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Abstract. We consider the problem of solving linear systems of equations that arise in the numerical solution of singularly
perturbed ordinary and partial differential equations of reaction-diffusion type. Standard discretization techniques are not
suitable for such problems and, so, specially tailored methods are required, usually involving adapted or fitted meshes that
resolve important features such as boundary and/or interior layers. In this study, we consider classical finite difference schemes
on the layer adapted meshes of Shishkin and Bakhvalov. We show that standard direct solvers exhibit poor scaling behaviour,
with respect to the perturbation parameter, when solving the resulting linear systems. We propose and prove optimality of
a new block-structured preconditioning approach that is robust for small values of the perturbation parameter, and compares
favourably with standard robust multigrid preconditioners for these linear systems. We also derive stopping criteria which ensure
that the potential accuracy of the layer-resolving meshes is achieved.
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1. Introduction. This study addresses the problem of solving linear systems that arise when computing
numerical solutions to certain linear singularly perturbed boundary value problems in one and two dimensions.
These differential equations are characterised by a small positive parameter, usually denoted as ε, multiplying
the highest derivative. The perturbation is “singular” in the sense that, as ε → 0, the problem becomes ill-
posed since the order of the differential equation is reduced, but the number of boundary conditions remains
the same. (For a more formal definition, see [28, Chap. 1].)

The simplest example of a singularly perturbed problem is

− ε2u′′ + a(x)u′(x) + b(x)u = f(x) on (0, 1), u(0) = 0, u(1) = 0. (1.1)

When b ≡ 0 this is known as a convection-diffusion problem, whereas if a ≡ 0 and b 6= 0, it is of reaction-
diffusion type. Such problems, and their higher-dimensional analogues, are common in mathematical models.
Convection-diffusion problems are widespread in many formulations of fluid-flow problems (e.g., in linearised
Navier-Stokes equations, and transport problems), and simulation of semi-conductor devices: see [41] and [34]
for a more exhaustive list. Coupled systems of reaction-diffusion equations are standard in many biological
applications, simulation of chemical reactions, and in hydrodynamic stability. In each case, the solution to
the singularly perturbed problem is characterised by the presence of boundary or interior layers: narrow
regions of the domain where the solution changes rapidly.

The numerical solution of these problems is of significant mathematical interest. Classical numerical
schemes that are suitable when ε is O(1) are often inappropriate as ε → 0, unless the number of degrees
of freedom in one dimension, N , satisfies a relation such as N = O(ε−1): without this, they may fail to
resolve layers—usually the region of most interest; the order of convergence may be diminished for small ε,
a phenomenon sometimes referred to as locking [3]; in the case of convection-diffusion problems, the method
may become unstable and fail to yield any useful information.

Much of the difficulty in applying numerical methods to problems such as (1.1) stems from the fact that
the derivatives of these solutions depend on negative powers of the perturbation parameter. Since estimates
for the errors in numerical solution generated by classical schemes depend on bounds for these derivatives,
they are not parameter robust meaning that they do not hold for arbitrarily small values of the perturbation
parameter.

The development of algorithms that are robust with respect to the perturbation parameter, and resolve
any layers present, is a very active field of endeavour. See, for example, [18, 28, 33, 41, 45], and the many
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references therein. Such so-called parameter robust (also known as uniformly convergent or “ε-uniform”)
methods guarantee that the computational effort required to obtain a certain accuracy is the same, for
example, when ε = 10−6 as when ε = 10−2. The majority of these papers consider the application of
standard schemes, such as finite difference and finite element methods, on specially constructed (a priori or a
posteriori) fitted meshes, most often the piecewise uniform meshes introduced by Shishkin [33] or the graded
meshes devised by Bakhvalov [4], described below in Section 2.1.1.

These algorithms produce linear systems that must be solved, but it is notable that there are relatively
few studies concerning their numerical solution. This is significant because, particularly for problems in more
than one dimension, standard solvers are unlikely to be useful; the development of fast robust solvers is
important and challenging. Moreover, most studies usually assume that the computational effort for solving
the linear systems is independent of ε; few have considered the issue of solving the linear systems with
efficiency that is robust with respect to ε. We argue that this should not be taken for granted. Firstly, direct
solvers—whose performance should depend only on the matrix structure, and not its entries—are of limited
use for problems in more that one dimension. Furthermore, as outlined below in Section 4.1, such solvers can
be surprisingly inefficient for singularly perturbed partial differential equations. Finally, the performance and
analysis of most iterative schemes, particularly those involving robust preconditioners, is highly dependent
on both the scheme and the underlying differential equation.

Therefore, it is surprising that there is so little in the literature on development of solvers for discretization
schemes designed for singularly perturbed problems. For convection-diffusion problems, several studies exist,
including [40], which considers the conditioning of the resulting discretizations on certain meshes and the
effects of diagonal scaling; Farrell and Shishkin give a short analysis of a Gauss-Seidel method for a convection
diffusion problem in [19]; while, in [2], results of experiments with ILU-based preconditioners are reported.
Multigrid methods for convection diffusion problems on Shishkin meshes are discussed in [21, 20], where a
scalable multigrid scheme is introduced.

For reaction-diffusion problems, most of the multigrid literature focuses on the case of a singularly
perturbed problem discretized on a uniform or quasi-uniform mesh. For example, in [36], it is shown that a
standard multigrid method applied to the two- and three-dimensional analogues of (1.1) on a quasi-uniform
mesh converges with bound independent of mesh size or ε; only a small remark is made about lack of accuracy
within the boundary layers. A hierarchical basis approach is discussed in [47]; however, the restriction
in this work that the mesh aspect ratios be uniformly bounded is not satisfied by the tensor-products of
fitted meshes considered here. In contrast, there is extensive literature on the combination of multigrid
methods with adaptive refinement algorithms, ranging from fundamental principles discussed in [7] to recent
work on achieving efficiency in massively parallel environments [5]; clearly such approaches yield efficient
solution algorithms for the problems considered here. Our interests, however, are in the cases where we have
enough a priori knowledge to avoid the costs of grid adaptation, but still require efficient solvers on highly
non-uniform fitted meshes. Overall, direct methods remain the methods-of-choice for singularly perturbed
reaction-diffusion problems; here, we apply both existing and novel iterative approaches, based on multigrid
principles, to these problems.

While we focus here on the case of singularly perturbed problems, we note that our approaches could
also be applied to other problems where there is a substantial mismatch between the scaling of terms in the
discrete equations over different parts of the domain. One such case, of key current interest, arises in the
simulation of time-harmonic wave propagation. In the development of discretizations for either the Helmholtz
equation or Maxwell’s equations, special attention is always paid to the treatment of discrete approximations
of the Sommerfeld radiation condition for outgoing waves. In many cases, in order to attain meaningful
solutions over a physical domain of interest, a much larger volume needs to be modeled, implementing some
form of absorbing boundary layer to prevent unphysical reflections of outgoing waves at the edges of the
discretized domain. While this may be achieved simply by introducing attenuative terms within the layer
[50, 46], a more common approach is to couple discretized attenuative terms with a significant increase in grid
spacing [14, 16, 35, 54]. While some work has been done on the development of efficient multigrid approaches
for these grid structures [54, 39], the methods proposed here may lead to simpler algorithms with improved
efficiency for these grids.
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1.1. Model problems and examples. In this paper, we consider reaction-diffusion problems in one
and two dimensions. The general form of the one-dimensional problem is:

Lεu := −ε2u′′ + b(x)u = f(x), on Ω = (0, 1), (1.2a)

subject to the boundary conditions

u(0) = 0, u(1) = 0. (1.2b)

We shall assume that ε ∈ (0, 1] and that there exists β such that 0 < β2 < b(x) for all x ∈ Ω. It is easy to
show that the operator Lε satisfies a maximum principle (see, e.g., [38]), and that the problem possesses a
unique solution. If ε� 1/β, then the problem is singularly perturbed, and we expect its solution to exhibit
boundary layers, with rapid changes in u(x), near x = 0 and x = 1.

As an example, consider the problem

− ε2u′′ + u = ex on (0, 1), u(0) = u(1) = 0. (1.3)

When ε < 1, the solution can be expressed as

u(x) =
e−x/ε(e1−1/ε − 1) + e−(1−x)/ε(e1/ε − e)

(1− ε2)(1− e−2/ε)
+

ex

1− ε2
.

One can consider the expressions exp(−x/ε) and exp(−(1 − x)/ε) as representing the layer components. A
typical solution exhibiting these layers is shown in Figure 1.1(a).

Our model two-dimensional problem is

− ε2∆u+ b(x, y)u = f(x, y) on Ω := (0, 1)2, u(x, y) = g(x, y) on ∂Ω, (1.4)

where, again, we assume that there is a positive β such that 0 < β2 < b(x, y) for all (x, y) ∈ Ω. Subject to
sufficient regularity and compatibility of b, f and g, this problem has a unique solution: we refer readers to,
e.g., [24] for technical details. When ε is small, the solution may have boundary and corner layers.

As an example of a two-dimensional problem, we consider a variant on a standard test problem (see, e.g.,
[12]). Although, in general, one would expect solutions to (1.4) to have four boundary and four corner layers,
for simplicity of exposition, we have constructed one that has only two boundary layers, near the edges x = 0
and y = 0, and a corner layer near (0, 0). We take b(x, y) = 1, choose f and g so that

u = x3(1 + y2) + sin(πx2) + cos(πy/2) + (1 + x+ y)
(
e−2x/ε + e−2y/ε). (1.5)

This solution, in the case ε = 10−2, is shown in Figure 1.1(b).

1.2. Outline. In Section 2, we introduce the standard finite difference schemes for one- and two-
dimensional problems, and introduce two standard parameter robust finite difference methods: one based on
the piecewise uniform meshes of Shishkin, and the other on the graded meshes of Bakhvalov. In Section 3,
we review a geometric multigrid method for solving the one-dimensional problem, and propose a new pre-
conditioner for this problem motivated by the graded meshes. Section 4 focuses on linear solvers for the
two-dimensional problem, outlining the poor scaling seen in direct solvers and geometric multigrid, as well
as optimal general-purpose solvers based on the algebraic and black-box multigrid methodologies. A new
boundary-layer preconditioning approach is proposed and analyzed in Section 4.5, while stopping criteria are
discussed in Section 4.6, followed by the results of numerical experiments in Section 4.7. A brief discussion
of generalisations to higher-dimensional problems appears in Section 5, with conclusions and some comments
on other extensions of this work in Section 6.

