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Abstract

An often cited statement of Baumert in his book Cyclic difference
sets asserts that four well known families of cyclic (4t−1, 2t−1, t−1)
difference sets are inequivalent, apart from a small number of excep-
tions with t < 8. We are not aware of a proof of this statement in the
literature.

Three of the families discussed by Baumert have analogous con-
structions in non-cyclic groups. We extend his inequivalence statement
to a general inequivalence result, for which we provide a complete and
self-contained proof. We preface our proof with a survey of the four
families of difference sets, since there seems to be some confusion in
the literature between the cyclic and non-cyclic cases.
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1 Introduction

While (v, k, λ)-difference sets were first investigated by Kirkman in the 1850s
[16], it was not until the work of Singer and Hall in the 1930s and 1940s that
they became a topic of general mathematical interest [24, 10]. At first interest
was focussed for the most part on difference sets with λ = 1, since any such
difference set corresponds to a finite projective plane with a regular group
of collineations. A Hadamard difference set is at the opposite end of the
spectrum, having the maximum possible value of λ for a given group order.
We will make this more precise in the next section.

Already in the 1930s the connections between Hadamard matrices, sym-
metric designs with parameters (4t− 1, 2t− 1, t− 1) and difference sets were
realized [22]. We give a brief introduction to difference sets and their relation
to symmetric designs and Hadamard matrices in Section 2. The material in
Section 2 is standard: it is included for completeness. A good reference for
this section is [3].

In Section 3 we introduce automorphisms of 2-designs, and discuss differ-
ence sets in detail. We include a discussion of multipliers of difference sets.
Throughout we assume familiarity with the theory of permutation groups.
We will occasionally appeal to sophisticated results on permutation groups
(e.g. the classification of doubly transitive groups, the classification of the
maximal subgroups of Sn). Sometimes this is unnecessary; the same result
can be proved by a more lengthy elementary argument. However, we prefer
the brevity and clarity of this more algebraic approach.

In Section 4 we specialize to difference sets with parameters (4t− 1, 2t−
1, t− 1), which we call Hadamard. We are mostly concerned with four fami-
lies of Hadamard difference sets which were discovered in the mid-twentieth
century. Three of the families are cyclotomic, which is to say they are con-
structed from nth power residues in a finite field [25]. The fourth is a special
case of Singer’s construction.

In Section 5, we give the content of Baumert’s remark on the inequiva-
lence of these families of difference sets. We extend this to the non-cyclic
case, introduce some necessary number theoretic results, and state our main
theorem.

Section 6 contains the proof of the main theorem, and concludes the
paper.
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2 2-designs and Hadamard matrices

Definition 1. Let V be a finite set of size v, and let B be a set of k-subsets
of V . We say that ∆ = (V,B) is a t-(v, k, λ) design if for any t-subset T of
V , |{b | T ⊆ b}| = λ, for some fixed λ. We call a t-(v, k, λ) design non-trivial
if v − 1 > k > λ > 0 and t > 1.

Definition 2. An incidence matrix M for ∆ is a {0, 1}-matrix with rows
indexed by elements of V and columns indexed by elements of B, whose
entry in row v and column b is 1 if v ∈ b and 0 otherwise. Note that M is
an incidence matrix of a 2-(v, k, λ) design if and only if

MM> = (k − λ)I + λJ (1)

where I is the v × v identity matrix, and J is the v × v all 1s matrix.

Clearly, the orderings of V and B used to index rows and columns of M
are irrelevant. So M is unique only up to row and column permutations.
This motivates the definition of equivalence for designs.

Definition 3. We say that designs ∆1 = (V1, B1) and ∆2 = (V2, B2) are
equivalent if there exists a bijection φ : V1 → V2 which induces an incidence
preserving bijection of blocks. Thus ∆1 and ∆2 are equivalent if and only if
their incidence matrices are the same, modulo row and column permutations.

Definition 4. Consider a 2-(v, k, λ) design ∆ = (V,B) with |V | = |B|. We
say that ∆ is symmetric in this case. An incidence matrix M of ∆ is square.
Note that M> is also the incidence matrix of a 2-(v, k, λ) design, called the
dual, which is not necessarily equivalent to ∆.

We will be interested in symmetric designs in this paper. We observe that
the parameters of a symmetric design obey some identities. By counting the
number of blocks containing a given point in two different ways, we obtain

λ(v − 1) = k(k − 1).

Thus, we can express λ as a function of v and k: λ = k(k−1)
v−1

. If ∆ is

a symmetric 2-(v, k, λ), then the complementary design ∆ = (V,B) where

B = {V − b | b ∈ B} has parameters (v, v − k, (v−k)(v−k−1)
v−1

). So without loss
of generality, we may assume that k ≤ v

2
.
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We are interested in the maximum value obtained by λ (equivalently k)
for fixed v, subject to the constraint k ≤ v

2
. Our main interest is in the

case that v ≡ 3 mod 4. If we choose k = (v−1)
2

, we obtain the parameters
(4t−1, 2t−1, t−1). These are then the parameters of a symmetric t-(v, k, λ)
design which maximize λ for fixed v.

It is conjectured that symmetric designs with these parameters exist for
all t ∈ N. A design with these parameters is known as a Hadamard design in
the literature. The usage of Hadamard design for two families of symmetric
designs, with parameters (4N2, 2N2 − N,N2 − N) and (4t − 1, 2t − 1, t −
1), associated in different ways to Hadamard matrices is unfortunate, but
probably too well established at this point to be altered. In this paper we
consider only the latter family. When confusion could arise, we refer to the
first type as Menon-Hadamard and the second as Paley-Hadamard. In the
remainder of this section we explain the origin of this term.

Suppose that v = 2u is even and k = u: then λ = u(u−1)
2u−1

. We ob-
serve that gcd(2u − 1, u(u − 1)) ≤ 3. Hence there are no non-trivial de-
signs with these parameters. When v is even, the upper bound v = k

2
is

achieved asymptotically by the Menon-Hadamard designs which have pa-
rameters (4N2, 2N2 −N,N2 −N).

