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Abstract

In this paper, we show that exactly one Hadamard matrix constructed using
the twin prime power method is cocyclic. We achieve this by showing that

the action of the automorphism group of a Hadamard matrix developed
from a difference set induces a 2-transitive action on the rows of the matrix

or is intransitive. We then use Ito’s classification of Hadamard matrices
with 2-transitive automorphism groups to derive a necessary condition on
the order of a cocyclic Hadamard matrix developed from a difference set.

This work answers a research problem posed by K.J. Horadam, and exhibits
the first known infinite family of Hadamard matrices which are not cocyclic.
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1. Introduction

Cocyclic development was introduced to the study of combinatorial de-
signs by de Launey and Horadam in the early 1990s. The relation between
group development of matrices and the existence of regular subgroups of the
automorphism group of that matrix is well known. Cocyclic development
generalises this concept to a study of the action of quotient groups on dis-
tinguished submatrices of a group developed matrix. In [6, p.135, Research
Problem 39], Horadam asks whether the Hadamard matrices derived from
twin prime power designs are cocyclic. In this paper we answer this ques-
tion in the negative. Several constructions for Hadamard matrices have been
shown to always produce cocyclic matrices. This is the first proof that a
construction method for Hadamard matrices never yields cocyclic Hadamard
matrices.

In Section 2 we give a very brief overview of the theory of cocyclic devel-
opment. Then in Section 3, we discuss difference sets, their automorphism
groups, and their relation to Hadamard matrices. In Section 4 we prove our
main theorem, which relies in particular on work of Ito. In Section 5 we
apply our result to twin prime power difference sets to show that exactly
one Hadamard matrix developed from a twin prime power difference set is
cocyclic. We conclude with a research problem.

2. Cocyclic Development

In this section, we briefly recall some facts about cocyclic development. A
convenient reference that contains proofs of the results listed in this section
is [10]. For definitive coverage of the theory, we refer the reader to [3]. The
other main purpose of this section is to recall such facts as we require about
the automorphism group of a cocyclic matrix, and to describe a particular
induced action of the automorphism group. First we recall the definition of
an automorphism of a Hadamard matrix.

Definition 1. Let H be a Hadamard matrix. An automorphism of H is a
pair (P,Q) of {±1}-monomial matrices such that

H = PHQ>.

The automorphisms of H form a group under the operation

(P1, Q1)(P2, Q2) = (P1P2, Q1Q2).
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We denote the group of all automorphisms of H as Aut(H).

We denote by PermAut(H) the subgroup of Aut(H) consisting of all
pairs (P,Q) of permutation matrices. This concept generalises naturally to
matrices over an arbitrary ring: we say that the ordered pair of permutation
matrices (P,Q) is an automorphism of M if PMQ> = M . Next, we introduce
what may be loosely described as an action of Aut(H) on H.

Definition 2. Denote the full group of {±1}-monomial matrices of degree
n by M. Every element, X, of M has a unique factorization DXEX where
DX is a diagonal matrix, and EX is a permutation matrix. Now let H be
a Hadamard matrix. Let (P,Q) ∈ Aut(H), and define ν(P,Q) = EP . In
this way (P,Q) induces a permutation on the rows of H. In fact, ν gives a
permutation representation of Aut(H) in the symmetric group on the rows
of H.

It is this action that we mean when we refer to the action of Aut(H) in
the remainder of this paper. Note that a similar action exists on the columns
of the matrix, and our results could be stated with equal validity in that
context. Now we give a definition of group development, which is a special
case of cocyclic development.

Definition 3. Let G be a group of order n and let M be an n × n array
with entries in an abelian group A. We say that M is group developed over
G if there exist a set map φ : G → A and two orderings g1, g2 . . . , gn and
h1, h2 . . . hn of the elements of G such that

M = [φ(gihj)]1≤i,j≤n .

In the remainder of this paper, we shall assume without comment the exis-
tence of suitable orderings for the elements of G, and denote such arrays by
[φ(gh)]g,h∈G, or even [φ(gh)] where the indexing group is understood.

Theorem 4. The matrix M is group developed over G if and only if there
exists a regular subgroup of PermAut(M) isomorphic to G.

Proof. See Theorem 2 of [10].

Definition 5. Let G be a finite group. A binary (2-)cocycle is a map ψ :
G×G→ 〈−1〉 which obeys the following identity for all g, h, k ∈ G.

ψ (g, h)ψ (gh, k) = ψ (g, hk)ψ (h, k)
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An n× n Hadamard matrix H is cocyclic if there exists a group G of order
n, and a cocycle ψ : G×G→ 〈−1〉 such that

H = [ψ (g, h)]g,h∈G .

We say that ψ is a cocycle of H.

This definition generalises naturally to matrices with entries in an arbi-
trary abelian group. There is an analogue of Theorem 4 for cocyclic matrices,
but we do not require that material in this paper. We provide only what is
necessary for our purpose: a proof that, for a cocyclic Hadamard matrix H,
ν(Aut(H)) acts transitively on the rows of H.