1.2.1. Notation. We denote by N the number of intervals in one dimension of a mesh, and by c and C
generic positive constants that are independent of ε and N . Since we are mainly concerned with discretization
by finite difference methods, we use ‖ · ‖∞ to denote the discrete maximum norm on a given mesh:

‖u‖∞ =

 max
xi∈ωN

|u(xi)| on the one-dimensional mesh ωN ,

max
(xi,yj)∈ωN×N

|u(xi, yj)| on the two-dimensional mesh ωN×N .
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(a) Solution to (1.3) with ε = 10−2
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(b) Solution to (1.5), as given in (1.5), with ε = 10−2

Fig. 1.1. Examples of solutions to one- and two-dimensional singularly perturbed reaction-diffusion problems

The continuous analogue on the domain Ω is denoted ‖ · ‖Ω,∞. Other norms used are the discrete `2 norm,

‖ · ‖2, and the A-norm for symmetric and positive-definite matrices, A, ‖V ‖A =
(
V TAV

)1/2
for any vector,

V . We reserve the use of ‖ · ‖ for denoting a generic norm, which may be any of the above.

We will use two parameters to measure the singularly perturbed nature of a discrete problem. Define
δN = (εN/β)2 to indicate if a problem is singularly perturbed relative to a mesh with N points, when
δN � 1. For the purposes of the theory developed in Section 4.5, we use the term boundary-fitted mesh to
mean a mesh that is uniform in the interior of the domain, but condenses near the boundary. This uniform
mesh-width away from boundaries is denoted hI , and we define δh = (ε/(hIβ))2 to indicate the diagonal
dominance of the matrix over the interior degrees of freedom. We note that, just as for δN , δh � 1 when a
problem is singularly perturbed relative to the mesh.

1.3. Computer implementation and timings. All numerical results in this paper are computed
using code (both C and Fortran) compiled with full optimization, executed on a Beowulf cluster using a
single core of a node with an AMD Opteron 2427, 2200 MHz processor with 32Gb of RAM (the same as
was used for results in Section 4.1). The main driver routines are written in C to compute the fitted meshes
and assemble the matrices, while the CHOLMOD [11], BoxMG [15], and our own AMG libraries are linked
to provide linear solvers. Both BoxMG and AMG provide their own PCG wrappers. The boundary-layer
preconditioners in one and two dimensions are implemented (separately) in C within their own PCG wrappers.

2. Parameter robust methods. The robust solution of singularly perturbed problems can be achieved
using fitted operator schemes (i.e., specially designed methods, but used, say, on a uniform mesh) or fitted
mesh methods—standard schemes employed on specially designed meshes. The latter approach has received
the most attention of late, not least because fitted meshes are easier to generalise to high-dimensional prob-
lems. These fitted mesh methods are categorised as either a priori or a posteriori (equivalently, “fitted” or
“adaptive”). An a priori method is constructed based on a careful analysis of the asymptotic properties of
the solution and its derivative; most published work considers such schemes. Alternatively, adaptive schemes
may be generated based on a posteriori analysis: see, for example, [26, 9]. In this paper, we consider only
fitted mesh methods. However, those meshes generated by adaptive schemes tend to be very similar to the
Bakhvalov meshes we discuss below and, as such, we expect that similar techniques could be used for the
meshes generated by adaptive schemes.

2.1. Finite difference scheme for one dimensional problems. Given an arbitrary one-dimensional
grid ωN = {0 = x0 < x1 < · · · < xN = 1}, with hi = xi−xi−1 for i = 1, . . . N , the natural second-order finite-
difference discretization of problem (1.2) provides a potentially unsymmetric discretization of a Hermitian
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operator. Here, we consider the symmetrised finite-difference method for the problem (1.2),

−ε2

(
Ui+1 − Ui

hi+1
− Ui − Ui−1

hi

)
+ h̄ib(xi)Ui = h̄if(xi), for i = 1, . . . N − 1,

Ui = 0 for i ∈ {0, N},
(2.1)

where h̄i = (hi+1 + hi)/2. In matrix form, we write the symmetrically scaled equations, with boundaries
eliminated, as AU = F .

If the mesh ωN is uniform then, in both theory and practise, one must make the unreasonable assumption
that N is O(ε−1) in order to obtain a convergent, layer-resolving method. Intuitively, it seems likely that
a robust scheme could be generated if hi is O(ε), but only in the region of the layers. This is indeed the
case, but the construction of such meshes must be very careful if one is to rigorously prove robustness. We
consider two examples of such meshes below: a simple piecewise uniform mesh, and a more accurate graded
mesh.

2.1.1. Fitted meshes for one dimensional problems. The most popular boundary-fitted mesh for
singularly perturbed problems to be found in the mathematical literature is certainly the piecewise uniform
mesh of Shishkin [33]. For a problem such as (1.2), it may be formed as follows: assuming the number of
mesh intervals N is divisible by 4, define the mesh transition point to be

τS = min{1

4
, 2

ε

β
lnN}, (2.2)

and divide [0, 1] into subintervals [0, τS ], [τS , 1− τS ] and [1− τS , 1]. A piecewise-uniform mesh is constructed
by subdividing [τS , 1− τS ] into N/2 equidistant mesh intervals, and subdividing each of [0, τS ] and [1− τS , 1]
into N/4 equidistant mesh intervals.

This mesh was first proposed in [44], and an accessible analysis of the uniform convergence of the finite
difference method (2.1) applied to the linear reaction-diffusion problem (1.2) is given in [33, Chap. 6]. That
analysis uses ideas involving decomposition of the solution into regular and layer parts and exploits the
fact that the continuous and discrete operators satisfy maximum principles. A unified treatment based on
discrete Green’s functions is given in [28], from which it quickly follows that there is a constant C which is
independent of both N and ε such that that the solution to the finite difference scheme (2.1) satisfies

‖u− U‖∞ = max
i=0,1,...,N

|u(xi)− Ui| ≤ CN−2 ln2N. (2.3)

Since C does not depend on ε, this qualifies as a parameter robust estimate. It is not immediately obvious
from (2.3) that the numerical solution also resolves the boundary layers. However, one can also show (see,
e.g., [28, Thm. 6.12]) that

‖u− Ū‖Ω,∞ = max
0≤x≤1

|u(x)− Ū(x)| ≤ CN−2 ln2N,

where Ū is the piecewise linear interpolant to U .
In the case where ε is O(1), the scheme (2.1) applied on a uniform mesh should yield a numerical solution

with error that is bounded by terms of O(N−2). The logarithmic factor that spoils (2.3) slightly is the price
one pays for the simplicity of employing a piecewise uniform mesh. To regain full second-order convergence,
one could use the more sophisticated nonuniform boundary-fitted mesh of Bakhvalov [4]. Like the Shishkin
mesh, it is uniform over the interior of the domain (a fact which simplifies our analysis later in Section 4.5),
but is graded within the boundary layer. For full details on the generation of the mesh, see [28].

For the Bakhvalov mesh, it can be proved [28] that there is a constant C independent of ε and N such
that

‖u− U‖∞ ≤ CN−2,

and, furthermore, as with the Shishkin mesh, the piecewise linear interpolant to the Bakhvalov solution is
second-order convergent. While there is a substantial literature devoted to Shishkin meshes, we present
numerical results here for Bakhvalov meshes, due to their improved accuracy.
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2.2. Fitted methods for two dimensional problems. For the two dimensional problem (1.4), we
employ the natural extension of the method (2.1): a standard finite difference scheme on a tensor-product
grid. Let ωN

x and ωN
y be arbitrary meshes, each with N intervals on [0, 1]. Set ωN×N = {(xi, yj)}Ni,j=0 to

be the Cartesian product of ωN
x and ωN

y . Taking hi = xi − xi−1, kj = yj − yj−1, h̄i = (xi+1 − xi−1)/2, and

k̄j = (yj+1 − yj−1)/2, we define the symmetrised 5-point second-order central difference operator:

∆N :=



h̄i
kj+1

k̄j
hi

−
(
k̄j
( 1

hi
+

1

hi+1

)
+ h̄i

( 1

kj
+

1

kj+1

)) k̄j
hi+1

h̄i
kj

 .

The resulting numerical scheme is:(
− ε2∆N + h̄ik̄jb(xi, yj)

)
Ui,j = h̄ik̄jf(xi, yj) i = 1, . . . , N − 1, j = 1, . . . N − 1,

Ui,j = g(xi, yj), i ∈ {0, N}, j ∈ {0, N}.
(2.4)

Again, we write the linear system as AU = F .
As in one dimension, this scheme will not generate satisfactory numerical solutions if employed on a

uniform mesh, cf. [18, Chap. 10]. Tensor-product Shishkin meshes achieve the same O(N−2 ln2N) as in one
dimension [12].

2.2.1. A Bakhvalov mesh for a two dimensional problem. Take ωN
x = ωN

y to be the one dimen-
sional graded Bakhvalov mesh described Section 2.1.1, adjusted to account for the fact that there is only
one layer in each coordinate direction. Then, taking the Cartesian product mesh, ωN×N , generates the two-
dimensional Bakhvalov mesh, shown in Figure 2.1(b) (contrasted with the two-dimensional Shishkin mesh
in Figure 2.1(a)).
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Fig. 2.1. Fitted meshes for problem (1.5) when N = 16, ε = 2 × 10−2

Kellogg et al. [25] prove the ε-uniform error estimate: there is a constant C independent of ε and N such
that

‖u− U‖∞ ≤ CN−2. (2.5)

This bound is seen to be sharp in the results of numerical experiments for Problem (1.5) reported in Table 2.1
below. The errors are clearly uniform in ε, and the method is fully second-order.
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ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 9.762× 10−5 2.441× 10−5 6.103× 10−6 1.526× 10−6 3.814× 10−7 9.447× 10−8

10−2 9.907× 10−5 2.479× 10−5 6.196× 10−6 1.549× 10−6 3.873× 10−7 9.685× 10−8

10−4 2.858× 10−5 7.170× 10−6 1.794× 10−6 4.486× 10−7 1.122× 10−7 2.802× 10−8

10−6 2.864× 10−5 7.188× 10−6 1.803× 10−6 4.511× 10−7 1.128× 10−7 2.818× 10−8

10−8 2.880× 10−5 7.241× 10−6 1.814× 10−6 4.537× 10−7 1.135× 10−7 2.840× 10−8

10−10 2.881× 10−5 7.245× 10−6 1.815× 10−6 4.543× 10−7 1.136× 10−7 2.841× 10−8

10−12 2.881× 10−5 7.245× 10−6 1.815× 10−6 4.543× 10−7 1.137× 10−7 2.850× 10−8

Table 2.1
Maximum pointwise errors for problem (1.5) solved by a finite difference method on a Bakhvalov mesh

3. Solving the one-dimensional system. From a practical viewpoint, there is no benefit to be gained
in terms of computational time or memory requirements from considering iterative approaches to solving dis-
cretizations of one-dimensional problems such as (1.1) by a standard 3-point scheme. The tridiagonal struc-
ture of the discretization matrices ensures that sparse direct solvers are optimal, and specialized approaches,
such as cyclic reduction or the Thomas algorithm, are well-known in the literature. It is, nonetheless, worth
considering iterative approaches for these matrices to motivate the development of iterative approaches for
two- (or multi-) dimensional problems. In particular, the one-dimensional boundary-layer preconditioner
developed in Section 3.2 develops the key ideas needed for its two-dimensional analogue in Section 4.5.