It seems that the problem of finding the maximal value of λ for which
a symmetric 2-design exists when v ≡ 0, 1, 2 mod 4 has not received much
attention.

2.1 Hadamard matrices

Definition 5. Let H be an n×n matrix with real entries satisfying |hi,j| ≤ 1.
We say that H is Hadamard if and only if |det(H)| = n

n
2 .

It is well known that a Hadamard matrix of order n necessarily has entries
drawn from {±1}, and that n = 1, 2 or 4|n. Each of the following conditions
is sufficient for a matrix H to be Hadamard.

• HH> = nIn.

• The dot product of any pair of distinct rows of H is 0.

Definition 6. We say that a Hadamard matrix H = [hi,j]1≤i,j≤n is normal-
ized if and only if hi,1 = h1,j = 1 for all 1 ≤ i, j ≤ n. Any Hadamard matrix
can be transformed into a normalized Hadamard matrix by negation of rows
and columns.
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The following lemma is standard; see e.g. Lemma I.9.3 of [3].

Lemma 7. Let ∆ be a symmetric 2-(4n−1, 2n−1, n−1)-design with incidence
matrix M . Define J to be the (4n− 1)× (4n− 1) all 1s matrix, and T to be
2M − J . Let 1 be the all 1s vector of length 4n− 1. Then

H =

(
1 1

1
>

T

)
is a Hadamard matrix.

Definition 8. Two Hadamard matricesH andH ′ are equivalent if there exist
{±1}-monomial matrices P and Q such that PHQ> = H ′. The group of all
pairs of monomial matrices (P,Q) such that PHQ> = H is the automorphism
group of H. This group has an induced permutation action on the set of
rows of H and their negations. The set of pairs of rows {r,−r} is a system
of imprimitivity for Aut(H). So Aut(H) has an induced permutation action
on the set of such pairs. We refer to this permutation group as AH . For a
detailed discussion of this group see [20].

Lemma 7 has a converse: the existence of a symmetric 2-(4n−1, 2n−1, n−
1) design is equivalent to the existence of a Hadamard matrix of order 4n.
In one direction this process is canonical: a symmetric 2-design corresponds
to a unique equivalence class of Hadamard matrices via the construction of
Lemma 7. But the equivalence operations for 2-designs are finer than those
for Hadamard matrices. A single equivalence class of Hadamard matrices
can correspond to many inequivalent symmetric 2-designs.

3 Automorphisms of 2-designs and difference

sets

Definition 9. An automorphism of the design ∆ = (V,B) is a permutation
of V which preserves B setwise. The set of automorphisms of ∆ forms a
subgroup of Sym(V ), denoted Aut(∆). There is a natural isomorphism be-
tween Aut(∆) and the set of pairs (P,Q) of permutation matrices such that
PMQ> = M , where M is an incidence matrix of ∆. We denote the image
of this isomorphism by Aut(M).
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We observe that Aut(∆) has an induced action on the set B of blocks
of ∆. In the case that ∆ is a symmetric design, the actions on points and
blocks are closely related. Denote the isomorphism from Aut(G) to Aut(M)
by φ : σ 7→ (P,Q). Then the projections ψ1 : σ 7→ P and ψ2 : σ 7→ Q give
the actions of Aut(∆) on points and blocks respectively. Since the incidence
matrix of a symmetric 2-design is invertible over C, we have that ψ1(σ) =
Mψ2(σ)M−1, and so ψ1 and ψ2 are conjugate as linear representations. They
are not in general conjugate as permutation representations however.

This result is often known as the orbit theorem.

Theorem 10 (cf. Theorem III.4.1, [3]). Let ∆ be a non-trivial symmetric
2-design, and let G ≤ Aut(∆). Then the number of orbits of G on points is
equal to the number of orbits of G on blocks.

Suppose now that there exists a subgroup G of Aut(∆) which acts reg-
ularly on V . We can choose some x ∈ V , and label it with the identity of
G. We then obtain a bijection β : V → G, given by β(xg) = g. It is often
convenient to identify b ∈ B with the element

b̂ =
∑
x∈b

β(x) (2)

of the integral group ring ZG. We define b̂(−1) =
∑

x∈b β(x−1). As usual
in this area, we identify G with the sum of its elements in the group ring,
G =

∑
g∈G g.

Now, Aut(∆) has a natural induced action on the elements of G, which

preserves B̂ =
{
b̂ | b ∈ B

}
setwise. In particular, b̂g is a block for any g ∈ G.

Now, we note that G ≤ Aut(∆) acts in its left regular representation in this
action. By Theorem 10, G must be fixed point free in its action on B̂. We

conclude that the b̂s are all translates of one another: B̂ =
{
b̂g | g ∈ G

}
, for

any b ∈ B. Thus for any block, we see that

b̂b̂(−1) =
∑
g∈b

b̂g−1

So b̂b̂−1 is a sum of k of the b̂′s, all of which contain 1G. By the definition
of ∆, every non-identity element of G occurs λ times in these k blocks; we
have shown that

b̂b̂−1 = (k − λ) + λG.
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In particular, b̂b̂−1 is constant on the non-identity elements of G. It is stan-
dard to refer to the underlying set of b̂ as a difference set inG. This discussion
leads us to the following definition and theorem.

Definition 11. Let G be a group of order v, and let D be a k-subset of G.
We say that D is a (v, k, λ)-difference set in G if for each g 6= 1 ∈ G, there
exist precisely λ pairs of elements di, dj ∈ D such that did

−1
j = g. We say

that D is nontrivial if v−1 > k > λ > 0. If D is a difference set in G, then so
too is G−D. So, up to replacing D by its complement in G, we can assume
that a (v, k, λ)-difference set has k ≤ v

2
.

