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We introduce some well known results about permutation groups, strongly
regular graphs, design theory and finite geometry. Our goal is the construc-
tion of the Higman-Sims group as an index 2 subgroup of the automorphism
group of a (100, 22, 0, 6)-srg. To achieve this we introduce some tools from
design theory. Some of the arguments here are slightly more general than
those given in lectures.

All of this material is known, though not particularly easy to find in the
literature. References for Section 2 are [6] and [3]. References for 3 are [1]
and [7]. Sections 4 and 5 are fairly standard topics in design theory, and
more information may be found in e.g. [2]. Sections 7 and 8 belong both to
design theory and to group theory. We used [5] as a reference for M22 and
[2] for the Higman-Sims group. The proofs of some of the lemmas in these
sections are to be found in [4].

1 Automorphisms

Definition 1. Let V be a finite set, and let B ≤ P(V ). Then ∆ = (V,B) is
an incidence structure.

Definition 2. We observe that Sym(V ) has a natural induced action on B.
We say that σ ∈ Sym(V ) is an automorphism of ∆ if Bσ = B. The set of all
automorphisms of ∆ form a group, denoted Aut(∆).

Remark 3. Note that σ fixes B setwise. It need not fix any of the blocks
individually.

Remark 4. In particular, (strongly regular) graphs, Steiner systems, projec-
tive planes and symmetric designs are all incidence structures, and we apply
this definition of automorphism to all such structures in this document.
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2 Strongly Regular Graphs

Definition 5. Let Γ be a simple undirected graph with v vertices and con-
stant valency k. Then Γ is a (v, k, λ, µ)-strongly regular graph (abbreviated
srg) if every pair of adjacent vertices have λ common neighbours and every
pair of non-adjacent vertices have µ common neighbours.

Our goal in this section is to obtain some restrictions on the parameters
of a srg. We use techniques from linear algebra on the adjacency matrix of a
srg. Our convention is that the vertices of a graph are assigned an arbitrary
but fixed ordering, and that this ordering is used to label both the rows and
the columns of the adjacency matrix.

Lemma 6. Let Γ be a graph (not necessarily strongly regular), with adjacency
matrix A. For any vertices vi, vj ∈ V , the number of paths of length l from
vi to vj is Ali,j.

Proof. By induction. The claim is obvious for l = 1 (and true for l = 0!).
We illustrate the induction step. Suppose that the number of paths of length
n from vi to vk is Ani,k for any vk ∈ V . Then the number of paths of length
n+ 1 from vi to Vj is

v∑
k=1

Ani,k · Ak,j = An+1
i,j

This proves the result.

Now, denote by J the all ones matrix.

Corollary 7. The graph Γ is a (v, k, λ, µ)-srg if and only if A2 = kI +λA+
µ(J − I − A).

Proof. By Lemma 6, A2
i,j is the number of paths of length 2 from vi to vj.

Thus the entries in A2 are determined by the definition of a strongly regular
graph:

• The number of paths of length 2 from vi to vi is deg(vi.

• The number of paths of length 2 from vi to vj is the number of common
neighbours of vi and vj.

Thus the equality given holds precisely when Γ is a strongly regular graph.

Thus Γ is a srg if the C-algebra generated by A is 3-dimensional with
basis I, J, A. Such an algebra is called a 2-class association scheme.
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Theorem 8. If there exists a (v, k, λ, µ)-srg, then f and g as defined below
are positive integers.

f, g =
1

2

[
(v − 1)− (v − 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)

]
Proof. We show that f and g are the dimensions of the eigenspaces of A, and
as such are necessarily positive integers.

1. A has constant row sum, so the all ones vector is an eigenvector of A
with corresponding eigenvalue k.

2. A is a real symmetric matrix. So A is similar to a diagonal matrix, and
thus the eigenvectors of A are orthogonal.

3. Now, let u be an eigenvector of A with eigenvalue l 6= k. Then

A2u = [kI + λA+ µ(J − I − A)]u

l2u = ku+ λlu+ µ(−1− l)u
l2 = k + λl + µ(−1− l)

4. So any eigenvalue of A distinct from k satisfies the equation

l2 + (µ− λ)l + (µ− k) = 0

5. Solving this equation, we find that the eigenvalues of A are

k, α, β =
1

2

[
(λ− µ)±

√
(µ− λ)2 + 4(k − µ)

]
with multiplicities 1, f and g respectively.

