Cholesky, Taussky, Todd, Toeplitz and Turing:
A story of love, death, wars, and matrix factorisations NUI Galway Mathematics Society, 25 Nov 2011

Andre-Louis Cholesky,
15 Oct 1875-31 Aug 1918

Andre-Louis Cholesky,
15 Oct 1875-31 Aug 1918

Andre-Louis Cholesky,
15 Oct 1875-31 Aug 1918

$$
M x=b \quad M \in \mathbb{R}^{m \times n}, m>n
$$

$$
\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33} \\
m_{41} & m_{42} & m_{43} \\
m_{51} & m_{52} & m_{53}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5}
\end{array}\right)
$$

$$
M x=b \quad M \in \mathbb{R}^{m \times n}, m>n
$$

$$
\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33} \\
m_{41} & m_{42} & m_{43} \\
m_{51} & m_{52} & m_{53}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5}
\end{array}\right)
$$

$$
\mathrm{r}=\mathrm{b}-\mathrm{Mx}
$$

Find x that minimises $\|r\|_{2}=\sqrt{r^{\top} r} \Longleftrightarrow M^{\top} M x=M^{\top} b$,
Because:

$$
\begin{aligned}
0 & =\lim _{e \rightarrow 0} \frac{(M(x+e)-b)^{\top}(M(x+e)-b)-(M x-b)^{\top}(M x-b)}{\|e\|} \\
& =\lim _{e \rightarrow 0} \frac{2 e^{\top}\left(M^{\top} M x-M^{\top} b\right)+e^{\top} M^{\top} M e}{\|e\|}
\end{aligned}
$$

$$
A=M^{\top} M \Longleftrightarrow\left\{\begin{array}{l}
A \text { is symmetric positive definite (spd) } \\
x^{\top} A x>0 \forall x \in \mathbb{R}^{n \times n} \\
A x=\lambda x \Longrightarrow \lambda>0 . \\
f(x)=\frac{1}{2} x^{\top} A x-x^{\top} b \text { is strictly convex for all } b . \\
A^{(k)}=A_{1: k, 1: k}, k=1,2, \ldots, n \text { is spd }
\end{array}\right.
$$

$$
\begin{gathered}
A=M^{\top} M \Longleftrightarrow\left\{\begin{array}{l}
A \text { is symmetric positive definite (spd) } \\
x^{\top} A x>0 \forall x \in \mathbb{R}^{n \times n} . \\
A x=\lambda x \Longrightarrow \lambda>0 . \\
f(x)=\frac{1}{2} x^{\top} A x-x^{\top} b \text { is strictly convex for all } b . \\
A^{(k)}=A_{1: k, 1: k}, k=1,2, \ldots, n \text { is spd }
\end{array}\right. \\
A=\left(\begin{array}{cc}
a_{11} & A_{12} \\
A_{12}^{\top} & A_{22}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{a_{11}} & 0 \\
\frac{A_{12}^{1}}{\sqrt{a_{11}}} & \tilde{A}_{22}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{a_{11}} & \frac{A_{12}}{\sqrt{a_{11}}} \\
0 & \tilde{A}_{22}
\end{array}\right)
\end{gathered}
$$

A. Choleoky

Sur for resolutinn mumérique des Syptèmes d'équations hivicices.

Ta shatime des furtimes dipendent de downees rppiminestalle, grie pererent daus ustains cas the Anumies à des

 for physigus, cot mumi b cas de la conupersation des riscaux geinoteriques.. Hest done nitiénant de nechushes sum
 numésigue dien nythine diciquations hincauces.

Képuedé que unio allnes indiopur rappligue

 pent to facilement se nememest à la xidution d'un-
 Cusideious un effic h dybtimim suivand:

$$
I\left\{\begin{array}{l}
\alpha_{1}^{\prime} \gamma_{1}+\alpha_{2}^{\prime} \gamma_{2}+\alpha_{j}^{\prime \gamma} \gamma_{2}+\cdots+\alpha_{n}^{\prime} \gamma_{n}+c_{1}=0 \\
\alpha_{1}^{2} \gamma_{1}+\alpha_{2}^{\gamma} \gamma_{2}+\alpha_{3}^{2} \gamma_{3}+\cdots+\alpha_{n}^{2} \gamma_{n}+c_{2}=0 \\
\cdots \cdots \cdots \cdots \\
\alpha_{1}^{*} \gamma_{1}+\alpha_{2}^{n} \gamma_{2}+\cdots \cdots \cdots
\end{array}\right.
$$

