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Outline

Monday, 4 December
09:30 – 10.30 Registration and Inauguration
10:45 – 11.45 1. Introduction to singularly perturbed problems NM
12:00 – 13:00 2. Numerical methods and uniform convergence NM
14:30 – 15:30 Tutorial (Convection diffusion problems) NM
15:30 – 16:30 Lab 1 (Simple FEMs in MATLAB) NM

Tuesday, 5 December
09:30 – 10:30 3. Finite difference methods and their analyses NM
10:45 – 11:45 4. Coupled systems of SPPDEs NM
14:00 – 16:00 Lab 2 (Fitted mesh methods for ODEs) NM

Thursday, 7 December
09:00 – 10:00 8. Singularly perturbed elliptic PDEs NM
10:15 – 11:15 9. Finite Elements in two and three dimensions NM
01:15 – 15:15 Lab 4 (Singularly perturbed PDEs) NM

Friday, 8 December
09:00 – 10:00 10. Preconditioning for SPPs NM
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§8. Singular Perturbed Elliptic Problems

(≈ 1 hour)

In this section we will study the
robust solution, by a finite
difference method, of PDEs of the
form

−ε2∆u+bu = f on Ω := (0, 1)d.

The focus is on d = 2, but many of
the ideas for d = 3 are similar,
which will be mentioned in the next
section.

1 A 2D, SP, reaction-diffusion
equation

2 Solution decomposition
The domain
Compatibility conditions
Extended domain
The regular component
Edge components
Corner components

3 Discretization
The FEM
A piecewise uniform
(“Shishkin”) mesh

4 Analysis (regular part only)
5 References
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Primary references

The key reference for this presentation is [Clavero et al., 2005]. From
that, the most important component is the solution decomposition,
which itself was first established by [Shishkin, 1992]. The compatibility
conditions provided by [Han and Kellogg, 1990] are also vital.

Extensions to coupled systems can be found in [Kellogg et al., 2008a]
and [Kellogg et al., 2008b], and a unified treatment is given in
[Linß, 2010, Chap. 9].

The most general treatment is given in [Shishkin and Shishkina, 2009],
though it is not the easiest book to read.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The references above are mentioned only because they are related to the
this presentation.

There are, of course, many other important papers on the solution of
two-dimensional reaction-diffusion problems...
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A 2D, SP, reaction-diffusion equation

A 2D singularly perturbed problem

−ε2(uxx + uyy) + b(x,y)u = f(x,y), on Ω := (0, 1)2

u = g on ∂Ω.
(1)

Typically, on this domain, solutions feature four “edge” layers that
behave like exp(−x/ε) or exp(−y/ε).

They also have four corner layers, that behave like exp(−(x+ y)/ε).
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Solution decomposition The domain

We’ll denote the corners of the domain c1, . . . , c4, labelled clockwise
from c1 = (0, 0).
The edges are Γ1, . . . , Γ4, labelled clockwise from Γ1 = [0, 1].
u(x,y) = g(x,y) on ∂Ω, and gi is the restriction of g to Γi.

ΩIB ΩBB

ΩBBΩBB

ΩBB

ΩIB

ΩII ΩBIΩBIΓ2

Γ3

Γ4

Γ1

c2 c3

c1 c4
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Solution decomposition Compatibility conditions

From [Han and Kellogg, 1990], we shall assume that f,b ∈ C2,α(Ω̄), the
gi ∈ C4,α([0, 1]) and that we have compatibility conditions at each
corner. For example, at c1 = (0, 0), these are

g1 = g2, (2a)

−ε2
( ∂2

∂x2
g1 +

∂2

∂y2
g2

)
+ bg1 = f, 1 (2b)

∂2

∂x2

(
− ε2 ∂

2

∂x2
g1 + bg1 − f

)
=
∂2

∂y2

(
− ε2 ∂

2

∂y2
g2 + bg2 − f

)
. (2c)

If u solves (1), and the conditions (2) are satisfied, as well as analogous
ones at the other three corners, then u ∈ C4,α.