6. Now, A is invertible, so f+g = v−1. It follows that f−g = 2f−(v−1).

7. The trace of A is the sum of the eigenvalues, and this is 0. Hence

k +
f

2
(λ− µ+

√
(µ− λ)2 + 4(k − µ)) +

g

2
(λ− µ−

√
(µ− λ)2 + 4(k − µ)) = 0

2k + (f + g)(λ− µ) + (f − g)
√

(µ− λ)2 + 4(k − µ) = 0

2f − (v − 1) =
(v − 1)(µ− λ)− 2k√
(µ− λ)2 + 4(k − µ)

f, g =
1

2

[
(v − 1)± (v − 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)

]
The result follows.
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Thus there are two types of srgs.

Definition 9. A Type I srg has 2k + (v − 1)(λ − µ) = 0. In this case the
parameters are forced to be (4t+1, 2t, t+1, t). Graphs with such parameters
are called conference graphs, examples are given by the Paley graphs.

Definition 10. A Type II srg has d = (µ− λ)2 + 4(k − µ) a perfect square
such that

√
d divides (v − 1)(µ− λ)− 2k. In this case, the eigenvalues α, β

of A are integers of opposite sign, and the parameters of the srg satisfy

λ = k + α + β + αβ µ = k + αβ.

3 Permutation groups and association schemes

We assume a familiarity with the basic theory of permutation groups. We
show how strongly regular graphs may be constructed from permutation
groups.

Definition 11. The rank of a transitive permutation group G on a set Ω is
the number of orbits of the stabilizer of a point Gα on Ω.

So a permutation group is rank 2 if and only if it is multiply transitive.
Higman introduced the study of rank 3 permutation groups in [7], and in-
vestigated some of their combinatorial properties. This section is largely
drawn from that paper, though we prefer to recast the discussion in terms of
orbitals.

Definition 12. Consider the induced action of G on Ω×Ω. An orbit of G in
this action is an orbital. To each orbital ∆i we associate a matrix Ai which
has rows and columns labelled by Ω. The entry in row α and column β of
Ai is 1 if (α, β) is in the ith orbital, and 0 otherwise.

The following theorem establishes some fundamental combinatorial prop-
erties of orbitals. In particular the orbital matrices form a coherent configu-
ration.

Theorem 13 (Higman, [7]). Let G be a transitive permutation group. Then
the orbital matrices satisfy the following conditions.

1.
∑

iAi = J

2. Am = I for some m (without loss of generality we set m = 0).

3. For all i there exists some j such that A>i = Aj.

4. AjAk is a linear combination of the Ai.
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This result is more general than we require here. In particular, the orbital
matrices will always be symmetric in the case that interests us. Then we are
in the case that the matrices form an association scheme.

Definition 14. The pair of the orbital containing {(α, β)} is the orbital
containing {(β, α)}. An orbital is self-paired if it coincides with its pair.

Lemma 15 (Wielandt, 16.6, [8]). G has a non-trivial self paired orbital if
and only if |G| is even.

It is clear that an orbital is self paired if and only if the corresponding
matrix is symmetric. In the case that G is a non-solvable rank three group
(the case that interests us), then one, and hence both of the non-trivial
orbitals of G are self paired. Thus all the matrices Ai are symmetric.

Finally, we observe that any rank 3 permutation group gives rise to a
strongly regular graph.

Theorem 16. Let G be a rank three permutation group of degree v, and A
the incidence matrix of a non-trivial orbital. Then A is the incidence matrix
of a strongly regular graph.

Proof. There are three orbital matrices, I, A1 and A2. Since these matrices
form a coherent configuration, we have that A2 = J − I − A1 and hence
that A2

1 = kI + λJ + µA1 for some constants k, λ, µ. By Corollary 7, this
is precisely the necessary condition for A1 to be the incidence matrix of a
(v, k, λ, µ)-srg.

4 Steiner systems

Definition 17. Let V be a finite set containing v elements, and let B be a set
of k-subsets of V . We refer to the elements of V as points and the elements
of B as blocks. We say that ∆ = (V,B) is a Steiner system of strength t ≥ 2
if every t-subset of V is contained in precisely one block b. We collect the
parameters and say that (V,B) is a t-(v, k, 1) system.