3.1. Geometric Multigrid. Multigrid methods are widely regarded as being among the most efficient
iterative approaches for solving discretizations of elliptic PDEs, such as those considered here. The key to
their efficiency lies in the combination of two processes, relaxation and coarse-grid correction, that effectively
damp complementary components of the error in any approximation to the solution of the discrete system.
For uniformly elliptic operators discretized on uniform meshes, simple analysis shows that standard relaxation
approaches effectively damp errors that are oscillatory on the scale of the grid, while smooth error components
can be resolved through relaxation on a hierarchy of coarser meshes. See [8, 49] for full details. In the context
of singularly perturbed problems and non-uniform grids, more careful treatment must be given to the coarse-
grid correction process to prove optimal efficiency, even for one-dimensional problems [53, 6]. In practice,
however, only small changes are needed in the multigrid algorithm. In this paper, we consider iterations and
preconditioners based on the multigrid V-cycle; thus, a single iteration of the multigrid cycle can be written
in recursive form as

Algorithm 1: U (1) = MG(U (0), F,N).

1. Apply relaxation to AU = F with initial guess U (0), producing U (r).
2. Compute Fc = R(F −AU (r)), for restriction matrix, R.
3. Compute Uc = MG(0, Fc, N/2).
4. Compute U (c) = U (r) + PUc, for interpolation matrix, P .
5. Apply relaxation to AU = F with initial guess U (c), producing U (1).

Thus, the algorithm takes, as input, an initial guess, U (0), and right-hand side, F , of length N−1 (in one
dimension). On any level, relaxation is applied based on the matrix, A, which is taken to be the discretization
of the given differential equation with N − 1 degrees of freedom after elimination of boundary conditions.
A coarse-grid right-hand side is computed by restricting the fine-grid residual, and the algorithm is applied
recursively to compute a coarse-grid representation of the error (which is the solution to AcUc = Fc), with
a zero initial guess for Uc. The computed correction, Uc, is interpolated to the fine grid and added to the
approximation, U (r), from after the initial relaxation sweep, and a second relaxation sweep is performed.

For one-dimensional problems, we use “red-black” Gauss-Seidel relaxation, where, in Step 1 of Algorithm
1, the odd-indexed nodes are first processed (relative to 0-indexing in C), followed by the even-indexed nodes.
The opposite ordering is used in Step 5 to ensure symmetry. To create the hierarchy of meshes, we begin
with a chosen fine mesh with N intervals (uniformly spaced or fitted), and create the first coarse mesh with
N/2 intervals by aggregating intervals pairwise (or, equivalently, by discarding every other node in the fine
mesh). This process is repeated recursively until a grid with fewer than 5 nodes is reached. We assume the
initial N is chosen so that this pairwise aggregation never fails. On each mesh, the matrix A is formed as in
Equation (2.1). The interpolation operator, P , between two such meshes is defined by linear interpolation
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to neighbouring nodes, with the interpolation weights suitably adjusted for the unequal spacing of nodes.
The restriction operator, R, is chosen to be the transpose of P , leading to a weighted averaging of residuals
between neighbouring nodes, emphasizing the closer neighbour on an unequally spaced mesh.

This approach offers excellent performance and scalability on both uniformly spaced and smoothly varying
meshes, yielding errors at the level of discretization error in ln(N) iterations. For meshes with sharp contrasts
in grid spacing, such as in the case of Shishkin meshes, acceleration by use of the preconditioned conjugate
gradient iteration is an effective strategy, as in [52]. In this case, the V-cycle given by Algorithm 1 defines a
preconditioning matrix, M , that yields a preconditioned system, MAU = MF , where the spectrum of MA
has a tight cluster of eigenvalues around unity, with only a few outlying eigenvalues caused by the sharp
transitions. Tables 3.1 and 3.2 show the aggregated solve times and (unaggregated) iteration counts for
geometric multigrid preconditioned CG applied to Bakhvalov meshes, solving the discretized linear systems
500 times in succession, in order to achieve non-trivial timings. While the smooth variation in mesh sizes
here does not preclude the use of the stationary iteration, we use PCG both for better comparison to the
boundary-layer preconditioning approach proposed next and to enable use of stopping criteria similar to those
discussed for the 2D problems in Section 4.6. We note that the solve times in Table 3.1 show the near-linear
scaling in N expected of multigrid, as well as very slow growth with ε. Both of these observations are also
demonstrated in the iteration counts in Table 3.2, showing slight growth in the iteration counts as ε decreases
and as N increases.

ε2 N = 29 N = 210 N = 211 N = 212 N = 213 N = 214

1 0.240 0.890 1.750 2.53 8.10 16.57
10−2 0.46 0.88 2.00 4.06 8.22 18.91
10−4 0.44 1.07 2.05 3.80 9.42 18.92
10−6 0.54 1.08 0.33 4.58 9.25 21.21
10−8 0.51 0.82 2.27 4.62 9.39 21.17
10−10 0.53 1.08 2.27 4.64 10.46 21.06
10−12 0.58 1.08 2.30 4.62 10.40 21.20

Table 3.1
CPU times for geometric multigrid preconditioned CG to achieve theoretically optimal error reduction on 1D Bakhvalov

meshes, aggregated over 500 runs.

ε2 N = 29 N = 210 N = 211 N = 212 N = 213 N = 214

1 5 6 6 7 7 7
10−2 6 6 7 7 7 8
10−4 6 7 7 7 8 8
10−6 7 7 7 8 8 9
10−8 7 7 8 8 8 9
10−10 7 7 8 8 9 9
10−12 7 7 8 8 9 9

Table 3.2
Iteration counts for geometric multigrid preconditioned CG to achieve theoretically optimal error reduction on 1D Bakhvalov

meshes.

3.2. A one-dimensional boundary-layer preconditioning approach. In this section, we develop
an algorithm that, in contrast to geometric multigrid, takes advantage of the singularly perturbed nature of
these problems. In Section 4.5, we develop the two-dimensional analogue and prove its optimality.

When δN � 1, the fitted meshes for one-dimensional problems described in Section 2.1.1 condense in the
region of the two boundary layers and are uniform in the interior. From the linear algebraic point-of-view,
the matrix corresponding to a discretization on such a mesh naturally partitions into three pieces: the left
boundary layer, the interior (not including the transition points), and the right boundary layer. This gives



Robust solution of SPPs using multigrid methods 9

a partitioned matrix of the form

A =

 ALL ALI 0
AIL AII AIR

0 ARI ARR

 , (3.1)

where we use the natural subscripts L, I, and R to denote the three regions. Notably, in the symmetrically
scaled system, we have the relations that ALI = AT

IL and ARI = AT
IR, and we see that each of these matrices

has only one non-zero entry, giving the coefficient that relates the last point in the layer (the transition point)
to the first point in the interior. Defining the uniform interior mesh width to be hI , these entries are all
−ε2/hI .

Considering AII , we notice that this matrix has diagonal entries given by 2ε2/hI + hIb(xj), for the row
corresponding to node xj , while the off-diagonal coefficients are −ε2/hI . In the singularly perturbed case,

when δh =
(
ε/(hIβ)

)2 � 1, the diagonal of AII strongly dominates all other entries in the rows and columns
corresponding to interior (I) points. In this case, it is intuitive to approximate these rows and columns
by just the dominant diagonal values given by the reaction term, hIb(xj). Theorem 3.1 states that this
approximation is accurate, in the spectral sense, when δh � 1.

Theorem 3.1. Let hI denote the (uniform) interior mesh-spacing in the standard 3-point finite difference
discretization of −ε2u′′(x) + b(x)u(x) on a boundary-fitted mesh, where b(x) > β2 for all x ∈ [0, 1], with
symmetrised discretization matrix A. Order the rows and columns of A according to the boundary layer
structure in (3.1). Define

AD =

 ALL 0 0
0 DII 0
0 0 ARR

 ,
where the partitioning matches that of A in (3.1), and the entries of diagonal matrix DII are given by hIb(xj)
for the row/column corresponding to node xj. Then

(1− 2δh)V TADV ≤ V TAV ≤ (1 + 6δh)V TADV,

for all vectors V .
Proof. The proof uses similar techniques as are described in detail in the proof of Theorem 4.1. For full

details, see [30].
Corollary 3.2. Under the assumptions of Theorem 3.1, if MLL and MRR are spectrally equivalent to

ALL and ARR, respectively, meaning that there are constants c0 and c1 such that

c0V
T
L MLLVL ≤ V T

L ALLVL ≤ c1V T
L MLLVL for all VL

and c0V
T
RMRRVR ≤ V T

R ARRVR ≤ c1V T
RMRRVR for all VR,

then the matrix

AM =

 MLL 0 0
0 DII 0
0 0 MRR

 ,
satisfies

min(1− 2δh, co(1− 2δh))V TAMV ≤ V TAV ≤ max
(
1 + 6δh, c1(1 + 2δh)

)
V TAMV

for all V .
Corollary 3.2 is particularly relevant to the case where MLL and MRR are the inverses of effective

multigrid preconditioners for ALL and ARR, respectively. If the stationary multigrid cycle represented by
I −M−1

LLALL has spectral radius α < 1, then

(1− α)V T
L MLLVL ≤ V T

L ALLVL ≤ (1 + α)V T
L MLLVL
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for all VL. If the same bounds hold for the right boundary layer, then the bound in Corollary 3.2 becomes

(1− α)(1− 2δh)V TAMV ≤ V TAV ≤ max
(
1 + 6δh, (1 + α)(1 + 2δh)

)
V TAMV

for all V . Since we typically expect α ≈ 0.1 and δh � 1, a better rule of thumb would be

(1− α)(1− 2δh)V TAMV ≤ V TAV ≤ (1 + α)(1 + 2δh)V TAMV

for all V . This suggests that, when δh � 1, the convergence of a preconditioner consisting of one multigrid
V-cycle applied to each of the boundary layer regions plus diagonal scaling of the interior region should be
very similar to that of multigrid applied directly to the boundary layer regions alone. Table 3.3 shows the
values of δh realized on the 1D Bakhvalov meshes; following Theorem 3.1 and Corollary 3.2, we present results
for the cases where δh < 0.1, with CPU times aggregated over 500 runs in Table 3.4 and (unaggregated)
iteration counts in Table 3.5.