The next theorem follows from our discussion of difference sets.

Theorem 12 (Theorem VI.1.6, [3]). Suppose G contains a (v, k, λ)-difference
set D. Then there exists a symmetric 2-(v, k, λ) design on which G acts reg-
ularly. Conversely, a symmetric 2-(v, k, λ) design on which G acts regularly
corresponds to a (v, k, λ)-difference set in G.

Remark 13. Let ∆ be a 2-symmetric design. Note that Aut(∆) can contain
many conjugacy classes of regular subgroups which are isomorphic as abstract
groups. Let Ri (i = 1, 2) be regular subgroups of Aut(∆), and let Di be the
difference set in Ri constructed as in equation (2). If R1 and R2 are Aut(∆)-
conjugate, then there is an isomorphism α : R1 → R2 such that α(D1) is
equivalent to D2. On the other hand, if R1 and R2 are isomorphic but not
Aut(∆)-conjugate, then there need not be such an isomorphism α.

Definition 14. We call a map ϑ : G → G an antiendomorphism of G if
ϑ (gh) = ϑ (h)ϑ (g), for all g, h ∈ G. An antiautomorphism is a bijective
antiendomorphism.

We denote the group consisting of all automorphisms and antiautomor-
phisms of G by AntiAut (G). We observe that Aut (G) is a normal subgroup
of index at most 2 in AntiAut (G), and that this group is generated by
Aut (G) and the inversion map. (Thus AntiAut(G) = Aut(G) if and only if
G is abelian.)

Since there is no consensus in the literature on when two difference sets
D1 and D2 are equivalent, give our own definition.

Suppose that D is a difference set in G. Let ϑ ∈ AntiAut(G) and g ∈ G.
Then it is easily verified that Dϑ and Dg are difference sets in G.
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Definition 15. Difference sets D1 and D2 in G are equivalent if there exist
g ∈ G and σ ∈ AntiAut(G) such that D1 = Dσ2 g.

Equivalently, D1 and D2 are equivalent as difference sets if and only if
they lie in the same orbit of G×AntiAut(G) under the action D·(g, σ) = Dσg.
The stabilizer under this action is the multiplier group, discussed further in
the next section.

Our definition of equivalence differs slightly from others in the literature,
(e.g. p.77 of [13]). Usually σ is required to be an automorphism of G. Our
inclusion of antiautomorphisms removes the distinction between left and right
multiplication in nonabelian groups, in particular, gD = Dσg−1 is equivalent
to D under our definition.

Just as for the underlying 2-designs, we refer to a difference set with
parameters (4t − 1, 2t − 1, t − 1) as Hadamard. We obtain a Hadamard
matrix from such a difference set in two steps: given a (4t− 1, 2t− 1, t− 1)-
difference set D we first construct the symmetric 2-design underlying D, then
we apply Lemma 7 to obtain a Hadamard matrix.

In fact our principal objective in studying difference sets with these pa-
rameters is to obtain new families of Hadamard matrices. We will need some
basic results on multipliers of difference sets in later sections, which we in-
troduce now. This will be followed by a discussion of the known families of
Hadamard difference sets.

3.1 Multipliers

Let G be a group containing a (v, k, λ)-difference set D, and let ∆ be the
underlying 2-design. So Aut(∆) contains a regular subgroup R isomorphic
to G. The multiplier group of D is essentially the normalizer in Aut(∆) of
R. This can, in some sense, be considered the intersection of Aut(∆) and
AntiAut(R).

The standard exposition of the theory of multipliers is normally in terms
of finite abelian groups. Many important results on multipliers rely on the
isomorphism between a finite abelian group and its character group, and then
use algebraic number theory to derive conclusions. Such an approach is not
valid with non-abelian groups. We give our exposition in terms of certain
automorphisms of the underlying symmetric design of a difference set. First
we fix some notation.
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Definition 16. Let D be a difference set in G. The right multiplier group of
D, M(D), is the subgroup of AntiAut(G) consisting of antiautomorphisms φ
such that Dφ = Dg for some g ∈ G. The elements of M(D) are called right
multipliers of D.

Remark 17. We consider difference sets D1 and D2 in G to be equivalent if
they lie in the same G×AntiAut(G)-orbit under the action D · (g, σ) = Dσg.
We observe that the elements of M(D) are in bijection with the stabilizer of
D under the action of G× AntiAut(G).

We warn the reader that our definition of multiplier is somewhat non-
standard in its use of antiautomorphisms. It coincides with the usual def-
inition of multipliers for abelian difference sets, but may be larger in the
nonabelian case. Let G be a group containing a difference set D, and
let φ ∈ Aut(G). Hall ([12, Section 11.4]) defines a multiplier of D to be
Dφ = gDh for some g, h ∈ G. By allowing φ to be an antiautomorphism, we
remove the distinction between left and right multipliers.

There seems to be some confusion in the literature over the terminology
used for multipliers. The term multiplier originally refers to automorphisms
of cyclic groups written additively, in which all automorphisms take the form
x 7→ tx for some t co-prime to the group order. As soon as one considers
more general abelian groups, one finds multipliers not of this form, and so
one creates the distinction between numerical and non-numerical multipliers.
The concept of a numerical multiplier for a nonabelian group is rather an
artificial one, and is inconsistently interpreted in the literature.

The following results relating the multiplier group of D to the automor-
phism group of Aut(∆) are of fundamental importance in the theory of dif-
ference sets. Note that we do not require the group G to be abelian.

Theorem 18 (Theorem VI.2.18, [3]). Let ∆ be the underlying symmetric
design of a difference set D ⊂ G. Then, identifying G with its right regular
representation in Aut(∆), we have that M(D) ∼= NAut(∆)(G)/G.

Theorem 19 (Theorem VI.2.19, [3]). Let D be a difference set in G and
let K ≤ M(D). Suppose that |K| is coprime to |G|. Then there exists a
translate of D which is fixed by every multiplier in K.

