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Outline

Monday, 4 December
09:30 – 10.30 Registration and Inauguration
10:45 – 11.45 1. Introduction to singularly perturbed problems NM
12:00 – 13:00 2. Numerical methods and uniform convergence NM
14:30 – 15:30 Tutorial (Convection diffusion problems) NM
15:30 – 16:30 Lab 1 (Simple FEMs in MATLAB) NM

Tuesday, 5 December
09:30 – 10:30 3. Finite difference methods and their analyses NM
10:45 – 11:45 4. Coupled systems of SPPDEs NM
14:00 – 16:00 Lab 2 (Fitted mesh methods for ODEs) NM

Thursday, 7 December
09:00 – 10:00 8. Singularly perturbed elliptic PDEs NM
10:15 – 11:15 9. Finite Elements in two and three dimensions NM
01:15 – 15:15 Lab 4 (Singularly perturbed PDEs) NM

Friday, 8 December
09:00 – 10:00 10. Preconditioning for SPPs NM
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Primary references

The main mathematical content of this presentation, starting at Slide 7, closely
follows [Miller et al., 1996] and [Miller et al., 2012].

Important secondary references include [Protter and Weinberger, 1984].
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Analysis

This section is devoted to the mathematical analysis of solutions to
one-dimensional reaction-diffusion equations, and finite difference methods for
approximating them.

Notation

The following notation applies in the remainder of this section.

Ω := (0, 1).

Ω̄N = {0 = x0 < x1 < · · · < xN = 1} is a (possibly arbitrary) mesh with N
intervals.
ΩN denotes the interior of this mesh, i.e., ΩN = {x1, . . . , xN−1}.

‖ · ‖ is the maximum norm on C(Ω̄). That is ‖u‖ := ‖u‖∞,Ω̄ = max
06x61

|u(x)|.

‖ · ‖Ω̄N is the discrete max norm for mesh functions on ΩN.

Always: C is a constant that is independent of ε and N. It can take
different values in different places – even in the same expression.
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Analysis

Definition (Differential operator L)

Let Ω := (0, 1). Given the function b ∈ C4(Ω̄), subject to b(x) > β2 > 0, and
parameter ε ∈ (0, 1], the differential operator L is defined, for all ψ ∈ C2(Ω̄) as

Lψ = −ε2ψ ′′ + bψ

Definition (Reaction-diffusion equation)

Let u be the solution to

Lu = f on (0, 1), with boundary conditions u(0) = u(1) = 0, (1)

where f ∈ C4(Ω̄).

The imposition of homogeneous Dirichlet boundary conditions is only to
simplify the exposition. Results are easily extended to more general situations.
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Maximum principles

The following result is very standard, and elementary, but worth considering in
detail in order to be able to generalise later.

Lemma

Maximum Principle If φ(0) > 0, φ(1) > 0, and Lψ(x) > 0 for all x ∈ Ω, then
φ(x) > 0 for all x ∈ Ω̄.

[arguments on the board]
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Maximum principles

There are many useful consequences of this. For example:

It easily follows that, if Lu = f and u(0) = u(1) = 0, then

|u(x)| 6 ‖f‖/β2 for all x ∈ Ω.

[arguments on the board]

(Here ψ = ‖f‖/β2 is called a barrier function; we’ll see more of these).

This shows that u is bounded. But for the analysis of a finite difference method, we
need bounds on derivatives of u.
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Bounds on derivatives

Lemma (Lemma 6.1 of [Miller et al., 2012])

‖u(k)‖ 6 C(1 + ε−k).

[arguments on the board]
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Bounds on derivatives

The above bounds are correct, but not at all sharp: one expects that
|u ′′(x)| ≈ ε−2 only near the boundary.

Our numerical analysis will require sharper, point-wise bounds obtained via a
decomposition of the solution of the DE as the sum of “regular” and “layer”
components:

u = v︸︷︷︸
regular

+ w︸︷︷︸
layer

.
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Solution decomposition

Solution decomposition

u = v︸︷︷︸
regular

+ w︸︷︷︸
layer

.
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Roughly,

v represents the solution away from the boundaries, but any layers present
are only weakly expressed.

w accounts for the boundary conditions and, thus, the boundary layers,
but decays rapidly away from the boundaries.
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Solution decomposition Regular component

Definition (Reduced problem)

To get the reduced problem, set ε = 0 in the reaction-diffusion equation (1),
and neglect the boundary conditions. That is, let v0 be the solution to

b(x)v0(x) = f(x).