Olga Taussky, 30 Aug 1906-7 Oct 1995

Olga Taussky,
 30 Aug 1906-7 Oct 1995

Olga Taussky, 30 Aug 1906-7 Oct 1995

Olga Taussky, 30 Aug 1906-7 Oct 1995

Olga Taussky, 30 Aug 1906-7 Oct 1995

Olga Taussky, 30 Aug 1906-7 Oct 1995

Olga Taussky, 30 Aug 1906-7 Oct 1995

John ("Jack") Todd, 16 May 2011 - 21 June 2007

John ("Jack") Todd, 16 May 2011 - 21 June 2007

John ("Jack") Todd, 16 May 2011 - 21 June 2007

John ("Jack") Todd, 16 May 2011 - 21 June 2007

John ("Jack") Todd, 16 May 2011 - 21 June 2007

John ("Jack") Todd, 16 May 2011 - 21 June 2007

John ("Jack") Todd, 16 May 2011 - 21 June 2007

Matrices with finite period

By Olga Taussky and John Todd.
(Received 8th September, 1939. Read 25th November, 1939.)

1. The study of the primitive solutions of the equation

$$
\begin{equation*}
A^{r}=1, \tag{1}
\end{equation*}
$$

where $A=\left(a_{i j}\right)$ is an $n \times n$ matrix whose elements are rational integers, was begun a long time ago ${ }^{1}$. In most cases this equation occurred incidentally in another theory; for instance Jordan encountered it in connection with linear differential equations having algebraic solutions, Minkowski in connection with quadratic forms and Turnbull in geometry. An important fact about these matrices is that any unimodular matrix can be represented as the product of matrices with finite period.

In this note we point out a connection between (1) and algebraic number fields generated by roots of unity. The methods we adopt can be applied to the study of a much larger class of matrices. In § 2 we summarise those parts of Algebraic Number Theory which we require ${ }^{2}$.

Alan Turing,
 23 Jun 1912 - 7 Jun 1954

Otto Toeplitz

1 Aug 1881-15 Feb 1940

Cholesky, Toeplitz and the triangular factorization of symmetric matrices

Olga Taussky and John Todd
California Institute of Technology, Pasadena, California, USA

Received 1 October 2005; accepted 10 November 2005
Communicated by C. Brezinski and R. S. Varga

In memory of Hans Zassenhaus, 1912-1991, who turned to computational mathematics after distinguished work in algebra

The triangular factorization of symmetric matrices, usually ascribed to A. L. Cholesky, was (essentially) explicitly given by O. Toeplitz earlier, but rather parenthetically. Actually, the word 'matrix' does not appear in the report on Cholesky's process; the matrix formulation seems due to Henry Jensen.
Keywords: linear systems, Cholesky method, Toeplitz, triangular factorization, symmetric matrices

$$
\mathrm{D}_{0}:=0, \quad \mathrm{D}_{\mathrm{k}}=\operatorname{det}\left(\mathrm{A}^{(k)}\right), \quad \mathrm{k}=1,2, \ldots, \mathrm{n}
$$

Theorem (O. Toeplitz, 1907)
If A is an $\mathrm{n} \times \mathrm{n}$ symmetric matrix, and $\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}$ are all different from zero.
Then $\mathrm{A}=\mathrm{LL}^{\top}$ where

$$
l_{i j}= \begin{cases}\frac{1}{D_{j-1} j} \operatorname{det}\left(A_{1: i,\{i: i-1, j}\right\} & \mathfrak{i}=\mathfrak{j}, \mathfrak{j}+1, \ldots n, \mathfrak{j}=1,2, \ldots n . \\ 0 & \mathfrak{i}<\mathfrak{j}\end{cases}
$$

The am of this has been:

- To present an account of an important but sometimes overlooked idea on linear algebra;
- To provide a carrier for some mild propaganda for numerical analysis;
- To put on record some of the important contributions to mathematics, and numerical mathematics in particular, made by John Todd.

