Theory \& Computation of Singularly Perturbed Differential Equations

IIT (BHU) Varanasi, Dec 2017
https://skumarmath.wordpress.com/gian-17/singular-perturbation-problems/ http://www.maths.nuigalway.ie/~niall/TCSPDEs2017
Niall Madden, NUI Galway

§8 Singularly perturbed elliptic PDEs

Handout version.

Outline

Monday, 4 December				
$09: 30-10.30$	Registration and Inauguration	NM		
$10: 45-11: 45$	1. Introduction to singularly perturbed problems			
$12: 00-13: 00$	2. Numerical methods and uniform convergence	NM		
$14: 30-15: 30$	Tutorial (Convection diffusion problems)	NM		
$15: 30-16: 30$	Lab 1 (Simple FEMs in MATLAB)	NM		
Tuesday, 5 December				
$09: 30-10: 30$	3. Finite difference methods and their analyses	NM		
$10: 45-11: 45$	4. Coupled systems of SPPDEs	NM		
$14: 00-16: 00$	Lab 2 (Fitted mesh methods for ODEs)	NM		
Thursday, 7 December				NM
$09: 00-10: 00$	8. Singularly perturbed elliptic PDEs			
$10: 15-11: 15$	9. Finite Elements in two and three dimensions	NM		
$01: 15-15: 15$	Lab 4 (Singularly perturbed PDEs)	NM		
Friday, 8 December				NM

§8. Singular Perturbed Elliptic Problems

(≈ 1 hour)

In this section we will study the robust solution, by a finite difference method, of PDEs of the form

$$
-\varepsilon^{2} \Delta u+b u=f \quad \text { on } \Omega:=(0,1)^{\mathrm{d}} .
$$

The focus is on $d=2$, but many of the ideas for $\mathrm{d}=3$ are similar, which will be mentioned in the next section.

1 A 2D, SP, reaction-diffusion equation
2 Solution decomposition

- The domain
- Compatibility conditions
- Extended domain
- The regular component
- Edge components
- Corner components

3 Discretization

- The FEM
- A piecewise uniform ("Shishkin") mesh
4 Analysis (regular part only)
5 References

Primary references

The key reference for this presentation is [Clavero et al., 2005]. From that, the most important component is the solution decomposition, which itself was first established by [Shishkin, 1992]. The compatibility conditions provided by [Han and Kellogg, 1990] are also vital.
Extensions to coupled systems can be found in [Kellogg et al., 2008a] and [Kellogg et al., 2008b], and a unified treatment is given in [Linß, 2010, Chap. 9].
The most general treatment is given in [Shishkin and Shishkina, 2009], though it is not the easiest book to read.

The references above are mentioned only because they are related to the this presentation.
There are, of course, many other important papers on the solution of two-dimensional reaction-diffusion problems...

A 2D, SP, reaction-diffusion equation

A 2D singularly perturbed problem

$$
\begin{align*}
-\varepsilon^{2}\left(u_{x x}+u_{y y}\right)+b(x, y) u & =f(x, y), \text { on } \Omega:=(0,1)^{2} \tag{1}\\
u & =g \text { on } \partial \Omega .
\end{align*}
$$

- Typically, on this domain, solutions feature four "edge" layers that behave like $\exp (-x / \varepsilon)$ or $\exp (-y / \varepsilon)$.
- They also have four corner layers, that behave like $\exp (-(x+y) / \varepsilon)$.

Solution decomposition

- We'll denote the corners of the domain $\mathrm{c}_{1}, \ldots, \mathrm{c}_{4}$, labelled clockwise from $\mathrm{c}_{1}=(0,0)$.
- The edges are $\Gamma_{1}, \ldots, \Gamma_{4}$, labelled clockwise from $\Gamma_{1}=[0,1]$.
- $u(x, y)=g(x, y)$ on $\partial \Omega$, and g_{i} is the restriction of g to Γ_{i}.