1Actually, g1 and g2 are functions of a single variable, x and y respctively, but it
is notationally convienent to express these ordinary derivatives as partial derivaties,
particularly in (2c).
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Solution decomposition Extended domain

One can show that

‖ ∂
(k+j)

∂xk∂yj
u‖ 6 Cε−(k+j), for k, j ∈ N0,k+ j 6 4, (3)

but finer results are needed.

One of the key ideas in proving the
existence of a suitable solution
decomposition for this problem is to
use an extended domain:
Ω? = (−a, 1 + a)2.
Define smooth extensions to b and f
to Ω̄?, denoted b? and f?

respectively. Similarly the extension
of gi to [−a, 1 + a] is g?i . (0, 0) (1, 0)

(1, 1)(0, 1)

Ω

(−a,−a)

(1 +a, 1 +a)
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Solution decomposition The regular component

We will let v? = v?0 + εv?1 , where

v?0 = f?/b?.

v?1 solves
L?v?1 = ∆v?0 on Ω?, v?1 |∂Ω? = 0.

Then v is taken as the solution to

Lv = f on Ω?, v = v? on ∂Ω.

It follows that

‖ ∂
(k+j)

∂xk∂yj
u‖ 6 C(1 + ε−(k+j)), for 0 6 k+ j 6 4. (4)
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Solution decomposition Edge components

Next define a function w1 which is associated with the edge along Γ1.
That is, we would like to construct w1 so that |w1(x,y)| 6 Ce−βy/ε.

Define a new extended domain,
Ω?? = (−a, 1 + a)× (0, 1).
Let w? solve

L??w1 = 0 on Ω??,

w?
1 = u− v on Γ1

w?
1(x, 1) = 0 for x ∈ [−a, 1 + a],

w?
1(−a,y) = 0 for y ∈ [0, 1],

w?
1(1 + a,y) = 0 for y ∈ [0, 1], (0, 0) (1, 0)

(1, 1)(0, 1)

Ω

(−a, 0)

(1 +a, 0)

and whatever conditions are needed on the remaining regions,(
(−a, 0) ∪ (1, 1 + a)

)
× {0}, to ensure that w1 ∈ C4,α(Ω̄??). One can

then show that

|w?
1(x,y)| 6 C

(a+ x

a

)(1 + a− x

1 + a

)
e−βy/ε for (x,y) ∈ Ω̄??.
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Solution decomposition Edge components

Next, define w1 as the solution to

Lw1 = 0 on Ω,

w1 = u− v on Γ1

w1 = 0 on Γ3

w1 = w?
1 on {0, 1}× [0, 1]

Using the previous bound on w?
1 we get

|w1(x,y)| 6 Ce−βy/ε for (x,y) ∈ Ω̄.

So this shows that w1(x,y) decays rapidly away from Γ1, the edge at
y = 1.

It is possible establish analogous bounds for lower derivatives of w (more
about that after coffee...).

Moreover, analogous bounds are possible for:

|w2(x,y)| 6 Ce−βx/ε |w3(x,y)| 6 Ce−β(1−y)/ε

|w4(x,y)| 6 Ce−β(1−x)/ε
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Solution decomposition Corner components

Finally, define z1 (the component associated with the corner c1 = (0, 0)),
as the solution to

Lz1 = 0 on Ω,

z1 = −w2 on Γ1

z1 = −w1 on Γ2

z1 = 0 on Γ3 ∪ Γ4

Since we have suitable compatibility conditions, z1 ∈ C4,α. A comparison
principle then gives

|z1(x,y)| 6 Ce−β(x+y)/ε.

There are analogous functions, z2, z3 and z4 associated with the other
corners.
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Solution decomposition Corner components

The decomposition is

u = v+

4∑
i=1

wi +

4∑
i=1

zi.
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Discretization The FEM

We re-use the finite difference method that we employed for 1D
problems, extended in the obvious way.

Let Ω̄Nx and Ω̄Ny be arbitrary meshes with N intervals on [0, 1].

Set Ω̄N = {(xi,yj)}
N
i,j=0 to be the Cartesian product of Ω̄Nx and Ω̄Ny .

