Lab 1: Finite difference methods on uniform meshes
 Niall Madden (Niall.Madden@NUIGalway.ie)

1 Boundary value problems

The general form a second-order, two point, linear BVP is

$$
\begin{gathered}
-u^{\prime \prime}(x)+a(x) u^{\prime}(x)+b(x) u(x)=f(x) \quad 0<x<1 \\
u(0)=\alpha, \quad u(1)=\beta .
\end{gathered}
$$

There are built-in functions for solving these, but we'll look at how to solve them using our own finite difference method.

1.1 The algorithm

- Choose N, the number of mesh intervals
- Set up a set of $N+1$ equally spaced points:

$$
0=x_{0}<x_{1}<x_{2}<x_{3} \cdots<x_{n-1}<x_{n}=1
$$

- Construct A, a $(N+1) \times(N+1)$ matrix of zeros, except for
$-A_{1,1}=1$
- For $i=2,3, \ldots, N$

$$
\begin{aligned}
& \quad A_{i, j}= \begin{cases}-1 / h^{2} & \mathfrak{j}=\mathfrak{i}-1 \\
2 / h^{2}+b_{k} & \mathfrak{j}=\mathfrak{i} \\
-1 / h^{2} & \mathfrak{j}=\mathfrak{i}+1 \\
0 & \text { otherwise. }\end{cases} \\
& -A_{N, N+1}=1
\end{aligned}
$$

In MATLAB this could be implemented as

```
A(1,1) = 1;
for i=2:N
    A(i, i - 1) = - 1/h ^ 2;
    A(i,i) = 2/h^2 +r(x(i));
    A(i,i+1) = - 1/h^^2;
end
A(N+1,N+1)=1;
```

(We would not do this in practice: it is very slow).

- Solve the linear system: $u=A \backslash B$ where $B(i)=f(x(i))$.

Download the script FiniteDifference.m from http:// Www.maths.nuigalway.ie/~niall/TCSPDEs2017/and try it out.
Consider the problem:

$$
\begin{equation*}
-u^{\prime \prime}(x)+u(x)=1+x \text { on }(0,1) \tag{1a}
\end{equation*}
$$

$$
\begin{equation*}
u(0)=u(1)=0 \tag{1b}
\end{equation*}
$$

The solution to this is

$$
u(x)=1+x-\left(e^{-x}\left(e^{2}-2 e\right)+e^{x}(2 e-1)\right) /\left(e^{2}-1\right) .
$$

Use this to test the code. In particular, does the error tend to zero as $N \rightarrow \infty$? If so, how rapidly? (These two questions can also be rephrased as "Does the method converge? If so, how quickly?)

1.2 The Profiler

This is not a good way to construct a linear system. Whenever you write a MATLAB program, particularly for solving differential equations, you should use the profiler to find any bottle-necks in the code.
If most of the time is not spent solving the linear system, then there is a problem.
Another simple method for code-timing are the tic and toc functions.

1.3 Some Optimisations

To improve, and speed up this code, initialise the matrix A and vector b :
$A=\operatorname{zeros}(N+1, N+1) ; \quad b=z e r o s(N+1,1)$
However, the real improvement is to avoid using loops to initialise matrices or vectors.
For vectors, this is easy:
$\mathrm{b}=$ [alpha; $\mathrm{r}(\mathrm{x}(2: \mathrm{N}))$; beta];
For Matrices, we need sparse matrices. To initialise:
A $=\operatorname{sparse}(N+1, N+1)$;
However, the best way to use it is as:
S = sparse(i,j,s)
which sets $S(i(k), j(k))=s(k)$. This can be used as follows:

```
A = sparse(2:N, 1:N-1, -1/h^2) + ...
    sparse(2:N, 2:N, 2/h^2+r(x(2:N))) + ...
        sparse(2:N, 3:N+1, -1/h^2);
```


2 Exercises

1. Change the equation in (1a) to include a non-zero convective term (if you like, remove the reaction term entirely, i.e., set $b=0$).
2. Produce a program like that above that solves this method using standard central differences. Verify that the solution is oscillatory.
3. Now ally upwinding. Verify the order of convergence.
