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Outline

Monday, 4 December
09:30 – 10.30 Registration and Inauguration
10:45 – 11.45 1. Introduction to singularly perturbed problems NM
12:00 – 13:00 2. Numerical methods and uniform convergence NM
14:30 – 15:30 Tutorial (Convection diffusion problems) NM
15:30 – 16:30 Lab 1 (Simple FEMs in MATLAB) NM

Tuesday, 5 December
09:30 – 10:30 3. Finite difference methods and their analyses NM
10:45 – 11:45 4. Coupled systems of SPPDEs NM
14:00 – 16:00 Lab 2 (Fitted mesh methods for ODEs) NM

Thursday, 7 December
09:00 – 10:00 8. Singularly perturbed elliptic PDEs NM
10:15 – 11:15 9. Finite Elements in two and three dimensions NM
01:15 – 15:15 Lab 4 (Singularly perturbed PDEs) NM

Friday, 8 December
09:00 – 10:00 10. Preconditioning for SPPs NM
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§4 Coupled Systems

(≈ 1 hour.)

In this section we’ll consider coupled
systems of two equations, with
interacting boundary layers.

We’ll see how to derive solution
decompositions and how to use these
to construct suitable meshes.

We’ll then move onto coupled systems
of `-equations: techniques for
generalisation.

To finish, we’ll look at how to
construct both piecewise uniform and
graded meshes for these problems.

1 Coupled systems
Case (b): ε1 � ε2 = 1
Case (c): ε1 � ε2 � 1

2 A system of two equations
3 The FDM and layer-adapted

(Shishkin) mesh
4 Analysis

Solution decomposition
Further decomposition

5 Extension to larger systems
Stability
Solution decomposition

6 Some meshes
Shishkin meshes
Equidistribution meshes
Bakhvalov meshes

7 Numerical Example
8 References

GIAN Workshop: Theory & Computation of SPDEs, Dec 2017: §4 Coupled Systems 3/33



Primary references

Some of the content of this presentation is based on...

[Madden and Stynes, 2003], for bounds on derivatives of the true solution
to a coupled system of two equations.

[Kellogg et al., 2008], for ideas on extension to larger systems.

[Linß and Madden, 2009], for graded meshes.

For a more detailed exposition see [Linß and Stynes, 2009] and, especially,
[Linß, 2010].

The study of numerical methods for singularly perturbed systems dates back to
the pioneering work of [Bakhvalov, 1969]. See also [Shishkin, 1995].
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Coupled systems

The following formulation of a general system of ` > 2 singularly perturbed
problems is presented by [Linß and Stynes, 2009] as

−diag(ε)∆u−A · ∇u+ Bu = f in Ω, u|∂Ω = g,

where

ε = (ε1, ε2, . . . , ε`)
T is a set of perturbation parameters,

A = (A1,A2), and A1, A2 and B are matrix-valued functions.

f and g are vector-valued functions.
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Coupled systems

−diag(ε)∆u−A · ∇u+ Bu = f in Ω, u|∂Ω = g.

Classification [Linß and Stynes, 2009]

(i) Reaction-diffusion: −diag(ε)∆u+ Bu = f .

(ii) Weakly coupled convection-reaction-diffusion:
−diag(ε)∆u+ diag(a) · ∇u+ Bu = f .

(iii) Strongly coupled convection-reaction-diffusion:
−diag(ε)∆u+A · ∇u+ Bu = f .

“Each subclass has its own peculiarities”.

We will focus on the simplest setting: reaction-diffusion problems with
Ω = (0, 1). Also, we’ll begin with ` = 2.
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Coupled systems

Example (A coupled system of reaction-diffusion equations)

−

(
ε1 0
0 ε2

)2

u ′′ + B(x)u = f on (0, 1), with u(0) = u(1) = 0.