Set hi = xi − xi−1 and ki = yi − yi−1 for each i.

Define the standard second-order central difference operators

δ2
xvi,j :=

1

hi

(
vi+1,j − vi,j
hi+1

−
vi,j − vi−1,j

hi

)

δ2
yvi,j :=

1

ki

(
vi,j+1 − vi,j

ki+1
−
vi,j − vi,j−1

ki

)
Define ∆Nvi,j := (δNx + δNy )vi,j.

Then the difference operator is

(LNU)i,j = −ε2∆NUi,j + b(xi,yj)Ui,j, i, j = 1, . . .N− 1.
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Discretization The FEM

To generate a numerical approximation of the solution to (1) solve the
system of (N+ 1)2 linear equations

(LNU)i,j = f(xi,yj) for (xi,yj) ∈ ΩN,

Ui,j = g(xi,yi) for (xi,yj) ∈ ∂ΩN.
(5)

Solving such linear systems is interesting and challenging. It will be the
topic of Lecture 10 tomorrow.

GIAN Workshop: Theory & Computation of SPDEs, Dec 2017: §8 Singularly Perturbed PDEs 15/23



Discretization A piecewise uniform (“Shishkin”) mesh

Define τε = min

{
1

4
, 2
ε

β
lnN

}
, and construct Ω̄Nx and Ω̄Ny to be

Shishkin meshes as before.
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Discretization A piecewise uniform (“Shishkin”) mesh

For the method and mesh, we would like to prove that

‖u−U‖ΩN 6 C(N−1 lnN)2.

However, we shall show some restraint, and prove the easiest part of this:
for the regular part.

But we will at least focus on how, without greatly complicating the
analysis, we may show almost second-order convergence, compared to the
first-order convergence we obtained for the scalar problem.

That is, assume there exists a decomposition of the discrete solution U:

U = V +

4∑
i=1

Wi +

4∑
i=1

Zi.

We will just estimate ‖v− V‖Ω̄N . The idea used is originally from
[Miller et al., 1998], though the version given here is exactly from
[Clavero et al., 2005].
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Analysis (regular part only)

We need only a bound for the truncation error. Standard arguments give

|LN(U−u)(xi,yj)| 6

{
Cε2

(
h̄i‖ ∂

3

∂x3u‖+ k̄j‖ ∂
3

∂y3u‖
)

xi,yj ∈ {τε, 1 − τ}

Cε2
(
h̄2
i‖ ∂

4

∂x4u‖+ k̄2
j‖ ∂

4

∂y4u‖
)

otherwise.

From this

|LN(V − v)(xi,yj)| 6

{
CεN−1 xi,yj ∈ {τε, 1 − τ}

CN−2.

Define the barrier function

Φ(xi,yj) = C
(τε)

2

ε2
N−2

(
Θ(xi) +Θ(yj)

)
+ CN−2,

where Θ is the piecewise linear function interpolating the points{
(0, 0), (τε, 1), (1 − τε, 1), (1, 0)

}
.
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Analysis (regular part only)

Define the barrier function

Φ(xi,yj) = C
(τε)

2

ε2
N−2

(
Θ(xi) +Θ(yj)

)
+ CN−2,

where Θ is the piecewise linear function interpolating the points{
(0, 0), (τε, 1), (1 − τε, 1), (1, 0)

}
.

Then, for example,

δ2
xΘ(x) =

{
−N/τε x ∈ {τε, 1 − τε}

0 otherwise.
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Analysis (regular part only)

It follows directly that

0 6 Φ(xi,yi) 6 CN
−2 ln2N,

and

|LNΦ(xi,yj)| 6

{
CτεN

−1 + (bΦ)(xi,yj) xi,yj ∈ {τε, 1 − τ}

(bΦ)(xi,yj) otherwise.

Application of a maximum principle gives

‖v− V‖Ω̄N 6 CN−2 ln2N.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The remaining analysis for ‖wi −Wi‖Ω̄N and ‖zi − Zi‖Ω̄N is quite
involved, and the details are not presented here.

However, in the next section of this short course, we’ll look at the
analysis of such terms when studying a finite element method.
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