Regular part

Let v = v0 + ε
2v1, where v0 is the reduced solution, and v1 solves

Lv1 = v ′′0 , v1(0) = v1(1) = 0.

From our earlier lemma, it is clear that |v
(k)
1 (x)| 6 C(1 + ε−k).

It follows that |v(k)(x)| 6 C(1 + ε−k+2).
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Solution decomposition Layer component

Layer part

Since u = w+ v, we have that w satisfies the homogeneous DE

−ε2w ′′ + bw = 0 on Ω, w = u− v on ∂Ω

Define the boundary layer function

Bε(x) := exp(−xβ/ε) + exp(−(1 − x)β/ε).

Also define the barrier function

ψ±(x) = CBε(x)±w(x)

for some suitable large C so that ψ± is non-negative on the boundary. Then
the Maximum Principle shows that |w(x)| 6 Bε(x) on Ω̄.

Now a minor variant on the argument that was used to bound |u(k)| will give
that

|w(k)(x)| 6 Cε−kBε(x).

GIAN Workshop: Theory & Computation of SPDEs, Dec 2017: §3 FDM Analysis 13/21



The FDM and Shishkin mesh The FDM

The above solution decomposition tells use that the derivatives of u are large,
but decay rapidly away from the boundaries. So it will be of no surprise to
learn that there is a good strategy for solving these problems that involves a
mesh condensing near those boundaries.

First, for an arbitrary mesh ΩN = {x0, x1, . . . , xn} the standard second-order
finite-difference operator becomes(

δ2v
)
i
=

2

hi+1 + hi

(
vi+1 − vi
hi+1

−
vi − vi−1

hi

)
.

where hi = xi − xi−1.

It satisfies

E.g., [Miller et al., 2012, Lemma 4.1]∣∣∣∣(δ2 −
d2

dx2

)
φ(xi)

∣∣∣∣ 6 1

3
(xi+1 − xi−1)|φ|3.
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The FDM and Shishkin mesh The FDM

Then the FDM is
U0 = 0,

LNUi := −ε2δ2Ui + b(xi)Ui = f(xi), i = 1, . . . ,N− 1,

UN = 0.

This operator satisfies a discrete maximum principle, and an ε-uniform stability
result: if Φ0 > 0, ΦN > 0, and LNΦi > 0, then

|Φi| 6
1

β
max
i6j6N

|LNΦj|.

[arguments on the board]
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The FDM and Shishkin mesh The mesh

The piecewise uniform mesh of Shishkin is constructed as follows1:

1. Choose a mesh transition point

τε = min

{
1

4
,
ε

β
lnN

}
.

2. Divide the domain into three sub-regions: [0, τε], [τε, 1 − τε] and [1 − τε, 1].

3. Subdivide those sub-regions to obtain the mesh.

0 1− τε 1

N/2N/4 N/4

τε

1This choice is for the purpose of exposition. It is better to choose τε = min{1/4, 2ε/β lnN}.
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Analysis

Theorem (Theorem 6.4 of [Miller et al., 1996])

There is a constant C that is independent of ε and N such that

‖u−U‖Ω̄N 6 CN−1 lnN.

The proof proceeds by constructing a decomposition of the discrete solution
U = V +W that is analogous to the decomposition of the continuous solution:

V solves V0 = v(0), LNVi = f(xi), VN = v(1),

W solves W0 = w(0), LNWi = 0, WN = w(1).

We analyse these terms separately, i.e., we estimate ‖v− V‖ and ‖w−W‖.
For ‖v− V‖... [arguments on the board]
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Analysis

On the region (0, τε) ∪ (1 − τε, 1) the analysis for ‖w−W‖ is analogous...
[arguments on the board]
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Analysis

Finally, on the region [τε, 1 − τε] one can exploit the fact that w and W have
decayed. In particular, for any xi ∈ [τ, 1 − τ]

Bε(xi) 6 Bε(τ) 6 2 exp(−τβ/ε) 6 2 exp(− lnN) 6 CN−1.

[arguments on the board]
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Wrap up

The significance of the above result is that we have designed a scheme for
which we can prove that the pointwise error is independent of ε.

The result is easily extended to show that ‖u− Ū‖ 6 CN−1 lnN.

The result is correct, but not sharp. Can the scheme and analysis be
improved so that ‖u−U‖Ω̄N 6 CN−2 ln2N? [Discuss!]

The approach here, of using a piecewise uniform mesh, is very elementary.
A more sophisticated mesh, such as the graded mesh of Bakhvalov, can
yield a fully second-order scheme.
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