ε2 N = 29 N = 210 N = 211 N = 212 N = 213 N = 214

1 2.65× 105 1.06× 106 4.24× 106 1.70× 107 6.78× 107 2.71× 108

10−2 2.65× 103 1.06× 104 4.24× 104 1.70× 105 6.78× 105 2.71× 106

10−4 1.21× 101 4.83× 101 1.93× 102 7.73× 102 3.09× 103 1.24× 104

10−6 7.28× 10−2 2.91× 10−1 1.17× 100 4.66× 100 1.86× 101 7.46× 101

10−8 6.71× 10−4 2.68× 10−3 1.07× 10−2 4.29× 10−2 1.72× 10−1 6.87× 10−1

10−10 6.63× 10−6 2.65× 10−5 1.06× 10−4 4.24× 10−4 1.70× 10−3 6.79× 10−3

10−12 6.62× 10−8 2.65× 10−7 1.06× 10−6 4.24× 10−6 1.70× 10−5 6.78× 10−5

Table 3.3
Computed values of δh = ε2/(h2Iβ

2) for Bakhvalov meshes on [0, 1] with two boundary layers and β = 0.99.

ε2 N = 29 N = 210 N = 211 N = 212 N = 213 N = 214

10−6 0.35
10−8 0.24 0.53 1.34 3.04
10−10 0.26 0.66 1.28 2.61 6.10 12.0
10−12 0.33 0.55 1.33 2.58 5.97 12.2

Table 3.4
CPU times for boundary layer preconditioned CG to achieve theoretically optimal error reduction on 1D Bakhvalov meshes,

aggregated over 500 runs.

ε2 N = 29 N = 210 N = 211 N = 212 N = 213 N = 214

10−6 8
10−8 7 7 8 9
10−10 7 7 8 8 9 9
10−12 7 7 8 8 9 9

Table 3.5
Iteration counts for boundary layer preconditioned CG to achieve theoretically optimal error reduction on 1D Bakhvalov

meshes.

Comparing times between Tables 3.1 and 3.4, we see uniform improvements by factors of just under 2
for the boundary-layer preconditioning approach over standard geometric multigrid preconditioning. This
is, in general, consistent with our cost expectation, since the boundary layer approach is applying a regular
geometric multigrid cycle (adapted only to account for the implied boundary condition at the transition
points) to one-half of the grid, and a much cheaper diagonal scaling operation to the other half. Comparing
iteration counts between Tables 3.2 and 3.5, we see that they are essentially identical, with the boundary-layer
preconditioner occasionally taking one more iteration to fulfill the stopping criterion in cases corresponding
to larger δh.
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4. Solving the two-dimensional system. In contrast to the tridiagonal matrices that arise with the
one-dimensional problem, numerical solution of the two-dimensional discretizations poses more of a challenge.
Despite the well-known complexity growth for matrices with these structures, the topic of efficient and robust
solution algorithms for these problems is largely ignored in the literature of singular perturbation problems:
we know only of the studies mentioned in the introduction. Most papers which report numerical results don’t
mention the solver used. Of the few that do, such as [29], a direct solver is employed. Thus, we begin with an
explanation of why sparse direct solvers are unsuitable from two points-of-view, before investigating efficient
iterative methods.

4.1. Direct Solvers. As a “typical” serial, highly optimized sparse direct solver, we consider here
CHOLMOD (supernodal sparse Cholesky factorization and update/downdate) Version 1.7.1 to solve the sparse
symmetric linear systems; see [11, 13]. In Table 4.1, we show the time in seconds, averaged over three runs,
required to solve the linear systems on Bakhvalov meshes that yield results given in Table 2.1. For a given
ε, we see growth in these times that, for large N , scales as N3 (increasing by factors of roughly eight when
N is doubled), as expected given the known O(N3) complexity of the nested dissection algorithm for these
grids [22] and the O(N3) lower bound for this complexity [23]. For fixed N , however, we observe that, rather
remarkably, the amount of time required to solve the linear system depends quite badly on the perturbation
parameter. This is in spite of the fact that, for a given N , the matrices for different ε have exactly the same
size and structure; the only difference is the scaling of some entries due to the difference in both ε and the local
mesh width. Similar results have been observed with other direct solvers, including MA57 [17], on different
processors and architectures, and with different meshes, including uniform and Shishkin meshes. As we now
explain, the degradation in the performance of the direct solvers is not related to their implementation but,
rather, the specific nature of the discretized singularly perturbed problem.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 0.07 0.39 2.65 18.29 195.87 1680.57
10−2 0.06 0.38 2.66 18.27 196.18 1678.79
10−4 0.06 0.38 2.66 18.39 196.23 1689.43
10−6 0.07 0.97 11.83 89.03 860.62 7515.59
10−8 0.15 1.25 10.62 71.40 478.32 2676.85
10−10 0.19 1.16 8.34 46.22 343.66 1521.52
10−12 0.18 1.10 6.72 36.11 257.12 1166.78

Table 4.1
Cholesky (CHOLMOD) solve times for linear systems generated by a finite difference method applied on a Bakhvalov mesh

Writing the linear system for the finite difference solution to (2.4) as AU = F , while neglecting boundary
conditions, gives A as an (N−1)2×(N−1)2, banded, symmetric and positive-definite matrix with bandwidth
of N − 1. For problems with small off-diagonal entries, relative to the diagonal in each row, fill-in introduced
during factorization results in many small values in the LU factors. Such values decay exponentially as
factorization proceeds introducing successful fill-ins. If the matrix bandwidth is small, then this poses no
problem for floating-point calculation. If, on the other hand, N is large, then floating-point underflows may
occur.

In IEEE standard double precision (cf. [37]), numbers are typically represented with 64 bits as ±X ×
2Y−1023 where 52 bits are used to store the significand, X, 11 bits are used to store the exponent, Y , and
the remaining bit stores the sign of X. For “normal” numbers, with 0 < Y < 2047, X is assumed to be a
binary decimal with leading digit 1 (an implied 53rd bit). Thus, the smallest normal number occurs for Y = 1,
X = 0, giving 2−1022 ≈ 10−308. When Y = 0, the implied bit in X is taken to be a leading 0 and the exponent
is fixed at −1022, allowing representation of nonzero numbers as small as is 2−52 × 2−1022 ≈ 5 × 10−324;
anything smaller than this is rounded to zero (when X = 0 and Y = 0). The use of such “subnormal”
numbers allows for gradual reduction in the precision of stored numbers; however, most processors do not
provide hardware support for arithmetic with subnormal numbers and, instead, a compiler must rely on a
software implementation, which is significantly slower [27]. The variation in timings seen with ε in Table 4.1
are due to the introduction of subnormal numbers in the fill-in generated by Cholesky.

To demonstrate this effect, in Table 4.2, we give the number of nonzero entries in the Cholesky factors
produced by CHOLMOD for a range of values of N and ε, corresponding to those shown in Table 4.1, as
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well as the number of subnormal entries. For small ε and large N , we observe a signficant increase in the
number of subnormal numbers arising in the Cholesky factors, as well as a decrease in the number of nonzero
numbers, due to underflow of subnormal entries. Although they are relatively few compared to the number
of nonzero entries, they are sufficient to greatly increase the computation time. Such difficulties are likely to
be exacerbated further for problems in three (or more) dimensions, where larger bandwidths occur.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 350,112 1,833,813 9,425,559 45,671,436 183,759,251 831,532,333
0 0 0 0 0 0

10−2 350,112 1,833,813 9,425,559 45,671,436 183,759,251 831,532,333
0 0 0 0 0 0

10−4 350,112 1,833,813 9,425,559 45,671,436 183,759,251 831,532,333
0 0 0 0 0 0

10−6 350,112 1,828,215 9,293,727 44,499,256 179,511,201 808,690,367
0 4,338 22,596 108,387 573,033 2,852,019

10−8 347,351 1,717,341 8,266,871 37,946,547 147,162,291 625,420,613
1,146 8,488 56,295 316,104 1,121,348 4,956,624

10−10 335,322 1,614,213 7,535,505 33,695,760 130,437,185 544,870,886
1,915 10,008 77,691 283,348 1,111,292 4,422,916

10−12 322,935 1,534,747 7,019,889 31,076,314 120,736,814 504,478,967
2,176 11,467 58,065 305,428 991,728 3,803,770

Table 4.2
Number of nonzero entries (top) and subnormal numbers (bottom) in Cholesky factors generated by CHOLMOD.

It is worth noting that this behaviour can be overcome with compiler directives. For the GCC family of
compilers, the -funsafe-math-optimizations option turns on certain optimizations that violate the IEEE
floating point standard, including the treatment of subnormal numbers. With this option enabled, we see
general decreases in the factorization and solve times as ε decreases and the number of nonzero entries
retained in the factors drops, with no observable degradation in the solution accuracy. However, we now see
large (up to 60%) increases in these times for the smallest values of ε that are not consistent with the number
of nonzeros in the factors. This suggests that simply ignoring subnormal entries in the factors may still not
be enough to ensure a favorable scaling of direct solvers with ε, especially as doing so relies on compiler and
architecture dependent implementations of variations to the IEEE standard.

4.2. Geometric Multigrid. The success of simple geometric multigrid with pointwise relaxation as a
good preconditioner for the one-dimensional problem, with only mild dependence on N and ε, is not recreated
in two dimensions, due to the nature of the tensor product of fitted meshes. As noted in [55, 54], the key
parameter in determining the effectiveness of pointwise relaxation in geometric multigrid is the mesh aspect
ratio; when the ratio of the largest to smallest edges of a mesh cell is much larger than unity, geometric
multigrid convergence suffers, even when used as a preconditioner. Table 4.3 shows the number of iterations
needed for geometric multigrid preconditioned CG to reduce the maximum norm of the error in the iterative
solution to that of the direct solution of the linear system.

ε2 N = 27 N = 28 N = 29 N = 210

1 11 11 12 12
10−2 14 16 18 19
10−4 60 96 140 178
10−6 76 152 300 557
10−8 81 170 348 712
10−10 88 179 364 748
10−12 92 186 387 811

Table 4.3
Iteration counts for geometric multigrid preconditioned CG to achieve theoretically optimal error reduction on Bakhvalov

meshes.