Solution decomposition

Compatibility conditions

From [Han and Kellogg, 1990], we shall assume that $f, b \in \mathcal{C}^{2, \alpha}(\bar{\Omega})$, the $g_{i} \in \mathfrak{C}^{4, \alpha}([0,1])$ and that we have compatibility conditions at each corner. For example, at $\mathrm{c}_{1}=(0,0)$, these are

$$
\begin{gather*}
g_{1}=g_{2}, \tag{2a}\\
-\varepsilon^{2}\left(\frac{\partial^{2}}{\partial x^{2}} g_{1}+\frac{\partial^{2}}{\partial y^{2}} g_{2}\right)+b g_{1}=f,{ }^{1} \tag{2b}\\
\frac{\partial^{2}}{\partial x^{2}}\left(-\varepsilon^{2} \frac{\partial^{2}}{\partial x^{2}} g_{1}+b g_{1}-f\right)=\frac{\partial^{2}}{\partial y^{2}}\left(-\varepsilon^{2} \frac{\partial^{2}}{\partial y^{2}} g_{2}+b g_{2}-f\right) . \tag{2c}
\end{gather*}
$$

If u solves (1), and the conditions (2) are satisfied, as well as analogous ones at the other three corners, then $u \in \mathcal{C}^{4, \alpha}$.

[^0]
Solution decomposition

Extended domain

One can show that

$$
\begin{equation*}
\left\|\frac{\partial^{(k+j)}}{\partial x^{k} \partial y^{j}} u\right\| \leqslant C \varepsilon^{-(k+j)}, \quad \text { for } k, j \in \mathbb{N}_{0}, k+j \leqslant 4 \tag{3}
\end{equation*}
$$

but finer results are needed.

One of the key ideas in proving the existence of a suitable solution decomposition for this problem is to use an extended domain:
$\Omega^{\star}=(-a, 1+a)^{2}$.
Define smooth extensions to b and f to $\bar{\Omega}^{\star}$, denoted b^{\star} and f^{\star} respectively. Similarly the extension of g_{i} to $[-a, 1+a]$ is g_{i}^{\star}.

$(0,1)$	Ω	$(1,1)$

Solution decomposition

We will let $v^{\star}=v_{0}^{\star}+\varepsilon v_{1}^{\star}$, where

- $v_{0}^{\star}=\mathrm{f}^{\star} / \mathrm{b}^{\star}$.
- v_{1}^{\star} solves

$$
\mathcal{L}^{\star} v_{1}^{\star}=\Delta v_{0}^{\star} \quad \text { on } \Omega^{\star},\left.\quad v_{1}^{\star}\right|_{\partial \Omega^{\star}}=0 .
$$

- Then v is taken as the solution to

$$
\mathcal{L} v=\mathrm{f} \quad \text { on } \Omega^{\star}, \quad v=v^{\star} \text { on } \partial \Omega .
$$

It follows that

$$
\begin{equation*}
\left\|\frac{\partial^{(k+j)}}{\partial x^{k} \partial y^{j}} u\right\| \leqslant C\left(1+\varepsilon^{-(k+j)}\right), \quad \text { for } 0 \leqslant k+j \leqslant 4 . \tag{4}
\end{equation*}
$$

Solution decomposition

Edge components

Next define a function w_{1} which is associated with the edge along Γ_{1}.
That is, we would like to construct w_{1} so that $\quad\left|w_{1}(x, y)\right| \leqslant C e^{-\beta y / \varepsilon}$.
Define a new extended domain, $\Omega^{\star \star}=(-a, 1+a) \times(0,1)$.
Let w^{\star} solve

$$
\begin{aligned}
\mathcal{L}^{\star \star} w_{1} & =0 & & \text { on } \Omega^{\star \star}, \\
w_{1}^{\star} & =u-v & & \text { on } \Gamma_{1} \\
w_{1}^{\star}(x, 1) & =0 & & \text { for } x \in[-a, 1+a], \\
w_{1}^{\star}(-a, y) & =0 & & \text { for } y \in[0,1] \\
w_{1}^{\star}(1+a, y) & =0 & & \text { for } y \in[0,1],
\end{aligned}
$$

and whatever conditions are needed on the remaining regions, $((-a, 0) \cup(1,1+a)) \times\{0\}$, to ensure that $w_{1} \in C^{4, \alpha}\left(\bar{\Omega}^{\star \star}\right)$. One can then show that

$$
\left|w_{1}^{\star}(x, y)\right| \leqslant C\left(\frac{a+x}{a}\right)\left(\frac{1+a-x}{1+a}\right) e^{-\beta y / \varepsilon} \quad \text { for }(x, y) \in \bar{\Omega}^{\star \star} .
$$