In spite of its simplicity, there is much that can be learned from this problem,
which itself is often reduced to three sub-classes:

(a) ε1 = ε2 � 1 (The single parameter problem)

(b) ε1 � ε2 = 1 (One small parameter)

(c) ε1 � ε2 � 1 (Two small parameters)

Case (a), i.e., the single parameter problem, is the least interesting. Under
reasonable assumptions on B, most techniques (numerical and mathematical)
for uncoupled problems extend directly to this case.

Nonetheless, the single parameter problem can be a good starting point,
particularly for larger systems.
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Coupled systems Case (b): ε1 � ε2 = 1

Example (Case (b): ε1 � ε2 = 1)

−

(
10−2 0

0 1

)2

u ′′+

(
2 −1
−1 2

)
u =

(
2 − x
1 + ex

)
on (0, 1), with u(0) = u(1) = 0.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

u
1

u
2

The component u1 features
(strong) layers, of width O(ε).

u2 features “weak” layers: u ′
2

and u ′′
2 are bounded

independent of ε, but u ′′′
2 is

not.
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Coupled systems Case (c): ε1 � ε2 � 1

This is the most interesting case, since solutions possess multiple, interacting
layers.

Example (Case (b): ε1 � ε2 � 1)

−

(
10−4 0

0 10−2

)2

u ′′+

(
2 −1
−1 2

)
u =

(
2 − x
1 + ex

)
on (0, 1), u(0) = u(1) = 0.
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Both components clearly
features layers of width O(ε2).

u1 also features a layer of
width O(ε1).

Much of the mathematical
interest/difficulty comes from
the multi-scale behaviour.
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A system of two equations

The model problem (again)

Lu :=

(
−ε2 d2

dx2 0

0 −µ2 d2

dx2

)
u+ Bu = f , on Ω = (0, 1),

where

B =

(
b11(x) b12(x)
b21(x) b22(x)

)
, f(x) =

(
f1(x)
f2(x)

)
,

We shall assume, for now, that, for all x ∈ Ω,

bij(x)

{
> 0 i = j

6 0 i 6= j
and

∑
j

bij > β
2 > 0,

for some β > 0.

We shall see that

The numerical scheme for the uncoupled problem generalises in the
obvious way;

The numerical analysis requires more care.
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The FDM and layer-adapted (Shishkin) mesh

Mesh: 0 = x0 < x1 < · · · < xN = 1

Step sizes: hi = xi − xi−1

Discretization:

LNU :=

{
−ε2 (δ2U1)i + b11,1U1,i + b12,iU2,i = f1,i

−µ2 (δ2U2)i + b21,1U1,i + b22,iU2,i = f2,i

U1,0 = U1,N = U2,0 = U2,N = 0.

where (
δ2v
)
i
=

2

hi+1 + hi

(
vi+1 − vi
hi+1

−
vi − vi−1

hi

)
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The FDM and layer-adapted (Shishkin) mesh

Mesh Transition Points, always assuming ε 6 µ:

τµ = min

{
1

4
, 2
µ

β
lnN

}
,

τε = min

{
1

8
,
τµ

2
, 2
ε

β
lnN

}
.
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The FDM and layer-adapted (Shishkin) mesh

Numerical results demonstrate that the scheme is robust, in the maximum
norm.

ε 128 256 512 1024 2048
10−2 5.69e-02 1.96e-02 6.29e-03 1.96e-03 5.94e-04
10−3 6.17e-02 1.95e-02 6.28e-03 1.96e-03 5.94e-04
10−4 8.88e-02 3.28e-02 1.14e-02 3.71e-03 1.16e-03
10−5 8.88e-02 3.28e-02 1.14e-02 3.71e-03 1.16e-03
10−6 8.88e-02 3.28e-02 1.14e-02 3.71e-03 1.16e-03
10−7 9.01e-02 3.13e-02 1.01e-02 3.10e-03 9.24e-04
10−8 9.02e-02 3.13e-02 1.01e-02 3.10e-03 9.24e-04
10−9 9.02e-02 3.13e-02 1.01e-02 3.10e-03 9.24e-04
10−10 9.02e-02 3.13e-02 1.01e-02 3.10e-03 9.24e-04
EN 9.02e-02 3.13e-02 1.01e-02 3.10e-03 9.24e-04
p 1.46 1.52 1.62 1.68 1.72
C 62.8 69.9 76.8 81.0 83.6
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Analysis

That’s all very well in practice... but how does it work in theory?