Theorem 19 implies that, up to equivalence, D is the union of K-orbits of
G. This result often allows us to construct difference sets with relative ease,
given some suitable subgroup of M(D). We use this result in Section 4.2 to
derive the uniqueness of the Paley difference sets.
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3.2 Cyclotomy

The theory of cyclotomy is essentially a study of generalizations of the Paley
difference sets. The main goal of the theory is the determination of neces-
sary and sufficient conditions on a prime power q for the eth powers in the
multiplicative group F∗q to form a difference set in the additive group (Fq,+).
One may modify this problem to consider unions of cosets of eth powers in
F∗q, or the eth powers with 0, etc. There is also a theory of generalized cyclo-
tomy, which considers more generally difference sets in direct sums of additive
groups of fields. A general reference for this material is the monograph of
Storer [25].

Definition 20. Let Fq be a finite field, q = ef + 1, and let α be a primitive
element of Fq. Then the (non-zero) eth powers of Fq are precisely those
elements of Fq which lie in the unique subgroup U0 of index e and order f in
F∗q. The cosets of the eth powers are called the eth cyclotomic classes of Fq.

We denote by (i, j)e the number of solutions in Fq to the equation

αs + 1 = αt

where s ≡ i mod e and t ≡ j mod e. Then {(i, j)e | 0 ≤ i, j ≤ e} is the set
of cyclotomic numbers of Fq of order e.

Necessary and sufficient conditions for cosets of the eth powers in F∗q to
form a difference set can be described entirely in terms of the cyclotomic
numbers of order e. All results on cyclotomic difference sets may be consid-
ered generalizations or special cases of the following theorem, due originally
to Emma Lehmer.

Theorem 21 (Theorem 1, [25]). The eth powers in F∗q form a difference set
in (Fq,+) if and only if for all 0 ≤ i ≤ e− 1

(i, 0)e =
f − 1

e
.

Computations with cyclotomic numbers are made feasible by the following
identities.

Theorem 22 (pp. 177-178, [12]). The eth cyclotomic numbers of Fq obey
the following identities:

• (i, j)e = (i+ k, j + k)e
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• (i, j)e = (−i, j − i)e

•
∑e−1

j=0(i, j) = f − ni where n0 = 1 if f is even, n e
2

= 1 if f is odd, and
ni = 0 otherwise.

4 Families of Hadamard difference sets

In this section we consider the four families of Hadamard difference sets
discussed in [2] and [12]. We describe each in turn.

4.1 Singer difference sets

Let PGn(q) be the n-dimensional projective geometry over Fq. There is a
natural duality between k-dimensional and (n− k)-dimensional subspaces of
PGn(q). In particular, every statement about k-dimensional subspaces has
a dual statement about (n− k)-dimensional subspaces.

Now, the intersection of two hyperplanes in PGn(q) is an (n−2)-dimensional

subspace. It is clear that such a subspace contains pn−2−1
p−1

projective points.
The dual of this statement is that every pair of subspaces of projective dimen-
sion 0 (i.e. projective points) is contained in a constant number λ = pn−2−1

p−1

of hyperplanes. Hence, with the usual definition of incidence, we obtain the
classical point-hyperplane designs.

Definition 23. A classical point-hyperplane design is a symmetric design
with parameters ( q

n−1
q−1

, q
n−1

q−1
, q

n−2

q−1
), with points and blocks given by the (pro-

jective) points and hyperplanes respectively of PGn(q).

We recall Singer’s Theorem on the automorphism group of a projective
space.

Theorem 24 (Singer, [3], Theorem III.6.2). The group PGLn(q) contains a
cyclic subgroup of order qn−1

q−1
acting regularly on the points and regularly on

the hyperplanes of the projective geometry PGn(q). Such a cyclic subgroup is
called a Singer cycle.

As a corollary of Theorem 12, we obtain the following.

Corollary 25. The cyclic group of order qn−1
q−1

contains a difference set in-

duced from the point-hyperplane design of PGn(q).
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We are interested in the case q = 2: such a difference set has parameters
(2n − 1, 2n−1 − 1, 2n−2 − 1). Note that the groups GLn(2), SLn(2), PSLn(2)
etc. all coincide.

Furthermore, since PGn(2) is obtained by deleting the origin from an
n-dimensional vector space over F2, in this special case we can define the
Singer difference set directly in terms of the non-zero elements of F2n .

Definition 26. Let q = 2n. We define the trace function on Fq to be the

map x 7→
∑n−1

i=0 x
2i . The elements of F∗q of trace zero form a difference set in

F∗q. (See Theorem 2.1.1 of [23] for a proof.) Such a difference set is known as
a Singer difference set. A Sylvester Hadamard matrix is a Hadamard matrix
developed from a Singer difference set.

The Sylvester Hadamard matrices may also be constructed directly. In-
deed Sylvester’s original construction of the matrices that now bear his name
was as the Kronecker powers of the matrix(

1 1
1 −1

)
.

It is clear that there exists a Sylvester Hadamard matrix of order 2n and
a Singer difference set in the cyclic group of order 2n − 1 for any value of
n. In the remainder of this section, we consider the automorphism groups
of the Singer 2-designs and Sylvester Hadamard matrices. As a consequence
we determine the full multiplier group of a Singer difference set. While these
arguments can as easily be given for arbitrary q, we restrict our attention
to the case q = 2 since that is all that will be required in the remainder of
this paper. We refer the reader to Chapter 3 of [23] for further discussion of
Singer difference sets.

Theorem 27 (Theorem 2.26, [1]). Let F be any field, and n ≥ 3 a natural
number. Then PΓLn(q) is the full automorphism group of the projective
geometry PGn(q).