Solution decomposition

Edge components

Next, define w_{1} as the solution to

$$
\begin{array}{rlrl}
\mathcal{L} w_{1} & =0 & & \text { on } \Omega \\
w_{1} & =u-v \\
w_{1} & =0 & & \text { on } \Gamma_{1} \\
w_{1} & =w_{1}^{\star} & & \text { on } \Gamma_{3} \\
& & \text { on }\{0,1\} \times[0,1]
\end{array}
$$

Using the previous bound on w_{1}^{\star} we get

$$
\left|w_{1}(x, y)\right| \leqslant C e^{-\beta y / \varepsilon} \quad \text { for }(x, y) \in \bar{\Omega} .
$$

So this shows that $w_{1}(x, y)$ decays rapidly away from Γ_{1}, the edge at $y=1$.
It is possible establish analogous bounds for lower derivatives of w (more about that after coffee...).
Moreover, analogous bounds are possible for:

$$
\begin{gathered}
\left|w_{2}(x, y)\right| \leqslant C e^{-\beta x / \varepsilon} \quad\left|w_{3}(x, y)\right| \leqslant C e^{-\beta(1-y) / \varepsilon} \\
\left|w_{4}(x, y)\right| \leqslant C e^{-\beta(1-x) / \varepsilon}
\end{gathered}
$$

Solution decomposition

Finally, define z_{1} (the component associated with the corner $\mathrm{c}_{1}=(0,0)$), as the solution to

$$
\begin{aligned}
\mathcal{L} z_{1} & =0 & & \text { on } \Omega \\
z_{1} & =-w_{2} & & \text { on } \Gamma_{1} \\
z_{1} & =-w_{1} & & \text { on } \Gamma_{2} \\
z_{1} & =0 & & \text { on } \Gamma_{3} \cup \Gamma_{4}
\end{aligned}
$$

Since we have suitable compatibility conditions, $z_{1} \in \mathcal{C}^{4, \alpha}$. A comparison principle then gives

$$
\left|z_{1}(x, y)\right| \leqslant C e^{-\beta(x+y) / \varepsilon}
$$

There are analogous functions, z_{2}, z_{3} and z_{4} associated with the other corners.

Solution decomposition

Corner components

The decomposition is

$$
u=v+\sum_{i=1}^{4} w_{i}+\sum_{i=1}^{4} z_{i}
$$

We re-use the finite difference method that we employed for 1D problems, extended in the obvious way.
Let $\bar{\Omega}_{x}^{N}$ and $\bar{\Omega}_{y}^{N}$ be arbitrary meshes with N intervals on $[0,1]$.
Set $\bar{\Omega}^{N}=\left\{\left(x_{i}, y_{j}\right)\right\}_{i, j=0}^{N}$ to be the Cartesian product of $\bar{\Omega}_{x}^{N}$ and $\bar{\Omega}_{y}^{N}$.
Set $h_{i}=x_{i}-x_{i-1}$ and $k_{i}=y_{i}-y_{i-1}$ for each i.
Define the standard second-order central difference operators

$$
\begin{aligned}
\delta_{x}^{2} v_{i, j} & :=\frac{1}{\overline{\mathrm{~h}}_{i}}\left(\frac{v_{i+1, j}-v_{i, j}}{h_{i+1}}-\frac{v_{i, j}-v_{i-1, j}}{h_{i}}\right) \\
\delta_{y}^{2} v_{i, j} & :=\frac{1}{\bar{k}_{i}}\left(\frac{v_{i, j+1}-v_{i, j}}{k_{i+1}}-\frac{v_{i, j}-v_{i, j-1}}{k_{i}}\right)
\end{aligned}
$$