Lemma 6. Let H be a cocyclic Hadamard matrix. Then ν(Aut(H)) is tran-
sitive.

Proof. LetH be a cocyclic Hadamard matrix, with cocycle ψ : G×G→ 〈−1〉.
The cocycle equation can be written as

ψ(g, hk) = ψ(g, h)ψ(gh, k)ψ(h, k).

Now define δxay = 1 if y = xa, and 0 otherwise. Define the following monomial
matrices for all a ∈ G:

Pa = [ψ(x, a)δxay ]x,y∈G, Q>a = [ψ(a, a−1y)δxa−1y]x,y∈G.

Then (Pa, Qa) is an automorphism of H for all a ∈ G:

PaHQ
>
a =

[ ∑
z,w∈G

ψ(x, a)δxaz ψ(z, w)ψ(a, a−1y)δwa−1y

]
x,y∈G

=
[
ψ(x, a)ψ(xa, a−1y)ψ(a, a−1y)

]
x,y∈G

= [ψ(x, y)]x,y∈G
= H.

Note that in the second last line we use the cocycle equation, with g = x,
h = a and k = a−1y.

Now, ν((Pa, Qa)) =
[
δxay
]
x,y∈G, and so ν(Aut(H)) contains the subgroup{[

δxay
]
x,y∈G | a ∈ G

}
∼= G acting regularly on the rows ofH. Thus ν(Aut(H))

is transitive on the rows of H.
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3. Hadamard matrices from difference sets

We begin by recalling the standard definition of a difference set.

Definition 7. Let G be a group of order v, and let D be a subset of G
of cardinality k. We say that D is a (v, k, λ)-difference set if it obeys the
following group ring equation:

DD−1 = (k − λ) + λ
∑
g∈G

g.

Let χD denote the characteristic function of D. Then the development of D
is the matrix

Dev(D) = [χD(gh)]g,h∈G.

We abuse notation slightly and define Aut(D) to be PermAut(Dev(D)),
for any difference set D. (Note that this is in fact the automorphism group
of the underlying 2-design of D, cf. [2, Theorem VI.1.6].)

Lemma 8. Let D be a difference set in a group G. Then Aut(D) contains a
regular subgroup isomorphic to G.

Proof. Since
Dev(D) = [χD(gh)]g,h∈G ,

Dev(D) is group developed. It follows from Theorem 4 that a subgroup of
Aut(D) isomorphic to G acts regularly on Dev(D).

In particular, we note that Aut(D) is transitive. The following lemma
describes how a (4n−1, 2n−1, n−1)-difference set gives rise to a Hadamard
matrix, and how the automorphism group of the difference set embeds into
the automorphism group of the Hadamard matrix.

Lemma 9. Let D be a (4n− 1, 2n− 1, n− 1)-difference set. Define J to be
the (4n− 1)× (4n− 1) all ones matrix, and D to be 2 Dev (D)− J . Let 1 to
be the all 1s vector of length 4n− 1. Then

H =

(
1 1

1
>

D

)
is a Hadamard matrix. Furthermore, PermAut(H) is permutation isomor-
phic to Aut(D).
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Proof. Let I be the identity matrix of order 4n− 1. From

Dev(D) Dev(D)> = nI + (n− 1)J,

and the fact that Dev(D) has constant row sum 2n− 1, it follows that

DD> = 4nI − J.

Adding an initial row and column of +1s gives a Hadamard matrix.
Now PermAut(H) fixes the first row and column of H and permutes the

remaining rows and columns amongst themselves. Any such automorphism
is necessarily also an automorphism of Dev(D). In the other direction, we
note that, by definition, any automorphism of Dev(D) induces a permutation
automorphism of H.

4. Main theorem

We are now in a position to prove our main result.

Theorem 10. Let H be a Hadamard matrix arising from a (4t−1, 2t−1, t−
1)-difference set. Then H is cocyclic only if t = 2m or 4t− 1 = pm for some
prime p and integer m.

We begin by showing that the automorphism group of a cocyclic Hadamard
matrix arising from a difference set is necessarily 2-transitive. Our proof will
rely on deep results in the theory of groups, including the Classification of
Finite Simple Groups (CFSG).

Lemma 11. Let H be a Hadamard matrix arising from a (4t−1, 2t−1, t−1)-
difference set. Then H is cocyclic only if ν(Aut(H)) acts 2-transitively on
the rows of H.

Proof. Recall that the action of a permutation group G on a set Ω is 2-
transitive if and only if G is transitive on Ω, and the point stabiliser Gα is
transitive on Ω− α, for any α ∈ Ω.

Suppose H is cocyclic. Then ν(Aut(H)) is transitive by Lemma 6. Fur-
thermore, H is normalised, and so its first row is stabilised by PermAut(H).
By Lemmas 8 and 9, the stabiliser of the first row in ν(Aut(H)) is transitive
on the remaining rows. Hence, ν(Aut(H)) acts 2-transitively on the rows of
H.
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We recall a classical theorem of Burnside, which divides 2-transitive
groups into affine and non-affine types. We recall that the socle of a group
G is the subgroup generated by all non-trivial minimal normal subgroups of
G.

