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Abstract

It will be shown how parameter-robust numerical methods can be used to solve equations that arise in

the modelling of wave-current interactions. Two such models are presented: a complete flow model for

wave-current interaction in the presence of weakly turbulent flow leading to an Orr-Sommerfeld type

problem and a system of two singularly perturbed reaction-diffusion equations from a k-ε turbulence

model. The numerical results are compared with experimental data.

1. Introduction

Parameter-robust numerical methods are of significant interest in modern numerical analysis: they yield

accurate, layer-resolved, computed solutions to singularly perturbed differential equations. Importantly,

their accuracy is independent of the singular perturbation parameter and thus the width of the boundary

layers.

Many of these methods are mesh based. That is, they use the same discretizations as one would

use for a classical problem whose solution does not exhibit layers. Instead of modifying the scheme to

stabilize it, a mesh tailored to the specific problem is used. In this study we employ the a priori fitted

piecewise-uniform meshes of Shishkin, as described in [9].

A complete flow model for the interaction of waves and currents leads to a variant on the fourth-order

Orr-Sommerfeld equation, and is described in §2. A crucial component of the model is a depth-varying

eddy viscosity distribution. For a given current profile, this is computed using a two-equation turbulence

model described in §4.
Since the models generate the function that establishes the width of the boundary layers, it is appro-

priate to use a numerical method whose accuracy is independent of the layer width.

2. A complete flow model

The physical system consists of regular waves of frequency ω and local amplitude a propagating along a

channel of uniform depth d. It is usual to take the origin of the co-ordinate system to lie in the mean

water level, with the positive x-axis aligned with the direction of wave propagation and z is measured

positive in a vertically upwards direction. Boundary conditions are imposed at the mean free surface

z = 0 and at the channel bed z = −d.
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z = η(x, t)

a (wave amplitude)

(surface elevation)

A steady current U(z) is also present; it is

also assumed to flow in the x-direction but

may possess vertical variation. This repre-

sents the horizontal velocity of a fluid par-

ticle in the absence of waves; if waves are

present, the current denotes the horizontal

velocity averaged over a wave cycle. No

distinction is made between components

in the current due to externally-imposed

flows and the mean flow induced by the

wave motion. In the accompanying dia-

gram, U(z) is shown acting in the same

direction as the waves and is then called

a wave-following current. Alternatively,

we may consider a wave-opposing current.

It is assumed that U(z) is known and so

is said to be of reactive type [7]. Some

models attempt to predict U(z), these are

sometimes referred to as generative [1, 2]).

Three important assumptions are made to enable the construction of a suitable model. Firstly, the

slope of the waves is considered to be small and that a good approximation to the wavelike motion can

be obtained by consideration of only the first-order sinusoidal terms. Secondly, the fluid temperature is

considered to be uniform, so that the molecular viscosity ν is uniform throughout the flow. Thirdly, a

key aspect of the model we present here is the use of an eddy viscosity distribution to model the turbulent

characteristics of the flow. The Boussinesq eddy viscosity concept assumes that there is an analogy

between turbulence stress and viscous stresses in laminar flow. For our purposes it can be taken to mean

that there is a depth-varying non-negative quantity, the (kinematic) eddy viscosity νt(z), that mimics the

dynamic behaviour of the kinematic molecular viscosity ν. Therefore the model (1–5) below is formulated

so that the term ν is augmented by νt(z).

The local wave amplitude a and frequency ω are taken as known and used as inputs to the model, in

addition to the current field U(z). The intended outputs are the complex wavenumber k and the wavelike

velocity fields. It is straightforward to interpret the real and imaginary parts of k: the real part linked

to the wavenumber λ and the imaginary part determines the spatial wave decay due to dissipation.

Due to the interaction of waves with the steady current, both the total horizontal and vertical velocities

of a particle, uT (x, z, t) and wT (x, z, t), do indeed vary with time. These can be written as

uT (x, z, t) = U(z) + uw(x, z, t), wT (x, z, t) = ww(x, z, t),

where the time average, per wave cycle, of terms with a w-subscript is zero. It is usual to introduce a

stream-function Ψ(x, z, t), which is related to the wavelike velocity components by

uw(z) =
∂Ψ

∂z
, ww(z) = −

∂Ψ

∂x
.