We’ll outline techniques to proving that the method is robust. Again this
depends on

A solution decomposition, and sharp pointwise bounds on components of
the decomposition.

Maximum Principles+Barrier Functions.

Bored?

1. Show that the operators L and LN satisfy maximum principles.

2. Can you generalise your proof with weaker assumptions on B?

3. Can you generalise your proof to systems on ` equations?
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Analysis Solution decomposition

Construct problems with solutions that represent the “smooth” and
“layer-parts” of the solution separately:

Let
u = v + w,

where v is the solution to the problem

Lv = f on Ω, v = B−1f on ∂Ω (smooth part),

and w is the solution to the problem

Lw = 0 on Ω, w = u− v on ∂Ω (singular part).

Then it can be shown that, for k = 0, 1, 2, 3,

‖v (k)
1 ‖ 6 C(1 + ε(2−k)) and ‖v (k)

2 ‖ 6 C(1 + µ(2−k)).
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Analysis Solution decomposition

And if we define

Bε(x) = exp(−xβ/ε) + exp((x− 1)β/ε),

Bµ(x) = exp(−xβ/µ) + exp((x− 1)β/µ).

Then, for example,

|w1(x)| 6 CBµ(x), |w2(x)| 6 CBµ(x),

|w ′
1(x)| 6 C

(
ε−1Bε(x) + µ

−1Bµ(x)
)
, |w ′

2(x)| 6 Cµ
−1Bµ(x)

|w ′′
1 (x)| 6 C

(
ε−2Bε(x) + µ

−2Bµ(x)
)
, |w ′′

2 (x)| 6 Cµ
−2Bµ(x)

|w ′′′
1 (x)| 6 C

(
ε−3Bε(x) + µ

−3Bµ(x)
)
, |w ′′′

2 (x)| 6 C
(
ε−1µ−2Bε(x) + µ

−3Bµ(x)
)
.

This last term is the most complicated/tedious to deal with, since it mixes
terms with two scales: it requires a further decomposition.
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Analysis Further decomposition

If ε = µ, nothing further is needed. So take ε < µ. The decompose w as

w1(x) = w1,ε(x) +w1,µ(x), w2(x) = w2,ε(x) +w2,µ(x),

where

|w ′′
1,ε(x)| 6 Cε

−2Bε(x), |w ′′
2,ε(x)| 6 Cµ

−2Bε(x),

|w ′′′
1,µ(x)| 6 Cµ

−3Bµ(x), |w ′′′
2,µ(x)| 6 Cµ

−3Bµ(x).

“Proof”: this construction then relies on several ideas, including that there is a
point x? ∈ (0, 1/2) where ε−3Bε(x

?) = µ−3Bµ(x
?).
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Analysis Further decomposition

The remaining key ideas for the analysis include:

Constructing barrier functions piecewise on (0, x?), (x?, 1 − x?), (1 − x?) to
complete the decomposition.

Because derivatives of the “regular” component, v, do not depend badly
on ε and µ we can apply standard analysis.

In the regions [0, τε] and [τε, τµ], the mesh is sufficiently fine to analyse
the appropriately decomposed solution of the “layer” component, w.

In [τµ, 1 − τµ], the layer part has decayed so that |w| 6 CN−2.
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Extension to larger systems

We will now consider how the methods and analysis can be extended to larger
systems of ` > 2 equations, and focus on two issues

1. establishing stability of the continuous and discrete operators;

2. constructing a mesh when the solution has numerous overlapping layers.
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Extension to larger systems Stability

Example (Recall our example from the start of this section)

−(10−4)2u ′′
1 + 2u1 − u2 = 2 − x u1(0) = u1(1) = 0

−(10−2)2u ′′
2 − u1 + 2u2 = 1 + ex u2(0) = u2(1) = 0
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Extension to larger systems Stability

Now let’s consider what happens when we violate the assumption that b12 and
b21 are non-positive.