Now, an automorphism of PGn(q) preserves dimension and incidence of
subspaces. Hence PΓLn(2) = PSLn(2) has a faithful induced action on the
Singer design with parameters (2n−1, 2n−1−1, 2n−2−1). On the other hand,
the automorphism group can be no larger. By [17], PSLn(2) is maximal in
S2n−1, and since the automorphism group preserves some nontrivial incidence
structure, it cannot be S2n−1.

12



Theorem 28. Let ∆ be the n-dimensional point-hyperplane design over F2.
Then Aut(∆) ∼= PSLn(2).

From this theorem, we easily establish some well known properties of the
Singer difference sets.

Corollary 29. All Singer difference sets in F∗2n are equivalent.

Proof. All Singer cycles in PSLn(2) are conjugate. By Remark 13, it follows
that all cyclic difference sets generated from a point-hyperplane design are
equivalent.

Corollary 30 (cf. Proposition 3.1.1, [23]). The multiplier group of the Singer
difference set in F∗2n is of order n, generated by the Frobenius automorphism.

Proof. We use the definition of the Singer difference set. It is clear that
the Frobenius automorphism of F2n preserves the trace, and hence is an
automorphism of the difference set of order n.

By Theorem II.7.3 of [14], the normalizer of a Singer cycle in PGLn(q)
is of order 2nn, and the quotient by the Singer cycle is cyclic of order n. So
the full multiplier group is generated by the Frobenius automorphism.

To conclude this section, we construct the full automorphism group of
the Sylvester Hadamard matrix of order 2n.

Theorem 31 (cf. p.258, [6]). Let H be a Sylvester Hadamard matrix of order
2n. Then the full automorphism group of H is (Z(Aut(H))×Cn

2 )oAΓLn(2).

Proof. Observe that a line over F2 consists of 2 points. Hence in this special
case, it is possible to construct the affine geometry AGn(2) directly from
PGn(2). To do this, we add a new point, 0, which is incident with all
(projective) hyperplanes, and adjoin the translates of all of these hyperplanes.
Notice that the hyperplanes occur in complementary pairs Hi and H∗i , where
every point of AGn(2) is incident to exactly one of Hi and H∗i . Now, the
ith column of the Sylvester matrix of order 2n has jth entry +1 if point j
is incident with Hi, and −1 otherwise. Thus we see that AGLn(2) has an
induced action on the set of rows of H. In fact, this action is faithful, and
since AGLn(2) is maximal in S2n (see [17]), it follows that AH ∼= AGLn(2).

Now, AH is a doubly transitive permutation group. A theorem of Ito’s
asserts that AH that the kernel of the projection ν : Aut(H)→ AH is a direct
product of Z(Aut(H)) and an elementary abelian group acting regularly on
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the columns of H. The elementary abelian group commutes with the socle
of AGLn(2). Thus the full automorphism group of H is

C2 × (Cn
2 × Cn

2 ) oGLn(2).

Here the first factor is the centre Aut(H). The action of GLn(2) is on one
factor Cn

2 is the conjugate-transpose of the action on the other (though note
that conjugation is trivial in this case).

Several other families of difference sets with parameters (2n − 1, 2n−1 −
1, 2n−2 − 1) are known. Such difference sets are said to have classical pa-
rameters, and their study is closely linked to geometry over field extensions
of F2. Important examples are the Gordon-Mills-Welsh construction and
the Maschetti hyperoval construction. A paper by Dillon and Dobertin uses
Fourier analysis in the additive group of F2n to give a unifying construction
for all known families of Hadamard difference sets with classical parameters
[8].

4.2 Paley difference sets

Theorem 32 (Paley, [22]). The non-zero quadratic residues of Fq form a
difference set in Fq, q ≡ 3 mod 4.

Proof. We use cyclotomy. From the first part of Theorem 22, (0, 0)2 = (1, 1)2.
From the second part (1, 1)2 = (1, 0)2, and from the third, (0, 0)2 + (0, 1)2 =
q − 1 and (1, 0)2 + (1, 1)2 = q − 2. We conclude that (0, 0)2 = (1, 0)2 = q−1

2
.

Thus by Theorem 21, the quadratic residues of Fq form a difference set.
Writing q = 4t− 1, we find its parameters to be (4t− 1, 2t− 1, t− 1).

Definition 33. The difference set consisting of the quadratic residues of
Fq is a Paley difference set. A Paley design is the underlying symmetric
2-design of a Paley difference set, and a Paley matrix is a Hadamard matrix
developed from a Paley difference set (these are generally known as Type I
Paley matrices.)

The Paley matrices are well studied. In [11], Hall demonstrates that
PSL2(q) is a subgroup of the automorphism group of the Paley matrix of
order q+1. This result was later extended by Kantor, and then by de Launey
and Stafford, who determined the full automorphism group.
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Theorem 34 (Kantor, [15]; cf. de Launey & Stafford, [7]). Let H be a Paley
matrix of order pn+1 > 12. Then Aut(H) is an extension of C2 by PΣL2(pn)
(that is, PSL2(pn) extended by field automorphisms).

As a corollary of this result, we find the multipliers of a Paley difference
sets for q > 11. (The smaller cases are exceptional, and will be dealt with
later.)

Lemma 35. The multiplier group of the Paley difference set in Fq is gen-
erated by the quadratic residues of Fq and the Frobenius automorphism of
Fq.

Proof. The stabilizer of a point in AH ∼= PΣL2(q) is a subgroup G of index
2 in the group AΓL1(q). Since G cannot have a transitive action on q + 1
points, this is the full automorphism group of the Paley design (see Theorem
10 of [20]). The group G contains a regular elementary abelian subgroup R,
which we identify with (Fq,+). Now, by Theorem 18, the multiplier group
of the Paley difference set is the normalizer in G of R. But R is normal in
G. The result follows.

Caution must be exercised in reading the literature: references such as [2]
address only cyclic difference sets. One finds in Theorem 5.19 of that work,
a proof that the only multipliers of a Paley difference set are the quadratic
residues. This does not contradict our result: the Paley construction yields
a cyclic difference set if and only if the field Fq is prime in which case the
Frobenius automorphism is trivial.

