Design of an Optimal Weather Radar Network for Ireland

Project Supervisor: John Donohue

James Allen, Philip Cloherty, John Cormican, Padraic Flood, Tomokatsu Onaga, Brian Regan, David Smyth, Szymon Urbas

June 9, 2017

4th Annual Stokes Modelling Workshop 2017

Problem Introduction

Met Eireann use Radar stations to determine cloud position and predict rainfall.

1

Problem Introduction

Currently, there are two stations at Dublin and Shannon Airports (as illustrated.

<u>Our Goal:</u> To optimize the positioning of these Radar Stations for two or more locations and improve coverage.

Assumptions

All assumptions, scope exclusions and decisions were made in consultation with Colm Clancy of Met Eireann.

- 1. Constant Temperature.
- 2. Time Invariance (No Seasons).
- 3. Precipitation at sea is not considered.
- 4. Northern Ireland: Assumed population of zero and no airports.

Prioritisation of areas to be covered

- · Areas prioritized werebased on three factors:
 - 1. Areas with an Airport
 - 2. Areas with High Population Density
 - 3. Areas with High Rainfall
- · Map of Ireland was divided into cells.
- · Importance of each cell was evaluated.

Designing the Radar

Designing the Radar

Line of Sight

Radar Signal Decay

Designing the Radar

Objective Function and Scoring of Radar Formations

- Possible radar formations were combined with the Quality Map to give a score for how efficient the configuration was.
- This score was input into the optimisation process until the ideal location was identified.

Searching for optimal placement

$$R(x, x_c) = a^2 - (x - x_c)^2$$
 (1)

$$R(x, x_c) = a^2 - (x - x_c)^2$$
 (1)

To find the total score multiply the importance function and the radar...

$$S(x_c) = \int_0^L Q(x)R(x,x_c)dx$$
 (2)
= $\int_{Q_1} Q_1(a^2 - (x - x_c)^2)dx + ... + \int_{Q_n} Q_n(a^2 - (x - x_c)^2)dx$ (3)

$$R(x, x_c) = a^2 - (x - x_c)^2$$
 (1)

To find the total score multiply the importance function and the radar...

$$S(x_c) = \int_0^L Q(x)R(x,x_c)dx$$
 (2)
= $\int_{Q_1} Q_1(a^2 - (x - x_c)^2)dx + ... + \int_{Q_n} Q_n(a^2 - (x - x_c)^2)dx$ (3)

$$\frac{\partial S}{\partial x_c} = 0 \tag{4}$$

$$R(x, x_c) = a^2 - (x - x_c)^2$$
 (1)

To find the total score multiply the importance function and the radar...

$$S(x_c) = \int_0^L Q(x)R(x,x_c)dx$$
 (2)
= $\int_{Q_1} Q_1(a^2 - (x - x_c)^2)dx + ... + \int_{Q_n} Q_n(a^2 - (x - x_c)^2)dx$ (3)

$$\frac{\partial S}{\partial x_c} = 0 (4) x_c = 0.5056 (5)$$

Optimal locations

Optimal locations

In Summary...

- Optimal Radar positioning was found as shown on previous slide.
- With more time we could use a more refined grid to give even more accurate placement.
- · This does give a guideline of how to improve Radar placement.

Sources of Data

Sources of Maps & Data:

- · Population: Central Statistics Office of Ireland (www.cso.ie).
- Airport: SkyVector (www.skyvector.com), Irish Aviation Authority (www.iaa.ie).
- · Rainfall: Met Eireann (www.met.ie).

Summary

- · Design of a general procedure for tackling the problem
- History effect: if you're going to have *n* radars plan accordingly

Future work:

- Physically realistic radar decay function (try Bayesian?)
- · Practical choice for factor weights
- Considering other factors