Example (Now let’s change the reaction coefficients)

−(10−4)2u ′′
1 + 2u1 + u2 = 2 − x u1(0) = u1(1) = 0

−(10−2)2u ′′
2 + u1 + 2u2 = 1 + ex u2(0) = u2(1) = 0
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Even though the right-hand sides of
the equations are positive, we
obtain negative solutions. So the
associated differential operator does
not satisfy a maximum principle.

However, the solution remains
stable.

GIAN Workshop: Theory & Computation of SPDEs, Dec 2017: §4 Coupled Systems 21/33



Extension to larger systems Stability

Next, let’s violate the assumption that b11 + b12 and b21 + b22 bounded away
from zero.

Example (Now let’s change the reaction coefficients)

−(10−4)2u ′′
1 + u1 − u2 = 2 − x u1(0) = u1(1) = 0

−(10−2)2u ′′
2 − u1 + u2 = 1 + ex u2(0) = u2(1) = 0
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It appears that this operator is not
(ε,µ)-stable.
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Extension to larger systems Stability

To examine this further, we return to the general problem

Lu := −diag(ε)∆u+ Bu = f in Ω, u|∂Ω = 0, (1)

ε = (ε1, ε2, . . . , ε`)
T is a set of perturbation parameters; for simplicity of

the presentation we assume that

ε1 6 ε2 6 · · · 6 ε`. (2)

B is a matrix-valued function, and f is a vector-valued function.

Let us assume that there is αi > 0 such that

bii(x) > α
2
i > 0; (3a)

and that there are βi > 0 such that

β2
i = max

Ω̄

{
bii(x)

−1
∑
j 6=i

|bij(x)|
}

, (3b)

and furthermore that

β1β2 < 1 if ` = 2 and max
i
βi < 1 otherwise. (3c)
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Extension to larger systems Stability

Define
Liu := −ε2

iu
′′
i + biiui.

This (uncoupled) operator satisfies a Maximum Principle since the bii > 0. To
extend this to a system:

Define a sequence of vector-valued functions u[k] for k = 0, 1, 2, . . . as follows:
let u[0] = 0 and for k = 1, 2, . . . , let u[k] satisfy

Liu
[k]
i = fi −

∑
j6=i

biju
[k−1]
j on Ω, u

[k]
i (x) = 0 on ∂Ω.

Then limk→∞ u[k] = u.
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Extension to larger systems Stability

If we now make the further assumption that

bij 6 0 for i 6= j,

then

Lemma (Maximum Principle for systems)

If Lv > 0 on Ω then v > 0 on Ω̄.

Proof.

The uncoupled operators satisfy a maximum principle.
And the right-hand side of each equation at each iteration is always
non-negative. So...
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Extension to larger systems Solution decomposition

Now we construct a decomposition u = v+w of the solution of the system of
equations (1), where, as before

v is the regular solution component

w represents the boundary layers.

Define κ = κ(ζ) > 0 by

κ2 := min
i
(1 − βi)min

k
αk.

For arbitrary ε set

Bε(x) := e−κx/ε + e−κ(1−x)/ε.

The solution decomposition is defined as follows. Let v and w be the solutions
of the boundary value problems

Lv = f in (0, 1), v(0) = B(0)−1f(0), v(1) = B(1)−1f(1), (4a)

and

Lw = 0 in (0, 1), w(0) = −v(0), w(1) = −v(1). (4b)
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Extension to larger systems Solution decomposition

Theorem ([Linß and Madden, 2009])

Let B and f be twice continuously differentiable. Then the solution v and w

of (4) satisfy∥∥v(k)i ∥∥ 6 C
(
1 + ε2−k

i

)
, for k = 0, 1, . . . , 4, i = 1, . . . , `, (5a)∣∣w(k)

i (x)
∣∣ 6 C ∑̀

m=i

ε−km Bεm(x) for k = 0, 1, 2, i = 1, . . . , `, (5b)

and

∣∣w(k)
i (x)

∣∣ 6 Cε2−k
i

∑̀
m=1

ε−2
m Bεm(x) for k = 3, 4, i = 1, . . . , `. (5c)

We won’t consider how to derive these bounds, but they give us some sense as
to how to construct a suitable mesh.
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Some meshes Shishkin meshes

We first look at the generalisation of the Shishkin mesh from earlier. Recall that
this is a piecewise uniform mesh, adapted to the layer structure of the problem.