We observe that the Paley difference sets have the quadratic residues as
multipliers. An application of Theorem 19 shows that these are the only
non-trivial difference sets with this property. Suppose that D is a non-trivial
difference set in (Fq,+) (so 1 ≤ |D| ≤ q−1

2
) for which H =

〈
x2 | x ∈ F∗q

〉
≤

M(D). Observe that Theorem 19 applies, since |H| = 2t−1 and |G| = 4t−1
are coprime. Thus there exists a translate ofD, D+k say, which is fixed by H.
Now, if D+k contains a quadratic residue, it contains all quadratic residues,
and if it contains a quadratic non-residue, then it contains all the quadratic
non-residues. Thus D+ k either consists entirely of quadratic residues, or of
quadratic non-residues. In either case D is equivalent to a Paley difference
set.
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4.3 Sextic residue difference sets

The sextic residue difference sets were discovered by Marshall Hall, and are
a result of the theory of cyclotomy. In this case the associated calculations
in showing that certain cosets of the sextic residues form a difference set are
lengthy and will be omitted. A proof can be found in Section 11.6 of [12].

Definition 36. Let q be a prime power of the form x2+27 for some integer x.
Denote by C the multiplicative group of Fp. Let U be the unique subgroup
of index 6 in C and denote by µ a preimage in Fp of a generator of C/U .
Then U ∪ µU ∪ µ3U forms a difference set in (Fp,+), generally known as
a Hall sextic residue difference set or HSR difference set for short. The
underlying 2-design is a HSR-design, and the associated Hadamard matrix
is a HSR-Hadamard matrix.

The following theorem of Marshall Hall provides an important character-
ization of the HSR and Paley difference sets.

Theorem 37 (Theorem 11.6.7, [12]). Suppose that D is a difference set in
an elementary abelian group of order q ≡ 7 mod 12 which admits the sextic
residues as multipliers. Then either D is equivalent to a Paley difference set,
or D is equivalent to a HSR difference set.

Hall’s construction requires a prime power of the form x2+27 = pα. There
are many primes of this form. More generally, the Diophantine equation
x2 + C = yn has been the subject of much study [5]. The theory of linear
forms in logarithms implies that there exists a constant depending only on C
bounding max {|x|, |y|, n}; thus there are at most finitely many proper prime
powers of the form x2 + 27. Complete solutions sets of solutions are known
for many values of C, but we are not aware of a solution in the literature for
the case C = 27. Section 6.7 of [4] is also devoted to this equation. It would
appear that the tools for the analysis of this equation are available; but lie
beyond the scope of this paper. We pose this as a research problem.

Problem 38. Find all solutions of the equation x2 + 27 = pα for α > 1.

To our knowledge the automorphism groups and full multiplier groups of
the HSR-designs and HSR-Hadamard matrices have never been established.
Computational evidence suggests the following. We leave its verification as
a research problem, however.
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Problem 39. Let p a prime of the form x2 + 27, and let D be the HSR
difference set in (Fp,+). Let ∆ be the underlying 2-design, and H be the
associated Hadamard matrix. Then the sextic residues are multipliers of D.
We conjecture that for p > 31 this is the full multiplier group. Furthermore,
we conjecture that (Fp,+) / Aut(∆), and that Aut(H) ∼= C2 × Aut(∆).

With respect to Problem 39, the following is known. Corollary 21 of [20]
shows that the automorphism group of H is not doubly transitive. Then a
result of Burnside implies that Aut(H) is solvable.

Theorem 4.8 of [19] shows that |AH : Aut(∆)| = 1. So to determine
Aut(H) in terms of Aut(∆) it suffices to calculate Ker(ν).

Then to determine Aut(∆) and hence the multiplier group of ∆, an anal-
ysis of the transitive soluble subgroups of Sp is required.

4.4 Twin prime power difference sets

By twin prime powers, we mean a pair of odd positive integers, q and q + 2,
each of which is a prime power. We note that twin prime power difference
sets are a generalization of twin prime difference sets, which were seemingly
first discovered by Gruner in 1939. As Baumert observes, these difference
sets ‘seem to belong to that special class of mathematical objects which are
prone to independent rediscovery’.

Definition 40. Let q and q+2 be twin prime powers, and let 4n−1 = q(q+2).
Denote by χ the standard quadratic residue function. Then

{(g, 0) | g ∈ Fq}
⋃
{(g, h) | g ∈ Fq, h ∈ Fq+2, χ (g)χ (h) = 1}

is a (4n − 1, 2n − 1, n− 1)-difference set in (Fq,+) × (Fq+2,+). We refer to
such a difference set as a TPP difference set.

Theorem VI.8.2 of [3] proves that this construction yields a difference set.
With Richard M. Stafford, the author considered these difference sets in

some detail in [21]. To our knowledge the full automorphism groups of the
TPP-matrices and of the underlying 2-designs are as yet unknown. We do
have the following information however, which informs the problem below.

Let q = pn, and q + 2 = rm, where p and r are prime, and let D be the
TPP-difference set of order q(q+2). Denote an arbitrary element of Fq×Fq+2

by (x, y). Then ∆ has automorphisms of the following types.
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• ta,b : (x, y) 7→ (x+ a, y + b) for a ∈ Fq and b ∈ Fq+2,

• mc,d : (x, y) 7→ (cx, dy) for c ∈ F∗q, d ∈ F∗q+2 and χ(c)χ(d) = 1,

• σp : (x, y) 7→ (xp, y), σr : (x, y)→ (x, yr).

