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Outline

Monday, 4 December
09:30 – 10.30 Registration and Inauguration
10:45 – 11.45 1. Introduction to singularly perturbed problems NM
12:00 – 13:00 2. Numerical methods and uniform convergence NM
14:30 – 15:30 Tutorial (Convection diffusion problems) NM
15:30 – 16:30 Lab 1 (Simple FEMs in MATLAB) NM

Tuesday, 5 December
09:30 – 10:30 3. Finite difference methods and their analyses NM
10:45 – 11:45 4. Coupled systems of SPPDEs NM
14:00 – 16:00 Lab 2 (Fitted mesh methods for ODEs) NM

Thursday, 7 December
09:00 – 10:00 8. Singularly perturbed elliptic PDEs NM
10:15 – 11:15 9. Finite Elements in two and three dimensions NM
01:15 – 15:15 Lab 4 (Singularly perturbed PDEs) NM

Friday, 8 December
09:00 – 10:00 10. Preconditioning for SPPs NM
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Primary references

The definition of parameter uniformity (Slides 16–18) is from
[Farrell et al., 2000]. See also [Linß, 2010].
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A reaction-diffusion problem

Let’s recall our first example of a singularly perturbed reaction-diffusion
equation.

−ε2u ′′(x) + b(x)u(x) = f(x), on Ω = (0, 1),

ε is (still) a small parameter; it may take any value in (0, 1].
There is β > 0 such that b(x) > β > 0.
Boundary conditions: u(0) = u(1) = 0
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A reaction-diffusion problem Uniform Convergence (heuristic)

In general, one must approximate the solutions to such problems by some
numerical scheme.

A “Parameter Robust” or “Uniformly Convergent” method is one that yields an
approximation U of u, such that one can prove an error estimate of the form

‖u−U‖ 6 CN−p

where C, p (“rate of convergence”) are independent of the perturbation
parameter ε, and discretization parameter N. This should be valid for all
ε ∈ (0, 1] and all N.

In particular, one should not have to assume that, for example, N = O(1/ε).

It is also desirable that any layer present should be resolved.

This explanation of “
::::::
uniform

::::::::::
convergence” is heuristic, (and we have not even

specified ‖ · ‖). The concept will be will be made formal later.
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A reaction-diffusion problem A simple FDM

The simplest numerical scheme one could apply to this problem is a
second-order finite difference scheme on a uniform mesh.

On the interval Ω = [0, 1], form a uniform mesh with N intervals:

ΩN := {xi}
N
i=0, where xi = i/N = ih;

Approximate u ′′(xi) as

u ′′(xi) =
1

h2

(
u(xi−1) − 2u(xi) + u(xi+1)

)
︸ ︷︷ ︸

δ2u(xi)

+C ‖u(4)‖︸ ︷︷ ︸
O(ε−4)

N−2.

Construct and solve the linear system

U0 = 0,

−ε2δ2Ui + b(xi)Ui = f(xi), i = 1, . . . ,N− 1

UN = 0.
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A reaction-diffusion problem A simple FDM

If we implement the above finite difference method, and then calculate the
maximum point-wise error, we get the following results.

max
i

|u(xi) −Ui| where u solves − ε2u ′′ + u = ex.

ε2 N = 64 N = 128 N = 256 N = 512
1 7.447e-06 1.861e-06 4.654e-07 1.163e-07

10−2 1.023e-03 2.568e-04 6.424e-05 1.607e-05
10−4 7.689e-02 2.338e-02 6.192e-03 1.583e-03
10−6 1.104e-02 4.203e-02 1.033e-01 9.666e-02
10−8 1.113e-04 4.452e-04 1.779e-03 7.088e-03
10−10 1.113e-06 4.453e-06 1.781e-05 7.125e-05
10−12 1.113e-08 4.453e-08 1.781e-07 7.125e-07

We observe that,

for small fixed N the error decreases as ε decreases (counter-intuitive)

for small fixed ε, the error increases as N increases (i.e., not converging)
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A reaction-diffusion problem A simple FDM

Comparing “convergence” for different values of ε.

max
i

|u(xi) −Ui|
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A reaction-diffusion problem A simple FDM

Why, for small fixed N, does the error appear to decrease as ε is reduced?

We fix N = 32 and take ε = 10−2, 10−4, . . . , 10−10.
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The pointwise errors are small because the layer is not resolved.
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A reaction-diffusion problem A simple FDM

Why, for small fixed ε, does the error appear to increase as N is increased?