Two well-known antidotes to this degradation are to consider the use of mesh-adapted coarsening ap-
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proaches or the use of line-wise (coupled) relaxation techniques [8, 49]. In the former category, semicoarsening
techniques are commonly used when the bad aspects ratios result from the use of tensor-product grids of
vastly different meshwidths (as, for example, might be the case for two-dimensional problem with a one-
dimensional boundary layer). These techniques can be adapted to tensor-products of graded or fitted meshes
[54], but require much more involved development of the semicoarsening approach. Instead, in Section 4.3,
we consider an algebraic multigrid method that automatically adapts multigrid coarsening to the fitted mesh
structure. In contrast, alternating-direction line relaxation techniques can be used to address the challenges
posed by the tensor product of fitted meshes, with bad aspect ratios in two orientations. Within this class
of approaches, we use the Black Box Multigrid method of Dendy [1, 15], coupling alternating-direction line
relaxation with variational coarsening, discussed in Section 4.4.

There are three natural advantages to the use of AMG and BoxMG. First, they both employ variational
coarsening strategies based on Galerkin projection, so that variable reaction coefficients are naturally pro-
jected onto coarse meshes. Secondly, the same solvers can be easily applied to other discretizations, such as
bilinear finite-element discretizations on fitted meshes (see, e.g, [29] for an error analysis for a two-dimensional
reaction diffusion problem on a Shishkin mesh). Finally, they are both readily available in software packages
that can easily be incorporated into simulation codes beyond those used in the test cases presented in Section
4.7. The downside of using these solvers is that they do not represent tuned software that takes full advantage
of the structure of the differential operators, discretization, and fitted meshes considered here. Thus, small
improvements in overall time-to-solution could be realized by more specialized software, but at the expense
of applicability and ease of use. In contrast, in Section 4.5, we present an algorithm that is tuned specifically
for the fitted meshes considered here, but which is still applicable to both finite difference and finite element
discretizations of singularly perturbed reaction-diffusion equations.

4.3. Algebraic Multigrid. An alternate approach to using geometric multigrid is to adjust the inter-
polation operators to account for the sharp mesh transitions, thereby accurately approximating the associated
error modes in the coarse-grid correction phase. A standard approach to developing operator-dependent in-
terpolation schemes is the algebraic multigrid (AMG) method, which supplements the multigrid V-cycle given
in Algorithm 1 with a preliminary setup stage in which the coarse meshes and interpolation, restriction, and
coarse-grid operators are computed based on the given fine-grid operator.

Here, we use a standard AMG approach, as described in [8, 43, 48]. From the given fine-grid operator,
the setup stage chooses a first coarse mesh, then interpolation, P , is defined, with restriction fixed as R = PT ,
the coarse-grid operator is given by the Galerkin triple product Ac = PTAP . This process repeats recursively
until a suitably small mesh is reached, where a direct solver can be cheaply applied. Beyond the setup stage,
only a small change is made in the solve phase detailed in Algorithm 1, where the size of the coarse-grid
problem is now determined by the number of coarse-grid points selected, changing the notation, but not the
substance, of the recursive step. For relaxation, we use an ordered Gauss-Seidel sweep that, in Step 1 of
Algorithm 1, loops lexicographically over the points selected for the coarse mesh first, then over those that
are not selected for the coarse mesh (known as C/F relaxation). In Step 5 of Algorithm 1, the opposite
ordering is used, to preserve the symmetry of the preconditioner.

The coarse-grid selection and interpolation algorithms of [43] are used here; for details, see [43, 8]. Because
the singularly perturbed nature of the problems considered here leads to matrices that have some rows that
are strongly diagonally dominant, we adopt a slight variation to the standard approach, whereby rows that
are strongly diagonally dominant (taken to be when the sum of the absolute values of the off-diagonals is less
than 1/2 of the diagonal entry) are treated through fine-grid relaxation alone.

4.4. Black Box Multigrid. In contrast to AMG, the Black Box Multigrid (BoxMG) algorithm [1, 15]
focuses on maintaining the regular, tensor-product grid structure of the fine mesh, and choosing more robust
relaxation techniques, in combination with a similar operator-dependent definition of interpolation, to achieve
robustness in the multigrid algorithm. The algorithmic choice to maintain structured grids on all levels of
the multigrid hierarchy avoids the expensive graph processing and indirect addressing of AMG; as a result,
BoxMG often achieves much faster total times to solution for problems where both AMG and BoxMG can
be readily applied, about six times faster for some two-dimensional problems [10], and ten to fifteen times
faster for some three-dimensional problems [32].

The key to maintaining robustness in BoxMG for two-dimensional problems is the use of alternating-
direction line relaxation. The rectangular grid is decomposed twice, into alternating lines in both the x-
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and y-directions. In a single sweep of relaxation (Step 1 of Algorithm 1), residuals are calculated first for
alternating lines parallel to the x-axis, starting from the second row of the grid, and an update is calculated
for each of these lines to simultaneously zero the residual at all points along these lines, then the same
procedure is applied to alternating lines parallel to the x-axis, starting from the first row of the grid, then
these two stages are repeated for alternating lines parallel to the y-axis. The opposite ordering is used in
Step 5 of Algorithm 1 to ensure symmetry. Interpolation is determined based on averaging of the operator
coefficients along the structured mesh, achieving robustness without the indirect addressing of AMG. The full
specification of BoxMG interpolation is reviewed in [31], including a discussion of its relationship to AMG
interpolation.

4.5. A two-dimensional boundary-layer preconditioning approach. For the two-dimensional
problem with δN � 1, we extend the preconditioning technique from Section 3.2 to handle tensor-products of
fitted meshes, by partitioning the 2D mesh into four pieces: the high-resolution corner, two edges with resolved
meshes in one dimension (along the x- and y-axes), and the interior region. In the corner, connections in both
coordinate directions are significant, requiring the full power of a multigrid method. In the edges, the problems
are effectively one-dimensional, and tridiagonal solvers can be used within an effective preconditioner. In
the interior, as in one dimension, diagonal scaling is effective. Thus, the two-dimensional boundary-layer
preconditioner can be expressed by partitioning the degrees of freedom in U and, consequently, the rows and
columns of A as

A =

 ACC ACE 0
AEC AEE AEI

0 AIE AII

 , (4.1)

where the subscripts indicate the block structure of corners, C, edge layers, E, and interior points, I. The
preconditioner, AD, is defined in the same partitioning by

AD =

 ACC 0 0
0 TEE 0
0 0 DII

 , (4.2)

where the matrix DII has diagonal entries given by the scaled reaction coefficient, and the matrix TEE

has three nonzero entries per row: in the diagonal position, and in the two off-diagonals corresponding to
neighbours along the direction with the smallest meshwidth. Thus, TEE could be itself partitioned into two
parts, one corresponding to the edge layer along the x-axis, and one corresponding to the edge layer along
the y-axis. Depending on the ordering of the degrees of freedom (in x then y, or in y then x), one of these
blocks will be tridiagonal, and one will be block-tridiagonal with diagonal blocks. The neglected entries in
AII and AIE or AEI are essentially the same as those treated in the one-dimensional case, but scaled by
another factor of hI from the symmetrisation, giving −ε, relative to the diagonal values h2

Ib(xi, yj). We
bound these using simple linear-algebraic arguments, similar to those used to prove Theorem 3.1 [30]. The
neglected entries in AEE , ACE , and AEC are slightly more complicated, due to the potentially uneven mesh
spacing in the boundary layers, but similar linear-algebraic arguments bound their contribution.

Theorem 4.1. Let hI denote the interior mesh-spacing in the standard 5-point finite-difference dis-
cretization of −ε2∆u(x, y)+b(x, y)u(x, y) on a boundary-fitted mesh, where b(x, y) > β2 for all (x, y) ∈ [0, 1]2

and boundary conditions such that there are only two boundary layers, along the x- and y-axes (the South
and West faces, respectively), with symmetrised discretization matrix A. Order the rows and columns of A
according to the boundary layer structure in (4.1) and define AD in the same ordering as in (4.2), where
the entries in the diagonal matrix DII are given by the reaction coefficients, h2

Ib(xi, yj), for the row/column
corresponding to node (xi, yj) and the off-diagonal coefficients of AEE − TEE are of the form −ε2k̄j/hI (for
edges along the x-axis) or −ε2h̄j/hI (for edges along the y-axis), with twice the magnitude of these values on
the diagonal (so the AEE − TEE is a zero row-sum operator except for the first and last rows). Then,

(1− 3δh)V TADV ≤ V TAV ≤ (1 + 9δh)V TADV,

for all vectors V .
Proof. Writing generic vector V =

[
VC VE VI

]
(noting that here VC is the component of V as-

sociated with the refined corner of the mesh, and should not be confused with the notation of Sections 3.1
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and 4.3 where Vc would denote the coarse-grid analogue of V ) we see that

V TAV = V T
C ACCVC + 2V T

C ACEVE + V T
E AEEVE + 2V T

E AEIVI + V T
I AIIVI ,

using the symmetry of A. We seek to bound this above and below by a scalar (depending only on δh) times
the quantity

V TADV = V T
C ACCVC + V T

E TEEVE + V T
I DIIVI .

Bounding V T
I AIIVI is straightforward, since AII = DII +LII where LII is the symmetrised uniform-grid

Laplacian matrix with diagonal entry 4ε2 and off-diagonal entries −ε2. Thus, by Geršgorin’s theorem,

V T
I DIIVI ≤ V T

I AIIVI ≤ V T
I

(
DII + (8ε2)I

)
VI ≤ (1 + 8δh)V T

I DIIVI

for any VI , since V T
I VI ≤ 1/(β2h2

I)V T
I DIIVI .

Considering V T
E AEEVE is slightly more complicated because of the tridiagonal structure of AEE − TEE ;

however, we can consider the spectral equivalence by analyzing a generic line in the edges of the mesh. To
do this, first note that AEE is reducible into two blocks, one containing connections within the layer along
the x-axis, and one containing connections within the layer along the y-axis. Considering one of these pieces,
along the x-axis, we decompose the stencil in (2.4) into two pieces, writing

− hI
kj+1

ε2

− k̄j
hI
ε2

(
2k̄j
hI

+ hI
( 1

kj
+

1

kj+1

))
ε2 + k̄jhIb(i, j) − k̄j

hI
ε2

−hI
kj
ε2



=


− hI
kj+1

ε2

0 hI
( 1

kj
+

1

kj+1

)
ε2 + k̄jhIb(i, j) 0

−hI
kj
ε2

+


0

− k̄j
hI
ε2 2k̄j

hI
ε2 − k̄j

hI
ε2

0

 ,

where the first term on the right-hand side represents the terms kept in TEE , and the second term represents
AEE − TEE . From this decomposition, we immediately see that V T

E TEEVE ≤ V T
E AEEVE for any VE , since

the remainder term is positive definite. To find the upper bound, note that the entries in AEE−TEE depend
only on the position in the y-direction, through k̄j , and not on the position in the x-direction. Thus, defining
the diagonal matrix M , with dimension given by the number of points within the boundary layer and entries
given by (k̄j/hI)ε2, for the row/column associated with the point j nodes in from the boundary, we can write

(AEE − TEE)x =



2M −M
−M 2M −M

−M 2M −M
. . .