Problem 41. Let H be the Hadamard matrix constructed from ∆. Show
that the full automorphism group of ∆ is

Γ =
〈
ta,b,mc,d, σp, σr : a ∈ Fq, b ∈ Fq+2, c ∈ F∗q, d ∈ F∗q+2, χ(c)χ(d) = 1

〉
,

and that Aut(H) ∼= C2 × Γ. Show that the full multiplier group of ∆ is
generated by

〈
mc,d, σp, σr : c ∈ F∗q, d ∈ F∗q+2, χ(c)χ(d) = 1

〉
.

Again, it is known that the automorphism group ofH is not doubly transi-
tive. We observe that there are only two non-trivial systems of imprimitivity
preserved by Γ. So a careful analysis of the cases of the O’Nan-Scott theorem
should suffice to find the full automorphism groups of the TPP-Hadamard
matrices, the underlying two designs and hence the multiplier groups of the
TPP-difference sets.

5 Baumert’s remark

Definition 42. Let D be a (4t− 1, 2t− 1, t− 1)-difference set. We note that
all of the families discussed in Section 4 give rise to Hadamard matrices of
order 4t where one of the following holds:

• t = 2n for some n. A difference set of this type has classical parameters.

• 4t− 1 is a prime power. A difference set of this type has prime power
parameters.

• 4t − 1 = (k + 1)(k − 1) where k + 1 and k − 1 are prime powers. A
difference set of this type has TPP parameters.

Note that a HSR difference set has prime power parameters, and that
prime power and classical parameters coincide precisely at Mersenne primes.
Note that there may exist additional difference sets at these orders inequiv-
alent to all of these families. Thus there exist 6 inequivalent difference sets
in C127: a Singer difference set, a Paley difference set, a HSR difference set
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and three others. As previously observed, Hadamard difference sets have
been most extensively investigated in cyclic groups. Non-existence results
for difference sets and extensive computer searches have shown that for all
but a handful of orders < 1000, a cyclic Hadamard difference set of order
4t − 1 exists only if 4t − 1 belongs to one of the families listed above. This
motivates the following conjecture, perhaps first explicitly stated in [9].

Conjecture 43. There exists a cyclic Hadamard difference set in C4t−1 if
and only if 4t− 1 is of one of the types of Definition 42.

To our knowledge the problem for general groups of order 4t− 1 has not
received as much attention. Thus we pose this as a research problem.

Problem 44. Investigate whether there exists a group of order 4t−1 < 1000
which contains a Hadamard difference set but does not have parameters of
one of the types listed in Definition 42.

In [2, pp. 90-91], Baumert gives a discussion of cyclic Hadamard dif-
ference sets and equivalence for such difference sets. This discussion is not
accompanied by a proof, but has been frequently cited in the literature. We
are not aware of any proof appearing the literature. We outline Baumert’s
conclusions. Then we give our main result, which generalizes Baumert’s re-
sults to the four families of (not necessarily cyclic) difference sets considered
in Section 4. The remainder of the paper consists of a proof of this result.
Baumert’s book [2] contains the following points.

1. The known (as of c. 1970) families of cyclic Hadamard difference sets
all have parameters of the types given in Definition 42.

2. These parameters can intersect: at Mersenne primes for the classical
and prime power parameters, and uniquely at 15 for classical and TPP
parameters. Furthermore, the only Mersenne primes of the form x2+27
are 31, 127 and 131071.

3. The difference sets of the families listed in Section 4 are inequivalent
except for v = 3, 7, 15, 31, but the Singer and Paley difference sets are
inequivalent for v = 31.

We now give our main result; note that we do not assume that difference
sets are cyclic.
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Theorem 45. Suppose that D1 and D2 are (4t − 1, 2t − 1, t − 1) difference
sets of Singer, Paley, TPP or HSR type. Then D1 and D2 are equivalent if
and only if one of the following occur:

1. v ∈ 3, 7, D1 is Singer and D2 is Paley.

2. v = 15, D1 is Singer and D2 is TPP.

3. v = 31, D1 is Singer and D2 is HSR.

6 Proof of the main result

Our proof is broken into a number of preliminary results. We begin by
establishing the orders at which the parameter types of Definition 42 coincide.
Then at each of these coincidences, we establish equivalence or inequivalence
of the relevant difference sets.

6.1 Number theoretic preliminaries

We begin with a number of well known results from number theory, from
which we derive straightforward conclusions. The material relating to TPP-
parameters has previously appeared in [21], though we include it again here
for completeness. The material relating to HSR-difference sets has appeared
in [20].

Theorem 46 (Zsigmondy). Let a, b and n be positive integers such that
gcd(a, b) = 1. Then there exists a prime p with the following properties:

• p | an − bn,

• p - ak − bk for all k < n,

with the following exceptions: a = 2, b = 1, n = 6; and a+ b = 2k, n = 2.

A proof of the following result may be found in [21].

Corollary 47 (Lemma 16, [21]). The number 22n − 1 is not a product of
twin prime powers, unless n = 2 or n = 3.

Theorem 48 (Mordell, [18]). The only solutions of the Diophantine equation
2n = x2 + 7 are n = 3, 4, 5, 7, 15.
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Corollary 49. Suppose that p = 2n − 1 is a Mersenne prime satisfying
p = x2 + 27 for some positive integer x. Then p ∈ {31, 127, 131071}.

Proof. By Theorem 48, the only solutions to the equation 2n = 4x2+28 occur
when n ∈ {5, 6, 7, 9, 17}. But of these, the only ones such that p = 2n − 1 is
prime are n ∈ {5, 7, 17}.

We use these number theoretic results to determine necessary and suffi-
cient conditions for the three parameter types described above.

Lemma 50. The classical and prime power parameters coincide at Mersenne
primes. The classical and TPP parameters coincide only for 4t−1 ∈ {15, 63}.
The prime power and TPP parameters do not overlap.