We fix ε = 2−10 and take N = 32, 64, 128, . . .. As N approaches ε−1, the
method begins to resolve the layer, and so the computed pointwise error
increases.
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A reaction-diffusion problem A simple FDM

Motivated by the previous graphs, we compute the difference between the true
solution and the piecewise linear interpolant to the approximation.

max
06x61

|u(x) − Ū(x)|

ε2 N = 64 N = 128 N = 256 N = 512
1 3.75e-01 3.75e-01 3.75e-01 3.75e-01

1e-02 3.77e-01 3.75e-01 3.75e-01 3.75e-01
1e-04 4.62e-01 4.06e-01 3.84e-01 3.78e-01
1e-06 7.30e-01 6.86e-01 5.94e-01 4.89e-01
1e-08 7.50e-01 7.49e-01 7.47e-01 7.37e-01
1e-10 7.50e-01 7.50e-01 7.50e-01 7.50e-01
1e-12 7.50e-01 7.50e-01 7.50e-01 7.50e-01

We can conclude from this that the method given here is not suitable for this
problem.

Most of the remainder of the next class will be given over to deriving and
analysing a method that is suitable.
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A reaction-diffusion problem What is going wrong here?

The differential equation is −ε2u ′′ + bu = f.
From this we see that ‖u ′′‖ is O(ε−2).
If b is constant, by differentiating the DE, we get that ‖u(4)‖ is O(ε−4). (We
will do this more carefully for variable b later).

If standard arguments based on the truncation error are employed, one will find
that

‖u−U‖∞ 6 CN−2(1 + ε−2).

(This bound suggests that this method is inappropriate for this problem, which
is true; but it is not sharp. We will return to this point later).
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A convection-diffusion problem

Before we study the reaction-diffusion problem in greater depth, we take a
detour to point out that things could be much, much worse.

The numerical method presented above yields a reasonable solution to the
reaction-diffusion problem away from layers.

If we apply the method to the obvious convection-diffusion problem, the
resulting solution can be unstable.

Again we start with the uniform mesh with N intervals:

ΩN := {xi}
N
i=0, where xi = i/N = ih;

And again approximate u ′′ as u ′′ = δ2u(xi) + K2N
−2.

We approximate u ′ by the corresponding second-order central difference scheme

u ′ =
1

2h

(
− u(xi−1) + u(xi+1)

)
︸ ︷︷ ︸

D0u(xi)

+K1N
−2.

The finite difference method is then

−εδ2Ui + a(xi)D
0Ui = f(xi), i = 1, . . . ,N− 1.
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A convection-diffusion problem

A convection-diffusion problem

−εu ′′(x) + u ′(x) = 1 + x, on Ω = (0, 1), with u(0)=u(1)=0
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Uniform convergence

We have seen that the two simplest methods for reaction-diffusion and
convection-diffusion problems are inadequate.

Before constructing a method that is adequate, we need a concept of what
“adequate” means.

Although it is possible to design a method that gives a “reasonable” solution
for a fixed, small ε, we want to investigate schemes which are accurate for all
ε ∈ (0, 1].

Furthermore, the scheme should not rely on choosing some large N = N(ε) in
order to ensure accuracy.

That is...

[Farrell et al., 2000, p10]

... we undertake ... the task of constructing numerical methods that generate
numerical solutions which converge uniformly for all values of the parameter ε
in the range (0, 1], and that require a parameter-uniform amount of
computational work to compute each numerical solution.
Such methods are called parameter uniform or ε-uniform methods.
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Uniform convergence

[Farrell et al., 2000, p10]

If a method is ε-uniform, the error between the exact solution, u, and the
numerical solution U, satisfies an estimate of the following form: for some
positive integer N0, all integers N > N0, and all ε ∈ (0, 1], we have

‖u− Ū‖Ω̄ 6 CN−p.

where C, N0 and p are positive constants independent of ε and N.

Here U is taken to be a mesh function defined on some set of (mesh) points in
the domain Ω̄, and Ū is its piecewise linear interpolant. The norm ‖u− Ū‖Ω̄ is
the maximum norm.

GIAN Workshop: Theory & Computation of SPDEs, Dec 2017: §2 Uniform Conv 17/19



Uniform convergence Layer resolving

In the above discussion,

the emphasis on the maximum norm comes from the fact that other
norms, particularly energy norms for simple Galerkin FEMs, are not strong
enough to identify layers.

the interpolant of the numerical solution features since, as we have seen, if
there are no mesh points within the layer, the solution can appear highly
accurate.

So [Farrell et al., 2000] propose that methods for SPPs should be

(1) global: yielding an approximation that can be evaluated at all points in the
domain;

(2) point-wise accurate,

(3) parameter uniform (independent of ε and computational effort)

(4) monotone (discrete operator respects key qualitative properties of the
continuous operator).
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