. . .
. . .

−M 2M −M
−M 2M


,

assuming an ordering of points first in lines parallel to the y-axis, then in lines parallel to the x-axis, where the
subscript x is used on AEE−TEE to indicate that we consider only the edge layer along the x-axis. The matrix
(AEE − TEE)x has block dimension equal to the number of points on the grid that are not in the boundary
layer, and the quantity (VE)Tx (AEE−TEE)x(VE)x can easily be expressed by writing (VE)x =

[
V1 V2 . . .

]
,

giving

(VE)Tx (AEE − TEE)x(VE)x = 2
∑
`

V T
` MV` − 2

∑
`

V T
` MV`+1,
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where the first sum extends over all `, and the second over all but the last `. Bounding the terms in the
second sum, using Cauchy-Schwarz, gives

|V T
` MV`+1| ≤

∥∥∥M1/2V`

∥∥∥
2

∥∥∥M1/2V`+1

∥∥∥
2
≤ 1

2

(
V T
` MV` + V T

`+1MV`+1

)
;

this, in turn, bounds∣∣(VE)Tx (AEE − TEE)x(VE)x
∣∣ ≤ 2

∑
`

V T
` MV` + 2

∑
`

|V T
` MV`+1| ≤ 4

∑
`

V T
` MV`.

For one of these terms, however, the diagonal entries in M , (k̄j)/hIε
2 are bounded above by δhk̄jhIb(xi, yj)

for any i. Thus,

V T
` MV` ≤ δhV T

` D`V`

for all V` for any `, where the diagonal matrices D` are taken to have entries k̄jhIb(xi` , yj) where index i`
corresponds to the line indexed by `. Taken together, with the analogous bounds for the edge layer along the
y-axis, this gives

V T
E (AEE − TEE)VE ≤ 4δhV

T
E DEEVE ,

for any VE , where DEE is the diagonal matrix with entries k̄jhIb(xi, yj) for nodes (i, j) in the edge layer along
the x-axis and analogous values for nodes in the edge layer along the y-axis. Since V T

E DEEVE ≤ V T
E TEEVE

for any VE , which follows from the fact that the difference TEE −DEE is positive definite, this gives

V T
E TEEVE ≤ V T

E AEEVE ≤ V T
E TEEVE + 4δhV

T
E DEEVE ≤ (1 + 4δh)V T

E TEEVE .

We next look to bound the mixed terms, 2V T
C ACEVE and 2V T

E AEIVI . Considering the first of these, we
again employ the Cauchy-Schwarz inequality, writing∣∣V T

C ACEVE
∣∣ ≤ ∥∥∥D−1/2

CC ACEVE

∥∥∥
2
·
∥∥∥D1/2

CCVC

∥∥∥
2
,

for any VC and VE , where DCC is the diagonal matrix with entry h̄ik̄jb(xi, yj) in the row/column corre-
sponding to node (i, j). Since ACC = DCC +LCC for positive-definite Laplacian matrix LCC , V T

C DCCVC ≤
V T
C ACCVC , and ∣∣V T

C ACEVE
∣∣ ≤ ∥∥∥D−1/2

CC ACEVE

∥∥∥
2
·
(
V T
C ACCVC

)1/2
.

To bound the remaining term, notice that there is at most one non-zero entry per row in ACE and, conse-

quently, in D
1/2
CCACE and AECD

−1
CCACE . The nonzero entries in AECD

−1
CCACE occur on the diagonals of

the rows/columns corresponding to nodes that are adjacent to the highly resolved corner, and are given by(
(k̄j/hI)ε2

)2
/(h̄ik̄jb(xi, yj) for a node (i+1, j) in the edge layer along the x-axis (so that node (i, j) is in the

corner region), with a similar expression for a node in the edge layer along the y-axis. Since xi+1 − xi = hI ,
h̄i ≥ hI/2, giving(

(k̄j/hI)ε2
)2
/(h̄ik̄jb(xi, yj) ≤ (ε2/hI)2 2

hIβ2
k̄j ≤ (ε2/hI)2 2

h2
Iβ

4
hI k̄jb(xi+1, yj) = 2δ2

hhI k̄jb(xi+1, yj),

with an analogous bound for nodes in the edge layer along the y-axis. Thus, V T
E AECD

−1
CCACEVE ≤

2δ2
hV

T
E DEEVE for all VE and, thus, V T

E AECD
−1
CCACEVE ≤ 2δ2

hV
T
E TEEVE for all VE . This gives∣∣V T

C ACEVE
∣∣ ≤ √2δh

(
V T
E TEEVE

)1/2 (
V T
C ACCVC

)1/2
,

for all VC and VE . Since 2ab ≤ a2 + b2, this gives

2
∣∣V T

C ACEVE
∣∣ ≤ δhV T

E TEEVE + 2δhV
T
C ACCVC , (4.3)
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for all VC and VE .
Finally, we look to bound 2V T

E AEIVI using similar techniques. The Cauchy-Schwarz bound becomes∣∣V T
E AEIVI

∣∣ ≤ ∥∥∥D−1/2
EE AEIVI

∥∥∥
2
·
∥∥∥D1/2

EEVE

∥∥∥
2

for all VE and VI , giving ∣∣V T
E AEIVI

∣∣ ≤ ∥∥∥D−1/2
EE AEIVI

∥∥∥
2
·
(
V T
E TEEVE

)1/2

for all VE and VI , since V T
E DEEVE ≤ V T

E TEEVE for all VE . Again, there is only one entry per row of
AIED

−1
EEAEI , on the diagonal of rows/columns adjacent to the edge layers. For a node (i, j + 1) adjacent to

the edge layer along the x-axis, the entry would be

ε4/(hI k̄jb(xi, yj)) ≤ ε4 2

h2
Iβ

2
≤ 2δ2

hh
2
Ib(xi, yj+1),

where we use the bound k̄j ≥ hI/2, since yj+1 − yj = hI . This gives∣∣V T
E AEIVI

∣∣ ≤ 2δ2
h

(
V T
I DIIVI

)1/2 (
V T
E TEEVE

)1/2

for all VE and VI . Consequently,

2
∣∣V T

E AEIVI
∣∣ ≤ δhV T

I DIIVI + 2δhV
T
E TEEVE (4.4)

for all VE and VI .
Assembling these bounds, we have

V TAV = V T
C ACCVC + 2V T

C ACEVE + V T
E AEEVE + 2V T

E AEIVI + V T
I AIIVI

≥ V T
C ACCVC − 2

∣∣V T
C ACEVE

∣∣+ V T
E TEEVE − 2

∣∣V T
E AEIVI

∣∣+ V T
I DIIVI

≥ V T
C ACCVC −

(
δhV

T
E TEEVE + 2δhV

T
C ACCVC

)
+ V T

E TEEVE

−
(
δhV

T
I DIIVI + 2δhV

T
E TEEVE

)
+ V T

I DIIVI

= (1− 2δh)V T
C ACCVC + (1− 3δh)V T

E TEEVE + (1− δh)V T
I DIIVI

for all V , establishing the lower bound. For the upper bound, we have

V TAV = V T
C ACCVC + 2V T

C ACEVE + V T
E AEEVE + 2V T

E AEIVI + V T
I AIIVI

≤ V T
C ACCVC + 2

∣∣V T
C ACEVE

∣∣+ (1 + 4δh)V T
E TEEVE + 2

∣∣V T
E AEIVI

∣∣+ (1 + 8δh)V T
I DIIVI

≤ V T
C ACCVC +

(
δhV

T
E TEEVE + 2δhV

T
C ACCVC

)
+ (1 + 4δh)V T

E TEEVE

+
(
δhV

T
I DIIVI + 2δhV

T
E TEEVE

)
+ (1 + 8δh)V T

I DIIVI

= (1 + 2δh)V T
C ACCVC + (1 + 7δh)V T

E TEEVE + (1 + 9δh)V T
I DIIVI

for all V .
Note 1: The lower bound holds for all δh, but the bound is only useful in the case that δh < 1/3, since

a lower bound of 0 ≤ V TAV naturally holds. When δh < 1/3, the theorem establishes spectral equivalence
bounds that show that AD is an excellent preconditioner for A as δh → 0.

Note 2: Slight variations in these bounds are easily derived by varying the division of the constants in
Equations (4.3) and (4.4). In particular, the upper bound can be slightly decreased at the expense of the
constant in the lower bound and vice-versa. However, since δh � 1 is the case of interest, these variations
are largely irrelevant.

Corollary 4.2. Under the assumptions of Theorem 4.1, if MCC is spectrally equivalent to ACC ,
meaning that

c0V
T
C MCCVC ≤ V T

C ACCVC ≤ c1V T
C MCCVC for all VC ,
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then the matrix

AM =

 MCC 0 0
0 TEE 0
0 0 DII


satisfies

min(1− 3δh, co(1− 2δh))V TAMV ≤ V TAV ≤ max(1 + 9δh, c1(1 + 2δh))V TAMV

for all V .
Note 3: Corollary 4.2 is particularly relevant to the case where MCC is the inverse of an effective

multigrid preconditioner for ACC . If the stationary multigrid cycle represented by I−M−1
CCACC has spectral

radius α < 1, then

(1− α)V T
C MCCVC ≤ V T

C ACCVC ≤ (1 + α)V T
C MCCVC

for all VC . Under this assumption, the bound in Corollary 4.2 becomes

min
(
1− 3δh, (1− α)(1− 2δh)

)
V TAMV ≤ V TAV ≤ max

(
1 + 9δh, (1 + α)(1 + 2δh)

)
V TAMV

for all V . Since we typically expect α ≈ 0.1 and δh � 1, a better rule of thumb would be

(1− α)(1− 2δh)V TAMV ≤ V TAV ≤ (1 + α)(1 + 2δh)V TAMV

for all V . This suggests that the convergence of a preconditioner consisting of one multigrid V-cycle applied
to the corner region, appropriately ordered tridiagonal solves applied to the edge layers plus diagonal scaling
of the interior region should be very similar to that of multigrid applied directly to the boundary layer regions
alone. In the case of Shishkin meshes, this means that we expect to recover the optimal scaling of multigrid on
uniform meshes, while we expect similar behaviour for Bakhvalov meshes when a robust multigrid approach
is used.