In this section we give some simple counting arguments which restrict
the parameters of a Steiner system. In the next section we will consider an
important family of Steiner systems.

Lemma 18. In a Steiner system every point appears in equally many blocks.

Proof. Denote by r the number of times that a fixed point u appears. Now,
every t-subset of V containing u appears in a unique block containing u. We
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count this set in two different ways.

r

(
k − 1
t− 1

)
=

(
v − 1
t− 1

)
r =

(v − 1)(v − 2) · · · (v − t+ 1)

(k − 1)(k − 2) · · · (k − t+ 1)

This number is independent of u, and is an invariant of the design, called the
replication number.

Remark 19. A t-design is a generalization of a Steiner system in which every
t-subset appears in a fixed number of λ of blocks. A Steiner system of
strength t is a t′-design for every 0 ≤ t′ ≤ t.

Lemma 20. The number of blocks in ∆ is b = v(v−1)(v−2)···(v−t+1)
k(k−1)(k−2)···(k−t+1)

.

Proof. Denote the number of blocks by b. By counting the number of point-
block incidences in two ways,

vr = bk.

Now, we substitute the value for r obtained in Lemma 18.

b =
v

k

(v − 1)(v − 2) · · · (v − t+ 1)

(k − 1)(k − 2) · · · (k − t+ 1)

5 Projective planes

Definition 21. A projective plane is a Steiner system of strength 2 in which
every pair of blocks intersect non-trivially.

We adopt geometric language in this section and refer to blocks as lines.
For the moment we make no restrictions on the number of points in our
plane.

Lemma 22. Any two lines intersect in a unique point in a projective plane.

Proof. From the definition of a projective plane any two lines l1, l2 intersect
non-trivially. From the definition of a Steiner system of strength 2, a pair of
points is contained in a unique line. So 0 < |l1 ∩ l2| < 2.

Lemma 23. k = r in a projective plane.
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Proof. Let l be a line in ∆, and let u be a point not on l. Every line containing
u intersects l in a unique point, vl,u. The line containing u and vl,u is unique.
We have a natural bijection between the lines through u and the points on
l.

Corollary 24. v = b in a projective plane.

Proof. We have that k = r in a projective plane, and vr = bk in any Steiner
system.

Theorem 25. The parameters of a finite projective plane are 2-(n2 + n +
1, n+ 1, 1) for some n ∈ N.

Proof. We have that b = v(v−1)
k(k−1) . But b = v, so rearranging, we have

v = k(k − 1) + 1.

It is traditional to set k = n+1, in which case v = n(n+1)+1 = n2+n+1.

We refer to a projective plane with parameters (n2 + n+ 1, n+ 1, 1) as a
projective plane of order n. The existence of finite projective planes is one
of the most well studied problems in finite geometry.

Theorem 26. For any prime power q, there exists a projective plane of order
q.

Proof. Let X be a 3-dimensional vector space over Fq. Any non-zero element
in X lies on a unique line through the origin in X. Each such line contains q
elements, so there are precisely q3−1

q−1 lines (one dimensional subspaces) in X.

Any pair of linearly independent elements in X lie in a unique plane (2-
dimensional subspace). Each plane contains (q2− 1)(q2− q) pairs of linearly

independent points. So there are (q3−1)(q3−q)
(q2−1)(q2−q) planes in X.

Every plane contains q2−1
q−1 = q + 1 lines.

Evaluating these expressions, we find that there are q2+q+1 lines and the
same number of planes in X. Now, in any n-dimensional vector space, the
intersection of two (n − 1)-dimensional subspaces is an (n − 2)-dimensional
subspace. In particular, the intersection of any two planes in X is a line.

Thus the lines and planes of X form a projective plane of order q.

Remark 27. Thus there exists a projective plane of order q for every prime
power q. Arguably the most important question in finite geometry is whether
there exist projective planes of non-prime-power order. Only very limited
results are known.

1. There are no projective planes of order 6 (Euler), or 10 (Lam).
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2. If n ≡ 1, 2 mod 4, then there exists a projective plane of order n only
if n is a sum of 2 squares (Bruck-Ryser).