As we intend to compute approximations to the first order velocity components only, it is justifiable

to assume that Ψ(x, z, t) is of the form

Ψ(x, z, t) = <{ψ(z) exp(iθ)} ,

where θ = kx− ωt is the phase function and <{·} denotes the real part of a complex number.
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The differential equation that must be solved for ψ and k is the fourth-order boundary-value problem

− iν

ω − kU

(

d2

dz2
− k2

)2

ψ +
dψ2

dz2
−
(

k2 − k

ω − kU
d2U

dz2

)

ψ =

i

ω − kU

{(

d2

dz2
+ k2

){

νt

(

d2

dz2
+ k2

)

ψ

}

− 4k2 d

dz

(

νt
dψ

dz

)}

on Ω := (−d, 0), (1)

subject to the bottom boundary conditions

ψ = 0,
dψ

dz
= 0, on z = −d. (2)

The three free surface (z = 0) conditions are

ψ = a
(ω

k
− U

)

, (3)

(ν + νt)
d2ψ

dz2
= −a

(

(ν + νt)
d2U

dz2
+

dνt
dz

dU

dz
+ k(ν + νt)(ω − kU)

)

, (4)

and

i(ν + νt)
d3ψ

dz3
+ i

dνt
dz

d2ψ

dz2
−
{

ω − kU + 3ik2(ν + νt)
} dψ

dz
= a

(

(ω − kU)

{

dU

dz
− ikdνt

dz

}

− gk
)

. (5)

3. Numerical Solution of the Orr-Sommerfeld Equations

The equation (1) is singularly perturbed because the quantity i(ν + νt(z))/(ω − κU) that multiplies the

highest-order derivative ψ(4)(z) is small in magnitude. One of the consequences of this is that the second

derivative of the solution at the bottom boundary (z = −d) will be large.

A similar problem, though real-valued and linear, was studied by Sun and Stynes [12]. They showed

how to construct a piecewise uniform mesh on which one can apply a finite element method. The solution

of the discrete problem converges to the continuous solution as the number of mesh points increases, and

this convergence is independent of the magnitude of the coefficient of the highest-order derivative.

Our finite element formulation is based on the sesquilinear form

B(ν+νt)
(u, v) := ((ν + νt)u

′′, v′′) + k2 ((ν + νt)u, v
′′) + 4k2 ((ν + νt)u

′, v′)

+ ([i(ω − kU) + k2(ν + νt)]u
′′, v) +

([

ikU ′′ − ik2(ω − kU) + k4(ν + νt)
]

u, v
)

, (6)

for all u, v ∈ H2
? (Ω), where H

2
? (Ω) is a subspace of H2(Ω) chosen so that functions belonging to it satisfy

the boundary conditions (2)–(3).

We seek not only an approximation of ψ(z) but also an approximation of ψ′(z) from which to predict

the vertical component w(z) of the flow velocity. Thus it is natural to choose piecewise cubic Hermite

basis functions, which lie in C1(Ω̄):

vh(z) =

N
∑

i=1

viφ
0
i (z) +

N
∑

i=1

v′iφ
1
i (z),

where φ0
i (z) and φ

1
i (z) are the usual basic functions for Hermite interpolation.

An iterative scheme is then formulated based on boundary condition (5). Now the problem is to

compute ψ(x), ψ′(x) and k such that the variational formulation of (1)–(4) and the extra condition (5)

are satisfied. For further details of the numerical method, see [6] and [7].

4. The Turbulence Model

To calculate a suitable eddy viscosity distribution νt(z) for a given current profile, we employ a model due

to Thomas [13]. This is a so-called two equation model based upon the well-known k-ε model, where k is
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the kinematic energy per unit mass of the turbulent motion, and ε is the rate of viscous dissipation [10].

In the study of waves and currents, the notations k and ε are usually reserved for the wavenumber and

wave-slope respectively. Therefore we follow Thomas’s notation and use E for the turbulent kinetic

energy and D for the rate of dissipation.