In light of Corollary 4.2, in Section 4.7, we present results for a boundary-layer preconditioner that makes
use of a single V-cycle of BoxMG in the corner region, appropriately ordered tridiagonal solves to treat the
edge layers, and diagonal scaling in the interior. For a tensor product of fitted meshes with N/2 points in
each layer (including the transition points), this implies that one-quarter of the grid will be treated with a
preconditioner that has the same cost as BoxMG, while the remaining three-quarters will be treated in a
much cheaper manner. Estimating the work of a BoxMG V-cycle as four full line relaxations on each level
times a factor of four-thirds (to account for the hierarchy of levels of sizes N2, N2/4, N2/16, etc.), this
suggests that on three-quarters of the grid, the boundary-layer preconditioner does three-sixteenths of the
work of the multigrid V-cycle. The total work estimate is, then 1/4 + (3/4)(3/16) = 25/64 times the work
of a multigrid V-cycle on the full problem. This is, clearly, an over-estimate, since there is extra savings
from the lack of interpolation and restriction, and from the cost of diagonal scaling compared to line solves,
but provides a rough estimate for the improvement possible from a preconditioner that is tuned to the full
problem structure.

4.6. Stopping Criteria. As is typical for iterative methods, we aim to stop the iteration as soon as we
have an iterate, U (k), that approximates the “best” discrete approximation, U , of the continuum solution, u,
to a degree of accuracy that is of the same order of the discretization error, ‖u− U‖, giving

‖u− U (k)‖ ≤ ‖u− U‖+ ‖U − U (k)‖ ≤ C‖u− U‖,

for a moderate constant, C. In the case of finite-difference approximations on Shishkin and Bakhvalov meshes,
we know that the discretization error bound takes the form

‖u− U‖∞ ≤ g(N),

for g(N) = CN−2 ln2(N) for Shishkin, and g(N) = CN−2 for Bakhvalov, where the constants are independent
of ε. We note that we use the discrete maximum norm here, as the natural norm for which error bounds are
available.
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Naturally, the discrete approximation error, E(k) = U − U (k), is unknown during the iteration; thus,
we must measure this error indirectly. For stationary iterations, the best indicator of this error is the
residual, R(k) = F − AU (k) = AE(k), since AU = F . The simplest possible bound, then, would be to write
E(k) = A−1R(k), giving

‖U − U (k)‖∞ ≤ ‖A−1‖∞‖R(k)‖∞.

Practical bounds on ‖A−1‖∞ arise from M-matrix theory; Theorem 2.7 in [41] states that

‖A−1‖∞ ≤
‖V ‖∞

mink(AV )k
,

where V is a majorising vector with (AV )k > 0 for all k. For the discretization matrices considered here, the
choice of V as the vector of all ones is natural, giving mink(AV )k as the Geršgorin bound on the smallest
eigenvalue of A; this is bounded from below by β2h2

min, where hmin is the minimal mesh spacing on the grid.
Numerical experiments show this bound to be sharp for small ε. With this bound, we can then guarantee
discrete approximation error comparable to the discretization error by asking for ‖R(k)‖∞ ≤ β2h2

ming(N),
ensuring ‖U−U (k)‖∞ < g(N). For small ε, however, hmin scales as hmin v ε ln(N)/(Nβ) for Shishkin meshes,
and as hmin v ε/(Nβ) for Bakhvalov meshes, requiring ‖R(k)‖∞ ≤ Cε2(ln3N)/N3 to achieve discretization
accuracy on Shishkin meshes, and ‖R(k)‖∞ ≤ Cε2/N3 to achieve discretization accuracy on Bakhvalov
meshes. For small ε and moderate N , these values will be much less than machine precision, implying that
it is difficult to compute ‖R(k)‖∞ accurately enough to guarantee convergence.

To overcome this limitation of stationary iterations, we turn to the preconditioned conjugate gradients
algorithm and look to make use of the standard stopping criterion that bounds the inner product of R(k) with
the preconditioned residual, Z(k) = MR(k), where M represents the preconditioning matrix applied. When
M is a good preconditioner in the spectral sense that MA (or, more precisely, A1/2MA1/2, where A1/2 is the
principal square root of A) is spectrally equivalent to the identity, this inner product accurately estimates
‖E(k)‖2A as (

Z(k)
)T

R(k) =
(
E(k)

)T
AMAE(k) ≈ ‖E(k)‖2A,

To bound ‖E(k)‖∞ by ‖E(k)‖A, we make use of an intermediate bound, trading the max-norm for a discrete
`2-norm, noting that

1√
n
‖E(k)‖2 ≤ ‖E(k)‖∞ ≤ ‖E(k)‖2,

for vectors of length n. A reasonable, although not rigorous, estimate is to assume near-equality with the lower
bound, rather than the often-pessimistic upper bound, under the assumption that the discrete approximation
error is nearly equi-distributed across the mesh, so that the error is not concentrated at relatively few mesh
points.

With this assumption, a more tractable bound is available, writing

‖E(k)‖∞ ≈
c√
n
‖E(k)‖2 ≤

c√
n
‖A−1/2‖2‖E(k)‖A,

where A−1/2 is the principal square root of the symmetric and positive-definite matrix, A−1. This bound
presents two advantages. First, ‖E(k)‖A is both naturally estimated and minimized by the preconditioned
conjugate gradient algorithm and, as such, makes a natural stopping criterion for the iterative approach.
Secondly, as we show below, the natural bound on ‖A−1/2‖2 needed to determine the stopping criterion is
much smaller than that of ‖A−1‖∞ (and ‖A−1‖2), yielding a stopping criterion that is also less susceptible
to problems with round-off errors.

Since A−1/2 is the principle square root of A−1, we have ‖A−1/2‖22 = ‖A−1‖2, as the eigenvalues of A−1

are the squares of those of A−1/2. Thus, we can estimate the needed norm by applying Geršgorin’s theorem
to A to estimate its smallest eigenvalue, deriving the same bound on ‖A−1‖2 as was given for ‖A−1‖∞ above.
This implies that ‖A−1/2‖2 ≤ 1/(βhmin) for the two-dimensional problems. Thus, we have

‖E(k)‖∞ ≈
c√
n
‖E(k)‖2 ≤

c

N
‖A−1/2‖2‖E(k)‖A ≤

c

N

1

βhmin
‖E(k)‖A.
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Similar bounds can be derived for the one-dimensional problems for both ‖A−1‖∞ and ‖A−1/2‖A, with
changes that the matrices are of dimension n ≈ N instead of N2 and a scaling of hminβ

2 for the minimal
eigenvalue estimate.

Given a bound of this form, the stopping criterion for ‖E(k)‖A to guarantee ‖E(k)‖∞ < g(N) (up to the
assumption relating ‖E(k)‖∞ and ‖E(k)‖2) is given by

‖E(k)‖A ≤ C
βNhmin

c
g(N);

with this, we have

‖u− U (k)‖∞ . Cg(N),

ensuring optimality of the approximate discrete solution, U (k).
What this analysis doesn’t treat is the size of the constants, C and c, or their variation in N and ε.

While these constants are uniformly bounded independently of N and ε, numerical experiments in 2D show
that when ε is large, stricter convergence bounds are needed to obtain the best possible accuracy (that
is, to be almost identical to that of a direct solver). Thus, for the results presented in this paper for 2D
problems, we use a graduated stopping tolerance of 10−3 times the above bounds when ε = 1, 10−2 when
ε = 10−1 and 10−1 when ε = 10−2. For smaller values of epsilon, we take the constant, c = 1, with no further
scaling. In all results, we take β as an input parameter, matching what is used for the grid generation,
and use a computed value of hmin. Finally, we note that although the required bounds on ‖E(k)‖A through
this analysis are dependent on both N and ε, the multigrid-based methods used here lead to per-iteration
reduction factors bounded below unity in each iteration, independently of N and ε. Thus, the number of
iterations for convergence is bounded, at worst, by logarithmic factors of N and ε; in practice, iteration
counts grow quite slowly with these terms.

4.7. Numerical Results. We present here results for the test problem (1.5) on Bakhvalov meshes;
results for Shishkin meshes are nearly identical and so omitted. We do not report errors for the solutions
computed here. Instead, we fix convergence tolerances as discussed above (with a small constant factor
for BoxMG, detailed below) such that the error in the iterative solutions generated by geometric multigrid,
AMG, BoxMG, and, for suitably small δh, the boundary-layer preconditioners, matches that of the direct
solver (as reported, for example, in Table 2.1 for the Bakhvalov mesh in 2D) to three significant digits.

Table 4.4 reports the times for AMG solution of these linear systems, averaged over 3 runs. Comparing
these to Table 4.1, we see that the AMG solution times are generally comparable to the best times for
CHOLMOD for small N . For larger N , however, the near-optimal scaling of AMG coupled with the clearly
sub-optimal scaling of CHOLMOD results in much better performance when comparing AMG to the best-
case solve times of CHOLMOD, and substantial improvements when CHOLMOD is slowed by sub-normal
arithmetic, as discussed in Section 4.1.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 0.07 0.38 1.81 8.06 36.09 166.10
10−2 0.07 0.37 1.81 8.04 38.43 165.77
10−4 0.05 0.32 1.62 7.01 33.77 147.10
10−6 0.04 0.22 1.13 5.91 30.01 143.08
10−8 0.04 0.22 1.13 5.28 24.15 113.79
10−10 0.04 0.25 1.31 6.06 29.08 142.97
10−12 0.05 0.25 1.31 6.05 29.07 142.93

Table 4.4
CPU times for AMG preconditioned CG to achieve theoretically optimal error reduction on Bakhvalov meshes, averaged

over 3 runs.

Hidden in the AMG iteration times is some noteworthy variation in the number of PCG iterations needed
for each problem. Table 4.5 reports iteration counts for AMG preconditioned CG on Bakhvalov meshes; since
the iteration counts are the same for each run (as a zero initial guess and fixed right-hand side are used for
each value of N and ε), no averaging is needed in these results. Here, we notice that for fixed ε, there
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is a slight increase in the number of iterations needed to achieve the stopping tolerance with N , roughly
proportional to log2N . This is naturally predicted by the assumption of a fixed error reduction per iteration
of AMG preconditioned CG, given that the stopping criteria decrease with N . Scaling with ε is less clear,
where we see an initial decrease in iteration counts as ε decreases, followed by an increase as ε reaches 10−5

and 10−6. For fitted meshes, decreases in ε match increases in the worst-case mesh aspect ratio, which are
typically correlated with convergence of AMG. This variation in ε can, to some extents, be ameliorated by
varying the value of the AMG parameter defining the relative magnitude of strong connections in each row.
For worse mesh-aspect ratios, larger values of the parameter (up to 1.0, where only the largest magnitude
connections are taken to be strong) are needed to stabilize AMG convergence, while only a fixed value (0.25)
has been used here.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 6 7 7 8 9 10
10−2 6 6 7 8 10 10
10−4 5 6 7 7 9 9
10−6 5 5 6 7 8 9
10−8 5 5 6 7 8 9
10−10 5 7 8 9 11 13
10−12 6 7 8 9 11 13

Table 4.5
Iteration counts for AMG preconditioned CG to achieve theoretically optimal error reduction on Bakhvalov meshes.