3. Thus the smallest open case is n = 12.

We conclude this section with an explicit construction of the projective
plane of order 4. We begin by recalling the construction of the field with 4
elements.

Definition 28. The integers mod 2 form a finite field. That is: they are
closed under addition ( mod 2) and under multiplication. Now, the polyno-
mial x2 + x + 1 is irreducible over F2: that is, there is no x ∈ F2 such that
x2 + x + 1 = 0. Now, we adjoin a root of this equation to F2 to obtain a
field with 4 elements: the set {0, 1, x, 1 + x} is closed under addition and
under multiplication, with the assumption that x2 + x+ 1 = 0 (equivalently
x2 = x+ 1).

Now, let X be a 3 dimensional vector space over F4. We tabulate the 21
lines and 21 planes in X. For brevity, we denote 1 + x by y.

a = {0, (1,1,1), (x,x,x), (y,y,y) } A = {a, b, c, d, u }
b = {0, (1,1,x), (x,x,y), (y,y,1) } B = {a, e, i, m, t }
c = {0, (1,1,y), (x,x,1), (y,y,x) } C = {a, f, k, p, q }
d = {0, (1,1,0), (x,x,0), (y,y,0) } D = {a, g, l, n, s }
e = {0, (1,x,1), (x,y,x), (y,1,y) } E = {a, h, j, o, r }
f = {0, (1,x,x), (x,y,y), (y,1,1) } F = {b, e, l, o, q }
g = {0, (1,x,y), (x,y,1), (y,1,x) } G = {b, f, j, n, t }
h = {0, (1,x,0), (x,y,0), (y,1,0) } H = {b, g, i, p, r }
i = {0, (1,y,1), (x,1,x), (y,x,y) } I = {b, h, k, m, s }
j = {0, (1,y,x), (x,1,y), (y,x,1) } J = {c, e, j, p, s }
k = {0, (1,y,y), (x,1,1), (y,x,x) } K = {c, f, l, m, r }
l = {0, (1,y,0), (x,1,0), (y,x,0) } L = {c, g, k, o, t }
m = {0, (1,0,1), (x,0,x), (y,0,y) } M = {c, h, i, n, q }
n = {0, (1,0,x), (x,0,y), (y,0,1) } N = {d, e, k, n, r }
o = {0, (1,0,y), (x,0,1), (y,0,x) } O = {d, f, i, o, s }
p = {0, (1,0,0), (x,0,0), (y,0,0) } P = {d, g, j, m, q }
q = {0, (0,1,1), (0,x,x), (0,y,y) } Q = {d, h, l, p, t }
r = {0, (0,1,x), (0,x,y), (0,y,1) } R = {e, f, g, h, u }
s = {0, (0,1,y), (0,x,1), (0,y,x) } S = {i, j, k, l, u }
t = {0, (0,1,0), (0,x,0), (0,y,0) } T = {m, n, o, p, u }
u = {0, (0,0,1), (0,0,x), (0,0,y) } U = {q, r, s, t, u }
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6 Automorphisms of projective planes

These arguments generalise easily to higher dimensional spaces, we restrict
attention to PG2(q) as this is the only case that we require.

Let X be an 3-dimensional Fq-vector space. Then GL3(q) acts regularly
on the ordered bases of X. In particular, the order of GL3(q) is the number
of bases of X, which is (q3 − 1)(q3 − q)(q3 − q2).

We can identify a non-zero point p in X with the unique line passing
through 0 and p. Note that every line contains q points, so that this identifi-
cation is (q − 1)-to-1. Now suppose that B is a basis for X. Then this basis
corresponds uniquely to a set B of 3 projective points, with the property that
all three are not contained in a single projective line (i.e. a 2-dimensional
subspace of X). We call such a configuration a triangle. Every triangle corre-
sponds to (q− 1)3 bases of X. The kernel of the action of GL3(q) on PG2(q)
is of order q − 1, hence the (setwise) stabilizer of a triangle in PGL3(q) has
order (q − 1)2. We denote this stabilizer by U . With respect to a suitably
chosen basis, the preimage of U in GL3(q) consists of diagonal matrices.

The three points in a triangle determine a configuration of three lines,
which contain 3q points. Thus there are (q − 1)2 points outside of this
configuration. The stabilizer of a triangle acts regularly on these points.
Otherwise there would exist a point line in X, distinct from the co-ordinate
axes but fixed by every element in U , which is impossible.