Define $\Delta^{N} \nu_{i, j}:=\left(\delta_{x}^{N}+\delta_{y}^{N}\right) v_{i, j}$.
Then the difference operator is

$$
\left(L^{N} U\right)_{i, j}=-\varepsilon^{2} \Delta^{N} U_{i, j}+b\left(x_{i}, y_{j}\right) U_{i, j}, \quad i, j=1, \ldots N-1
$$

Discretization

The FEM
To generate a numerical approximation of the solution to (1) solve the system of $(N+1)^{2}$ linear equations

$$
\begin{align*}
\left(L^{N} u\right)_{i, j} & =\mathbf{f}\left(x_{i}, y_{j}\right) & & \text { for }\left(x_{i}, y_{j}\right) \in \Omega^{N}, \\
U_{i, j} & =g\left(x_{i}, y_{i}\right) & & \text { for }\left(x_{i}, y_{j}\right) \in \partial \Omega^{N} . \tag{5}
\end{align*}
$$

Solving such linear systems is interesting and challenging. It will be the topic of Lecture 10 tomorrow.

Discretization

A piecewise uniform ("Shishkin") mesh
Define $\tau_{\varepsilon}=\min \left\{\frac{1}{4}, 2 \frac{\varepsilon}{\beta} \ln N\right\}$, and construct $\bar{\Omega}_{x}^{N}$ and $\bar{\Omega}_{y}^{N}$ to be Shishkin meshes as before.

Discretization

For the method and mesh, we would like to prove that

$$
\|u-u\|_{\Omega^{N}} \leqslant C\left(N^{-1} \ln N\right)^{2} .
$$

However, we shall show some restraint, and prove the easiest part of this: for the regular part.
But we will at least focus on how, without greatly complicating the analysis, we may show almost second-order convergence, compared to the first-order convergence we obtained for the scalar problem.
That is, assume there exists a decomposition of the discrete solution U :

$$
\mathrm{U}=\mathrm{V}+\sum_{i=1}^{4} \mathrm{~W}_{\mathrm{i}}+\sum_{i=1}^{4} \mathrm{Z}_{\mathrm{i}}
$$

We will just estimate $\|v-\mathrm{V}\|_{\bar{\Omega}^{N}}$. The idea used is originally from [Miller et al., 1998], though the version given here is exactly from [Clavero et al., 2005].

Analysis (regular part only)

We need only a bound for the truncation error. Standard arguments give

$$
\left|L^{N}(U-u)\left(x_{i}, y_{j}\right)\right| \leqslant \begin{cases}C \varepsilon^{2}\left(\bar{h}_{i}\left\|\frac{\partial^{3}}{\partial x^{3}} u\right\|+\bar{k}_{j}\left\|\frac{\partial^{3}}{\partial y^{u}} u\right\|\right) & x_{i}, y_{j} \in\left\{\tau_{\varepsilon}, 1-\tau\right\} \\ C \varepsilon^{2}\left(\bar{h}_{i}^{2}\left\|\frac{\partial^{4}}{\partial x^{4}} u\right\|+\bar{k}_{j}^{2}\left\|\frac{\partial^{4}}{\partial y^{4}} u\right\|\right) & \text { otherwise. }\end{cases}
$$

From this

$$
\left|L^{N}(V-v)\left(x_{i}, y_{j}\right)\right| \leqslant\left\{\begin{array}{l}
C \varepsilon N^{-1} \\
C N^{-2}
\end{array} \quad x_{i}, y_{j} \in\left\{\tau_{\varepsilon}, 1-\tau\right\}\right.
$$

Define the barrier function

$$
\Phi\left(x_{i}, y_{j}\right)=C \frac{\left(\tau_{\varepsilon}\right)^{2}}{\varepsilon^{2}} \mathrm{~N}^{-2}\left(\Theta\left(x_{i}\right)+\Theta\left(y_{j}\right)\right)+\mathrm{CN}^{-2}
$$

where Θ is the piecewise linear function interpolating the points

$$
\left\{(0,0),\left(\tau_{\varepsilon}, 1\right),\left(1-\tau_{\varepsilon}, 1\right),(1,0)\right\} .
$$