Let N be divisible by 2(`+ 1).

Let σ > 0 be arbitrary.

Fix mesh transition points τk as follows

τ`+1 = 1/2, τk = min

{
kτk+1

k+ 1
,
σεk

κ
lnN

}
, k = `, . . . , 1.

Then the mesh is obtained by dividing each of the intervals [τk, τk+1] and
[1 − τk+1, 1 − τk], k = 0, . . . , `, into N/(2`+ 2) subintervals of equal length.

Here σ relates to the formal order of the underlying discretization. For our
finite difference scheme, σ > 2. Then

‖U− u‖Ω̄N 6 CN−2 ln2N.
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Some meshes Equidistribution meshes

In practice, it can be easier to define the mesh in a way that is related to the
pointwise bounds on the solution decomposition.

The most immediate way of doing this is to chose the mesh points such that∫xk
0

ME(t)dt = C
k

N

∫ 1

0

ME(t)dt with ME(t) := 1 +
∑̀
m=1

ε−1
m B2εm(t),

i.e., the mesh equidistributes the monitor functions ME. It can then be shown
that

‖U− u‖Ω̄N 6 CN−2.

That is, we can remove the spoiling logarithmic term associated with the
Shishkin mesh.

However, constructing this mesh exactly requires that a nonlinear equation be
solved for each mesh point xi.

However, an approximate solution can be computed using a few iterations.
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Some meshes Bakhvalov meshes

Bakhvalov meshes [Bakhvalov, 1969] can be considered as equidistributing the
non-smooth monitor function

MB(t) := max

{
1,
q1

ε1
e−κt/σε1 ,

q1

ε1
e−κ(1−t)/σε1 , . . . ,

q`

ε`
e−κt/σε` ,

q`

ε`
e−κ(1−t)/σε`

}
with positive user chosen constants σ and qm. For this mesh explicit formulae
for the mesh points can be derived.

If σ > 2 then

‖U− u‖Ω̄N 6 CN−2,
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Numerical Example

Example

−ε2
1u

′′
1 + 3u1 + (1 − x)(u2 − u3) = e

x, u1(0) = u1(1) = 0,

−ε2
2u

′′
2 + 2u1 + (4 + x)u2 − u3 = cos x, u2(0) = u2(1) = 0,

−ε2
3u

′′
3 + 2u1 + 3u3 = 1 + x2, u3(0) = u3(1) = 0.

Shishkin mesh Bakhvalov mesh equidistr. mesh
N ηN pN ηN ρN ηN ρN

8 · 23 4.895e-02 1.22 4.910e-03 2.08 4.892e-03 2.20
8 · 24 2.276e-02 1.50 1.157e-03 2.05 1.062e-03 1.90
8 · 25 8.854e-03 1.67 2.790e-04 2.04 2.851e-04 2.01
8 · 26 3.091e-03 1.77 6.771e-05 2.01 7.061e-05 2.00
8 · 27 1.014e-03 1.83 1.676e-05 2.00 1.770e-05 2.00
8 · 28 3.201e-04 1.88 4.179e-06 2.00 4.423e-06 2.00
8 · 29 9.831e-05 1.91 1.044e-06 2.00 1.106e-06 2.00
8 · 210 2.955e-05 1.94 2.610e-07 2.00 2.764e-07 2.00
8 · 211 8.725e-06 1.96 6.527e-08 2.00 6.910e-08 2.00
8 · 212 2.537e-06 — 1.632e-08 — 1.728e-08 —
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