Definition 29. A quadrangle in PG2(q) is a set of four points, no three of
which are collinear.

Thus we have the following result.

Theorem 30. PGL3(q) acts regularly on the quadrangles of PG2(q).

We recall the important duality involution of PG2(q). (This is an outer
automorphism of PGL3(q) which will be used in the construction of the
Higman-Sims group.)

Definition 31. Consider PG2(q) as a system of subspaces of the 3-dimensional
Fq-vector space X. Denote by θ the map which sends every subspace of X
to its orthogonal complement. Then θ restricted to PG2(4) is a map with
the following properties.

1. θ sends lines to points and points to lines.

2. θ2 = 1 both on points and on lines.

3. p ∈ l if and only if θ(l) ∈ θ(p).

4. θBθ−1 = (B>)−1 for any B in PSL3(4).
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7 M22

We extend the projective plane PG2(4), which is a 2-(21, 5, 1) Steiner system
to a 3-(22, 6, 1) Steiner system. We do this by adding an extra point labelled
∞ to the point set, which we add to all existing blocks in PGL2(4). We then
add additional blocks of size 6 to recapture the Steiner property.

A 2-(22, 6, 1) Steiner system must contain precisely 77 blocks, and each
triple of points will appear in a unique block. Append a new point, ∞ to
PG2(4). We add this point to the blocks of PG2(4) to obtain a system with
21 blocks in which every pair of points appears once together with ∞, and
in which every triple of collinear points appears precisely once.

We now need to construct 56 blocks containing every triangle of PG2(4)
precisely once. Observe that since PGL3(4) is regular on quadrangles, every
quadrangle is isomorphic to the one which contains the points a, p, t, u (in
the notation of the table). The points are contained pairwise in six lines:
A,B,C,Q, T, U . Now, there are fifteen pairwise intersections of these lines.
Obviously each point of the quadrangle occurs three times. The remaining
pairs of ’parallel’ edges of the quadrangle intersect in the points d,m and q.
These are the diagonal points of the quadrangle.

The diagonal points are collinear (this happens because the underlying
field is of characterstic 2). Note that the quadrangle and its diagonal points
determine a copy of PG2(2) inside of PG2(4), this is an example of a Baer
subplane. Now, the set of 6 lines in the quadrangle aptu together contain
16 points. The remaining 5 points are collinear, lying on the line P . This
contains the three diagonal points, and two others: g and j. The set O =
{a, p, t, u, g, j} has the property that any line in PG2(2) intersects O in either
0 or 2 points. Such a set is called a hyperoval.

1. The full automorphism group of the Fano plane is of order 168. Every
such automorphism is realised; an embedding of PGL3(2) into PGL3(4)
is easily described.

2. From the transitivity of PGL3(4) on quadrangles, it can be seen that
PGL3(4) is transitive on Fano subplanes.

3. Hence there are 360 Fano subplanes in PG2(4).

4. The full automorphism group of a hyperoval in PGL3(4) is isomorphic
to A6, of order 360.1

5. Thus there are 168 hyperovals in PG2(4).

1The exceptional outer automorphism of S6 is realised in an induced action of this A6

on lines disjoint from the hyperoval.
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Now, PSL3(4) is of index 3 in PGL3(4). The set of hyperovals splits into
three orbits under the action of PSL3(4), each of length of 56. Any such orbit
of hyperovals covers every triangle of PG2(4) precisely once (see Theorem 6.6
of [5]), and so provides the required 56 blocks of 6 elements required for our
Steiner system.2

Definition 32. Denote by P the set of points of PG2(4), by L the set of lines
of PG2(4) and by O one orbit of hyperovals under PSL3(4). Then define
V = P ∪ {∞} and B = L∗ ∪ O, where L∗ is the set of lines of PG2(4) each
extended by the point ∞. Denote the set system W = (V,B).

It is clear that PSL3(4) ≤ Aut(W ) and that every automorphism of
PSL3(4) fixes the point ∞. We conclude by proving that Aut(W ) is triply
transitive and contains a simple subgroup of index 2, M22. We require one
detailed computation.

Lemma 33. Aut(W ) contains an involution φ which moves ∞.