The approach of Thomas [13] is to expand νt(z), E(z) and D(z) in terms of the wave slope ε. Here we

concentrate only on the zero-order equations, associated with the fundamental properties of the current.

Our unknowns are then the functions ν0
t (z), E0(z) and D0(z), which are the zero-order terms in the

expansions of νt(z), E(z) and D(z). These quantities satisfy the three coupled nonlinear equations

ν0
t (z)D0(z) =Cµfµ(z)E

2
0(z) for z ∈ Ω̄, (7a)

d

dz

[(

ν +
ν0
t

σE

)

dE0

dz

]

+ ν0
t (z)

[

dU

dz

]2

=D0(z) for z ∈ Ω, (7b)

d

dz

[(

ν +
ν0
t

σD

)

dD0

dz

]

+ C1Df1(z)Cµfµ(z)E0

[

dU

dz

]2

=C2Df2(z)
D2

0

E0
for z ∈ Ω, (7c)

where Ω := (−d, 0). The boundary conditions are

E0(−d) = E′(0) = D′0(−d) = 0, D0(0) = (5.87/d)E
3
2

0 (0). (8)

The three functions fµ(z), f1(z) and f2(z) in (7) are wall functions and are present in the formulation

to ensure correct behaviour in the near-wall region. In general their value is close to unity over all of

Ω, except near the bottom boundary where they change rapidly. For details of the these functions and

the values of the empirically established terms C1D, C2D ( closure constants) and σE and σD (diffusion

constants) we refer the reader to [4].

The E-D equations are solved numerically by applying a finite element method on a piecewise uniform

mesh. Such meshes for systems of reaction-diffusion equations have been analysed by Shishkin and

collaborators, see e.g., [11]. Solutions to the system that we study here exhibit two distinct, interacting

layers near each boundary. It has been shown that a piecewise uniform mesh can yield a parameter-robust

approximation with finite difference [8] and finite element [5] methods.

To resolve the interacting layers at the bed, we construct a piecewise uniform mesh with two transition

parameters τ1 and τ2 chosen according to the formula

τ1 = −d+ C1ν lnN and τ2 = −d+ C2

√
ν lnN,

where C1 and C2 are user-chosen values. Thus we divide [−d, 0] into the three subintervals [−d, τ1],
[τ1, τ2], and [τ2, 0]. We place a uniform mesh on each subinterval in such a way that there are N/4 evenly

spaced mesh points on each of the subintervals [−d, τ1], [τ1, τ2], and N/2 mesh points in the remainder

of the region.

5. Numerical Results

We now compare numerical results with data from physical experiments of Klopman [3], where waves of

local amplitude a = 0.05987m and frequency ω = 0.9844 Hz were propagated in a flume with water of

depth 0.5m.

The current distribution U(z) for the wave-following case is shown on the left of Figure 1. The data

is fitted with a continuous function which is then used as an input for the E–D model. The resulting

ν0
t (z) is shown in the centre of Figure 1. A detail of the ν0

t (z) close to the channel bed is shown on the

right.

Figure 2 below show the predicted horizontal component of the orbital velocity. We give both the

results obtained when ν0
t (z) ≡ 0 (i.e., we neglect the effects of turbulence) and with ν0

t (z) as given in

Figure 1. From the picture on the left we see that both approaches yield predictions that agree very well
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Figure 1: A current profile U(z) and computed ν0
t (z)

(over most of the depth) with the experimentally obtained data. In the picture on the right we show the

results obtained in the region closest to the channel bed. Here the model for pure viscous flow clearly

under estimates the width of the boundary layer. When the eddy viscosity term in included, it seems

that the layer is excessively dissipated. The computed wave numbers were k = 2.149 + 4.509× 10−4i for

ν0
t ≡ 0, and k = 2.149 + 3.230× 10−3i when the turbulence term is included.

6. Conclusion

We have shown that piecewise uniform meshes can be successfully applied to the study of wave-current

interactions.

Within the region closest to the bed, the agreement between experimental data and the numerical

simulation of the model is not entirely satisfactory. However, careful selection of the problem parameters,

data parameterization, and choice of wave-functions is an area of on-going research.
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