As seen in other cases, BoxMG clearly outperforms AMG on these problems, with averaged solution times
reported in Table 4.6. Comparing with Table 4.4, we see that CPU times range from about 3 times faster
for small grids to about 40% faster for large grids. Iteration counts, shown in Table 4.7, again show log2N
scaling as problem size increases, but notably less variation in ε. This is likely due to the effectiveness of the
alternating-direction line relaxation used within BoxMG, although there is no existing theoretical verification
of this scaling. Once again, the times are notably shorter (and better scaling) than those for the direct solver
in Table 4.1, as well as showing no sensitivity to subnormal numbers (as one would expect, since a direct
solver is only applied on the coarsest of grids). We note that, to achieve this performance, we use a slightly
stricter stopping tolerance for BoxMG than we do for AMG or BLPCG, decreasing those described above
by an experimentally determined factor of 10. Such small variations are expected, as the component bounds
employed are true to within constant factors that have been neglected.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 0.02 0.13 0.77 4.44 22.38 110.39
10−2 0.03 0.13 0.75 4.83 22.51 119.41
10−4 0.02 0.12 0.68 4.45 24.35 119.42
10−6 0.02 0.10 0.62 4.05 20.69 101.48
10−8 0.02 0.11 0.62 4.05 18.86 101.48
10−10 0.02 0.10 0.63 4.06 18.92 101.60
10−12 0.02 0.10 0.62 4.06 18.96 101.82

Table 4.6
CPU times for BoxMG preconditioned CG to achieve theoretically optimal error reduction on Bakhvalov meshes, averaged

over 3 runs.

The boundary-layer preconditioner discussed in Section 4.5 is expected to yield even faster times, but
only when δh � 1. Table 4.8 shows the values of δh for various choices of N and ε; as expected, for fixed ε,
δh increases with increasing N (since hI decreases) while, for fixed N , δh decreases with decreasing ε. Note,
however, that the decrease is not linear in ε2, as hI is dependent on ε.

In Tables 4.9 and 4.10, we only report results for cases where δh < 0.1, consistent with the spectral
equivalence bounds in Theorem 4.1 and Corollary 4.2. We note that, when δh < 0.01, there is no notable
difference between the errors in the iterative solutions generated by BLPCG with the stopping criterion as
given above from those generated by the direct solver. For 0.01 ≤ δh < 0.1, the errors generated by BLPCG
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ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 8 9 10 10 11 11
10−2 8 9 10 11 11 12
10−4 7 8 9 10 12 12
10−6 6 7 8 9 10 10
10−8 6 7 8 9 9 10
10−10 6 7 8 9 9 10
10−12 6 7 8 9 9 10

Table 4.7
Iteration counts for BoxMG preconditioned CG to achieve theoretically optimal error reduction on Bakhvalov meshes.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 1.65× 104 6.62× 104 2.65× 105 1.06× 106 4.24× 106 1.69× 107

10−2 1.24× 102 4.99× 102 2.00× 103 7.98× 103 3.19× 104 1.28× 105

10−4 5.12× 10−1 2.05× 100 8.19× 100 3.27× 101 1.31× 102 5.24× 102

10−6 4.27× 10−3 1.71× 10−2 6.83× 10−2 2.73× 10−1 1.09× 100 4.37× 100

10−8 4.15× 10−5 1.66× 10−4 6.65× 10−4 2.66× 10−3 1.06× 10−2 4.25× 10−2

10−10 4.14× 10−7 1.66× 10−6 6.62× 10−6 2.65× 10−5 1.06× 10−4 4.24× 10−4

10−12 4.14× 10−9 1.66× 10−8 6.62× 10−8 2.65× 10−7 1.06× 10−6 4.24× 10−6

Table 4.8
Computed values of δh = ε2/(h2Iβ) for Bakhvalov meshes on [0, 1]2 with a single boundary layer and β = 0.99.

are somewhat larger, with observed relative increases of up to about 15%. These values could be decreased
by a tighter stopping tolerance, but this would lead to oversolving in the cases where δh is smaller.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

10−6 0.01 0.05 0.26
10−8 0.01 0.04 0.23 1.24 6.63 28.01
10−10 0.00 0.04 0.23 1.24 6.63 28.20
10−12 0.00 0.04 0.22 1.24 6.62 28.15

Table 4.9
CPU times for preconditioned CG with the boundary-layer preconditioner to achieve (near) theoretically optimal error

reduction on Bakhvalov meshes, averaged over 3 runs.

Comparing Table 4.9 with Tables 4.4 and 4.6, we see that, when the BLPCG approach is effective, it
offers a substantial further reduction in the time-to-solution on large grids, by slightly more than a factor of
3 over BoxMG, and a factor of 10 or more over AMG. This is slightly better than predicted by the rough
cost estimate given in Section 4.5, but not surprisingly so, especially as BLPCG typically converges in fewer
iterations than BoxMG. The iteration counts in Table 4.10 are steady and show only small dependency on ε.

5. Extensions to three-dimensional problems. While we do not directly treat either the theory
or practice of three-dimensional problems in this paper, we note that the techniques proposed here for two
dimensions all naturally extend to three. Both AMG and BoxMG can be directly applied to the seven-point
stencils of finite-difference discretizations in 3D, and past comparisons show BoxMG to be about ten to fifteen
times faster than AMG for some diffusion problems [32]. In three dimensions, BoxMG makes use of plane-
based relaxation where, because of the non-optimal scaling of direct solvers for two-dimensional problems,
relaxation is composed of a single two-dimensional V-cycle along each plane of grid points in each direction
of the mesh.

Similarly, a three-dimensional analogue of the boundary-layer preconditioner is also natural. Considering
a problem with one boundary layer in each direction and a tensor-product of meshes with N/2 points in the
boundary layer and N/2 evenly spaced points in the interior, there is one highly resolved corner with N3/8
points, to which we would apply a standard 3D BoxMG V-cycle, with cost roughly 1/8 of that of the V-cycle
on all N3 points. Along each of the x-, y-, and z-axes, away from the corner, there are layers that are highly
resolved in two directions, but not the third. For example, along the x-axis away from the origin, there is
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ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

10−6 6 6 8
10−8 6 6 7 8 8 8
10−10 5 6 7 8 8 8
10−12 5 6 7 8 8 8

Table 4.10
Iteration counts for preconditioned CG with the boundary-layer preconditioner to achieve (near) theoretically optimal error

reduction on Bakhvalov meshes.

high resolution in the y- and z-directions, but not in the x-direction. Each of these regions has N3/8 points
in it, and can be effectively treated by a single plane solve, instead of the six plane solves (in three alternating
directions, both before and after coarse-grid correction) used in the standard BoxMG Vcycle. Thus, the cost
of treating these regions at each iteration is (3/8)(1/6)(7/8), where the factor of 7/8 comes from the treatment
of only the finest grid, and not grids of N3, N3/8, N3/64, etc., as in the multigrid V-cycle. Next, along
each face in the xy-, xz-, and yz-planes, there is a layer that is highly resolved in one direction (orthogonal
to the plane), but not along the plane. In these regions, line solves are sufficient. In the remaining N3/8
points in the interior, diagonal scaling is sufficient, but we will estimate the cost of line solves here, too, for
simplicity. Thus, for N3/2 points, we make use of a single line solve (oriented in the direction of the mesh
refinement) or point solve, with cost 1/4 of the relaxation in a plane solve, which has relative complexity of
4/3, and of which there are six in a 3D BoxMG V-cycle, with relative complexity of 8/7. This gives a cost of
(1/2)(1/4)(3/4)(1/6)(7/8) for the treatment of these regions, relative to the cost of a full multigrid V-cycle.
Adding these costs gives

1/8 + (3/8)(1/6)(7/8) + (1/2)(1/4)(3/4)(1/6)(7/8) = 99/512

of the cost of a full 3D BoxMG V-cycle. While the non-uniform coarsening used by AMG should naturally
coarsen in ways consistent with this proposed boundary-layer preconditioner, the expectation that BoxMG
by itself outperforms AMG implies that the boundary-layer preconditioner should be the fastest approach.
We also note that the expected speedup in three dimensions is by a larger factor than that given in two
dimensions (which, in turn, outperforms one dimension).

6. Conclusions. This paper focuses on the solution of the linear systems of equations that arise from
finite-difference discretizations of singularly perturbed reaction-diffusion equations on fitted meshes. We
show that the commonly used direct solvers scale poorly with both the mesh size (as is well known) and
the perturbation parameter (due to slow performance of IEEE floating-point arithmetic in this regime). In
contrast, robust multigrid methods offer nearly parameter-uniform efficiency in solving these linear systems,
and the carefully derived stopping criteria ensure accurate, and efficient, approximations to the discrete
solution. Existing software implementing algebraic and black-box multigrid approaches is demonstrated to
offer nearly scalable performance. A new boundary-layer preconditioner is also proposed and is shown, both
theoretically and numerically, to offer near-optimal scaling at still lower cost. Overall, we see speedups of
factors of 40 or greater for problems with small perturbation parameters.

The approaches proposed here can clearly be extended to a number of other situations. Bilinear finite-
element discretizations on fitted meshes generate similar stencils to those considered here and, as such, it is
expected that simple extensions of these approaches can be applied in this case. Other layer-adapted meshes,
such as hybrid Bakhvalov-Shishkin meshes (e.g., [42]), and variants due to Vulanović (e.g., [51]), create
similar structures; in these cases, very similar approaches should also yield near-optimal scaling solution
algorithms for the resulting linear systems. The developed theory for the boundary-layer preconditioner, in
particular, is directly applicable to finite-difference discretizations on any fitted mesh that yields uniform
meshwidth away from the boundary and corner layers, while the stopping criterion derived depends only on
the minimum mesh width and existing theoretical error estimates for the discretization.
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these problems.



24 S. MacLachlan and N. Madden

REFERENCES

[1] R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter, The multigrid method for the diffusion equation with
strongly discontinuous coefficients, SIAM J. Sci. Stat. Comput., 2 (1981), pp. 430–454.

[2] A. R. Ansari and A. F. Hegarty, A note on iterative methods for solving singularly perturbed problems using non-
monotone methods on Shishkin meshes., Comput. Methods Appl. Mech. Eng., 192 (2003), pp. 3673–3687.
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