Proof. Define the permutation φ = (∞ p)(a q)(b i)(c e)(f k)(g r)(j s). We
show that φ preserves the blocks of W .

First, by inspection, φ stabilizes pointwise the 5 blocks containing p and
∞: C,H, J,Q, T . We show that the 16 lines not containing p are mapped to
the 16 ovals which contain p.

Recall that every oval in W is the image under some M ∈ PSL3(4) of
the standard oval O = {a, p, t, u, g, j}. We observe that Oφ = U ∪∞. Now,
SL3(4) contains the elements 1 b c

0 1 0
0 0 1

 ,

 1 0 0
0 a 0
0 0 a−1

 ,

 1 0 0
0 0 1
0 1 0

 .

We refer to their images in PSL3(4) as Vb,c, Ha and H2 repectively. (Note
that H2 has determinant 1 because the field has characteristic 2!)

Then the group V = {Vb,c | b, c ∈ F4} has order 16, acts transitively on
the lines of V not containing p, and commutes with φ. Thus, for any line X
not containing p, there exists a unique v ∈ V such that Xv = U , and

Xφ = Xuφu−1

= Uφu−1

= Ou−1

.

But u−1 ∈ PSL3(4), and so maps ovals to ovals. We conclude that the image
of a line not containing p under φ is an oval containing p.

It remains only to show that ovals not containing p are mapped to ovals
not containing p, we allow the group H = 〈Ha, H2 | a ∈ F∗4〉 to act on the
ovals, and observe that it commutes with φ, etc.

2The Fano subplanes provide the blocks for a 4-(23, 7, 1) design in a similar fashion.

11



Theorem 34. The automorphism group of the 3-(22, 6, 1) Steiner system W
constructed above is triply transitive (on points).

Proof. Recall that a permutation group G acting on a set Ω is t-transitive if
and only if G is transitive on Ω and Gα is t− 1 transitive on Ω− α for some
α ∈ Ω.

First, the stabilizer of ∞ in W contains PΣL3(4) acting doubly transi-
tively on 21 points. Second, by Lemma 33, the automorphism group of W
contains an element moving ∞. The result follows.

We observe that the involution φ constructed in Lemma 33 is an odd
permutation. So Aut(W ) contains a normal subgroup of index 2. We observe
that both φ and σ (the Frobenius automorphism acting on PSL3(4)) are odd
permutations. So their product is even, and moves ∞.

Theorem 35. The group M22 is simple.

Proof. Let N be a normal subgroup of M22, and denote by G the stabilizer
of ∞ in M22. Note in particular that G ∼= PSL3(4) is simple.

Since M22 is triply transitive (and so primitive), N is necessarily a tran-
sitive subgroup of M22.

So M22 = NG. Now, N ∩ G / G. If G ≤ N , then G ≤ N∞ and N is
transitive. So N = M22 by the orbit-stabilizer formula.

Otherwise, N ∩G = 1, and N is a regular subgroup of M22. But observe
that the Sylow 11-subgroup of N is characteristic in N and hence normal in
M22, which is a contradiction.

Hence, M22 is simple.

A priori, there is no reason why similar constructions could not be ap-
plied to other projective planes. A result of Cameron shows that this is not
possible.

Theorem 36 (Theorem II.7.12, [2]). Let ∆ be an extendible symmetric
(v, k, λ)-design. Then one of the following occur.

1. ∆ is a Hadamard design with parameters (4t − 1, 2t − 1, t − 1) (these
are always extendible).

2. (v, k, λ) = (λ3 + 6λ2 + 10λ+ 4, λ2 + 3λ+ 1, λ).

3. (v, k, λ) = (495, 39, 3).

Similarly, it may be shown that there are no quadruply extendible sym-
metric designs, and that a twice extendible symmetric design necessarily has
parameters 2-(21, 5, 1).
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8 The Higman-Sims group

The construction of this group was motivated by the discovery of the Hall-
Janko group, which has a primitive rank 3 action on 100 points with subde-
grees 63, 36, 1. (The stabilizer of a point is Sp6(2) with its natural action on
63 points and a sporadic doubly transitive action on 36 points on the two
suborbits respectively.)