Proof. We deal with each proposition in turn. First we consider classical and
prime power parameters. 2n−1 is a prime power if and only if it is prime. For
suppose n is odd: then 3 | 2n−1, so 3α = 2n−1. An application of Theorem 46
forces n = 2. Otherwise, n = 2m is even, in which case pα = (2m−1)(2m+1).
Assuming that this factorization is non-trivial leads to a contradiction. Thus,
classical and prime power parameters overlap precisely at Mersenne primes.

The claim about classical and TPP parameters follows immediately from
Corollary 47.

Finally, the prime power and TPP parameters do not overlap because
4t− 1 cannot be simultaneously a prime power and a product of twin prime
powers.

6.2 Inequivalence results

We must consider the following cases.

1. Paley and HSR difference sets at primes of the form x2 + 27.

2. Paley and Singer difference sets at Mersenne primes.

3. The HSR and Singer difference sets at p ∈ {31, 127, 131071}.

4. Singer and TPP difference sets at 4t− 1 ∈ {15, 63}.

We deal with each case in turn.
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Lemma 51. Let D1 and D2 be Paley and HSR difference sets in (Fp,+)
respectively. Then D1 and D2 are inequivalent.

Proof. With the notation of Definition 36, we have D1 = U ∪µ2U ∪µ4U and
D2 = U ∪ µU ∪ µ3U .

We must show that there are no a, b ∈ Fp such that D2 = aD1 − b, or
equivalently b−1D2+1 = ab−1D1. But observe that ab−1D1 = ±D1 depending
on whether or not ab−1 is a quadratic residue. Likewise, b−1D2 remains a
union of cosets of U : b−1D2 = µiU ∪ µi+1U + µi+3U say.

Suppose that ab−1 is a quadratic residue. Then, denoting the cyclotomic
number (i, j)6 by (i, j), we need only show that

∑
k∈0,1,3

∑
j∈0,2,4(i + k, j) 6=

0, p−1
2

. Now, applying the identities of Theorem 22, we see that

(p− 1)

6
≤ (i, 1) + (i, 3) + (i, 5) +

5∑
j=0

(0, j) ≤ 2(p− 1)

6
.

If ab−1 is a non-residue, it suffices to replace i by i + 1 throughout. The
argument is then identical. Thus (p−1)

6
≤ |D2 ∩ aD1 − b| ≤ 2(p−1)

6
for any

a ∈ F∗p, b ∈ Fp. The result follows.

We now consider Paley and Singer difference sets.

Lemma 52. Let p be a Mersenne prime. Then the Paley and Singer differ-
ence sets in Cp are equivalent if and only if p ∈ {3, 7}.

Proof. Observe that if D1 and D2 are equivalent difference sets in G then
by Theorem 18 M(D1) and M(D2) are conjugate in Aut(G). We consider
the orders of the multiplier groups of the Singer and Paley difference sets to
establish the inequivalence result.

The multiplier group of the Singer difference set in F∗2n consists only of
the powers of 2 by Theorem 30, and so has order n. On the other hand, the
multiplier groups of the Paley difference set contains the quadratic residues.
Thus the multiplier group of the Singer difference set has order at least p−1

2
.

We solve 2n−2
2
≤ n, to find that the Singer and Paley families can coincide

only if n ≤ 3. So the Singer and Paley families can coincide only for 2n ≤ 8.
Finally, we observe that a (4t− 1, 2t− 1, t− 1) difference set with t = 1

is trivial; and up to equivalence consists of the identity in C3. Thus the
Singer and Paley difference sets at this order trivially coincide. Similarly,
calculating the Singer and Paley difference sets in C7 (written additively)
according to the definitions both give {1, 2, 4}.
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The argument for the HSR and Singer difference sets is similar, though
the proof of isomorphism in the case p = 31 is interesting. In the following
result, note that the assumption that there exists a HSR difference set means
that we may assume that both difference sets are contained in a cyclic group
of prime order p ≥ 31.

Lemma 53. Let p be a Mersenne prime of the form x2 +27. Then the Singer
and HSR difference sets in Cp coincide if and only if p = 31.

Proof. Arguing as in Lemma 52, we find that the multiplier group of a HSR-
difference set has order at least p−1

6
. Solving the equation 2n−2

6
≤ n, we find

that n ≤ 5. Thus the only possibility for equivalence here is when p = 31.
Recall that by Theorem 30, the powers of 2 are the multipliers of the Singer
difference sets. We observe a curious phenomenon: the sextic residues of F31

are precisely the powers of 2 in F31. So by Hall’s Theorem 37, the Singer
difference set in F31 is equivalent either to the Paley difference set or to the
HSR difference set in (F31,+). Now Lemma 52 rules out the Paley difference
set, and the result follows.

Finally, we consider the TPP and Singer difference sets.

Lemma 54. The TPP and Singer difference sets coincide if and only if
v = 15.

Proof. By Lemma 47 we need consider only the cases v = 15 and v = 63.
Now, if v = 63, then the TPP difference set is contained in a group isomorphic
to C2

3 × C7, while the Singer difference set is cyclic. Thus they are trivially
inequivalent under our definition of equivalence for difference sets.

When v = 15, we construct an isomorphism explicitly. Observe that,
relative to a primitive root of the polynomial x4 + x3 + 1, the Singer differ-
ence set in C15 is {0, 1, 2, 4, 5, 8, 10}. The TPP difference set in C3 × C5 is
{(0, 0), (1, 0), (2, 0), (1, 1), (1, 4), (2, 2), (2, 3)}. The required isomorphism is
then (1, 1) 7→ 1.

This concludes the proof of the main theorem. We observe that we
have not proved that the underlying 2-designs of the difference sets con-
sidered in Theorem 45 are necessarily inequivalent. This would imply that
the Hadamard matrices generated from these difference sets are inequivalent
except for the exceptional isomorphisms listed in Theorem 45. Of course this
result would follow from solutions of Problems 39 and 41. Another approach
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to this problem is via the Fp-ranks of the incidence matrices of the underlying
2-designs. For example some results of this type are given in Section VI.9 of
[3].
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