Analysis (regular part only)

Define the barrier function

$$
\Phi\left(x_{i}, y_{j}\right)=C \frac{\left(\tau_{\varepsilon}\right)^{2}}{\varepsilon^{2}} N^{-2}\left(\Theta\left(x_{i}\right)+\Theta\left(y_{j}\right)\right)+C N^{-2}
$$

where Θ is the piecewise linear function interpolating the points

$$
\left\{(0,0),\left(\tau_{\varepsilon}, 1\right),\left(1-\tau_{\varepsilon}, 1\right),(1,0)\right\} .
$$

Then, for example,

$$
\delta_{x}^{2} \Theta(x)= \begin{cases}-\mathrm{N} / \tau_{\varepsilon} & x \in\left\{\tau_{\varepsilon}, 1-\tau_{\varepsilon}\right\} \\ 0 & \text { otherwise } .\end{cases}
$$

Analysis (regular part only)

It follows directly that

$$
0 \leqslant \Phi\left(x_{i}, y_{i}\right) \leqslant C N^{-2} \ln ^{2} N,
$$

and

$$
\left|L^{N} \Phi\left(x_{i}, y_{j}\right)\right| \leqslant \begin{cases}C \tau_{\varepsilon} N^{-1}+(b \Phi)\left(x_{i}, y_{j}\right) & x_{i}, y_{j} \in\left\{\tau_{\varepsilon}, 1-\tau\right\} \\ (b \Phi)\left(x_{i}, y_{j}\right) & \text { otherwise. }\end{cases}
$$

Application of a maximum principle gives

$$
\|v-\mathrm{V}\|_{\bar{\Omega}^{N}} \leqslant \mathrm{CN}^{-2} \ln ^{2} \mathrm{~N} .
$$

The remaining analysis for $\left\|w_{i}-W_{i}\right\|_{\bar{\Omega}^{N}}$ and $\left\|z_{i}-Z_{i}\right\|_{\bar{\Omega}^{N}}$ is quite involved, and the details are not presented here.
However, in the next section of this short course, we'll look at the analysis of such terms when studying a finite element method.

References

R Clavero, C., Gracia, J. L., and O'Riordan, E. (2005).
A parameter robust numerical method for a two dimensional reaction-diffusion problem.
Math. Comp., 74(252):1743-1758.
E
Han, H. and Kellogg, R. B. (1990).
Differentiability properties of solutions of the equation $-\epsilon^{2} \Delta u+r u=f(x, y)$ in a square.
SIAM J. Math. Anal., 21(2):394-408.
R
Kellogg, R., Madden, N., and Stynes, M. (2008a).
A parameter-robust numerical method for a system of reaction-diffusion equations in two dimensions.
Numer. Methods Partial Differ. Equations, 24(1):312-334.

References

囯 Kellogg, R. B., Linss, T., and Stynes, M. (2008b).
A finite difference method on layer-adapted meshes for an elliptic reaction-diffusion system in two dimensions.
Math. Comp., 77(264):2085-2096.
(inB, T. (2010).
Layer-adapted meshes for reaction-convection-diffusion problems, volume 1985 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin.
睩 Miller, J. J. H., O'Riordan, E., Shishkin, G. I., and Shishkina, L. P. (1998).
Fitted mesh methods for problems with parabolic boundary layers.
Math. Proc. R. Ir. Acad., 98A(2):173-190.

References

Shishkin, G. I. (1992).
Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations.
Russian Academy of Sciences, Ural Section, Ekaterinburg.
In Russian.
R
Shishkin, G. I. and Shishkina, L. P. (2009).
Difference methods for singular perturbation problems, volume 140 of Chapman \& Hall/CRC Monographs and Surveys in Pure and Applied Mathematics.

CRC Press, Boca Raton, FL.

[^0]: ${ }^{1}$ Actually, g_{1} and g_{2} are functions of a single variable, x and y respctively, but it is notationally convienent to express these ordinary derivatives as partial derivaties, particularly in (2c).