Higman and Sims were aware of the actions of M22 on 22 and 77 points
(the points and blocks of the Steiner system W ). They decided to investigate
the existence of a primitive group of order 100 with subdegrees 1 + 22 + 77,
and point stabiliser isomorphic to M22. Note that this would correspond to
a (100, 22, 0, 6) strongly regular graph. (Note that the eigenvalues of such a
graph are necessarily 22 with multiplicity 1, 2 with multiplicity 77, and −8
with multiplicity 22.)

We construct the graph in this section, and show that its automorphism
group is of order 88, 704, 000, with a simple subgroup of index 2. We do not
show that this group is sporadic (though this would have been obvious to
Higman and Sims).

We take as the vertex set of our graph Γ the set of 22 points and 77
blocks of the design W constructed in the previous section, together with a
new point ∗ (so there are 100 points in total). We begin with a result on the
intersection of blocks in W .

We construct the edges of Γ as follows:

1. The point ∗ is connected to the 22 points of W .

2. Each point in W is connected to the 21 blocks containing it.

3. Blocks bi and bj intersect in at most 2 points. For fixed bi, there are
60 blocks which intersect it in two points, and 16 which do not. Take
these 16 blocks as the neighbours of bi.

4. It is clear that the graph so obtained is regular of degree 22.

Theorem 37. The graph Γ is a srg(100, 22, 0, 6).

Proof. It is obvious that the number of vertices is 100, and that every vertex
is of degree 22. We verify that the graph contains no triangles, and that two
non-adjacent vertices have 6 common neighbours.

First: we observe that no two vertices corresponding to points of W are
adjacent. Thus there are no triangles in the neighbourhood of ∞. Thus a
triangle involves at least two blocks ofW . Note that two blocks intersecting in
a point are not disjoint, and so no triangle involves two blocks and a point. It
suffices to show that there are no three mutually disjoint blocks in W . (This
step requires consideration of several cases, but is mostly straightforward,
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and so is omitted. A typical step involves verifying that given three lines
disjoint from an oval O, some two lines have non-trivial intersection.)

Second: We show that two non-adjacent vertices have percisely 6 common
neighbours. If the vertices are ∞ and a block, then they share the 6 points
of the block as common neighbours. Two points are contained together in
precisely 5 blocks, which together with ∗ provide their common neighbours.
(Again, the remaining cases required careful counting. A typical step involves
showing that if the point x is not on b, then there are 6 blocks disjoint from
b containing x.)

The stabiliser of ∗ in Γ contains M22 with orbits of length 22 and 77. We
show that there exists an automorphism of Γ moving ∞.

Theorem 38. Aut(Γ) is transitive.

Proof. We denote by θ the duality of PG2(4) and by l the set l ∪∞ in W .
An oval will be denoted by O.

We define the map α as follows:

α(v) = θ(v), α(∗) =∞, α(∞) = ∗, α(l) = θ(l), α(O) = PG2(4)−∪v∈Oθ(v).

We claim that α ∈ Aut(Γ).
This is achieved as follows:

1. α(O) is an oval, so α is a permutation of the points of Γ.

2. α is an involution.

3. O ∩ l is empty if and only if α(l) ∈ α(O).

4. Disjointness of ovals is preserved by α.

It follows from the claims above that edges and non-edges are preserved by
α. Thus α is an automorphism of Γ, and Aut(Γ) is transitive as claimed.

We state without proof that α is an odd involution. Then Aut(Γ) contains
a normal subgroup of index 2. This subgroup is the Higman-Sims group. We
show that it is simple.

Theorem 39. HS is a simple group.

Proof. Let G be a permutation group acting on Ω. Suppose that N / G.
Then the orbits of N on Ω have length dividing |Ω|.

Now, let N be a non-trivial normal subgroup of HS, and consider N ∩
Aut(G)∗ = M22. We observe that NM22 = M22N , so ∗M22N = ∗NM22 =
(∗N)M22 . In particular, the orbit of N containing ∗ is a union of M22 orbits.
But these have orders 1, 22, 77: thus N is transitive.
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Now N ∩M22/M22, and M22 is simple, so either N ∩M22 = M22, in which
case N = HS, or N ∩M22 = 1, in which case N is regular.

But a group of order 100 contains a characteristic Sylow 5-subgroup,
which contradicts transitivity of a normal subgroup N . Hence HS is simple.
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