia again, this time solving for u3 and h3 across
varying widths of the merged river. The resulting output is shown in Figure 6.
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Figure 6: Changing the width of the merged river

Conclusion

A model of the flow at a river junction can be devised to predict the height and velocity at
specific locations using the 1D shallow water equations. Using the flow into the merging
region, we rely on the conservation of mass and momentum to predict the flow out of this
region.

It later became apparent that we omitted enforcing the steady flow assumption 5 in
our results. Combining the steady flow assumption with the conservation of mass would
provide a more accurate prediction of the flow and river height out of the merging region.

Following an analysis of the resulting model, the method can then be extended, using
simple geometry, to river junctions where the merging rivers do not connect to the merging
region at right angles to their flow. The model can also be extended to deal with more
complicated junctions by adding each additional river incrementally.
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