Theorem 12 (Burnside). Let G be a 2-transitive group. Then the socle of G
is either a regular elementary abelian p-group, or a non-regular nonabelian
simple group.

Thus the CFSG yields a classification of 2-transitive groups: see Section
7.7 of [5] for a summary. They fall into 8 infinite families, with 10 exceptional
groups (and some exceptional actions at small orders). Even prior to the
publication of the CFSG, Ito gave a list of all Hadamard matrices with non-
affine 2-transitive automorphism groups [7]. (The CFSG later proved his list
of 2-transitive groups to be complete.) Moorhouse has recently extended this
result to a classification of all complex Hadamard matrices with 2-transitive
automorphism groups [9]. In fact our result is an easy corollary of a result
of Ito’s.

Theorem 13 (Ito). Let Γ ≤ ν(Aut(H)) be a non-affine doubly transitive
permutation group acting on the set of rows of a Hadamard matrix H. Then
the action of Γ is one of the following.

• Γ ∼= M12 and H is the unique Hadamard matrix of order 12.

• PSL2(p
k) E Γ acting naturally on pk + 1 points, for pk ≡ 3 mod 4,

pk 6= 3, 11.

• Γ ∼= Sp6(2), and H is of order 36.

The action considered by Ito is essentially the same as that given in Def-
inition 2. Hadamard matrices with doubly transitive automorphism groups
do exist; examples are furnished in the first two cases by the Paley construc-
tion. A matrix of order 36 with doubly transitive automorphism group is
given in [8] and realises the third case. We observe that, with one exception,
all of the automorphism groups in Ito’s list act 2-transitively on a set of size
4n = pm + 1. The exception, of order 36, is not cocyclic by the classification
of all cocyclic Hadamard matrices of order 36: see [10].

To complete proof of our theorem it suffices to observe that an affine
2-transitive group has by definition an elementary abelian subgroup acting

7



regularly on the point set. Thus if an affine group acts 2-transitively on the
rows of a Hadamard matrix, the matrix is necessarily of order 2m for some
integer m. In the next section we will specialise our results to the case of
twin prime power Hadamard matrices to answer Horadam’s question.

5. Twin prime power difference sets

By twin prime powers, we mean a pair of odd positive integers, q and
q + 2, each of which is a prime power.

We note that twin prime power difference sets are a generalisation of
twin prime difference sets, which were seemingly first discovered by Gruner
in 1939. As Baumert observes, these difference sets ‘seem to belong to that
special class of mathematical objects which are prone to independent redis-
covery’. They seem to be well understood, with Baumert giving a detailed
description of their properties and generalisations in [1, p.131–142]. The twin
prime power case is as follows.

Definition 14. Let q and q+2 be twin prime powers and let 4n−1 = q(q+2).
Denote by Fq the Galois field of size q, and by χ the standard quadratic
residue function. Then

{(g, 0) | g ∈ Fq}
⋃
{(g, h) | g ∈ Fq, h ∈ Fq+2, χ (g)χ (h) = 1} (1)

is a (4n − 1, 2n − 1, n− 1)-difference set in (Fq,+) × (Fq+2,+). We refer to
such a difference set as a TPP-difference set.

For a proof that (1) is indeed a difference set, see Theorem VI.8.2 of [2].
We refer to a Hadamard matrix developed from a TPP-difference set as

a TPP-Hadamard matrix. The main result in this section is that there is
precisely one cocyclic TPP-Hadamard matrix. In our proof of this result we
will have recourse to the following results from elementary number theory.

We observe first that if H is a TPP-Hadamard matrix, then H necessarily
has square order:

q(q + 2) + 1 = (q + 1)2.

Zsigmondy’s theorem, given below, will be used in the proof of the next
lemma.

Theorem 15 (Zsigmondy, [11]). Let a, b and n be positive integers such that
(a, b) = 1. Then there exists a prime p with the following properties:
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• p | an − bn,

• p - ak − bk for all k < n,

except when a = 2, b = 1, n = 6; or a+ b = 2k, n = 2.

Lemma 16. The number 22n − 1 is not a product of twin prime powers,
unless n = 2 or n = 3.

Proof. Assume 22n − 1 is a product of twin prime powers:

22n − 1 = (2n + 1)(2n − 1) = ps1p
r
2.

Without loss of generality, ps1 = 2n − 1. There are two cases to consider:
either 2n ≡ 1 mod 3, or 2n ≡ 2 mod 3.

In the first case, p1 = 3. Then we apply Zsigmondy’s theorem to the
equation 2n − 1 = 3s, to obtain n = 2 and s = 1.

In the second case, p2 = 3, and we have 3r−1 = 2n. Zsigmondy’s theorem
gives us that r = 1 or r = 2. The first of these is a vacuous solution, as it
gives p1 = 1. The second gives n = 3, proving the theorem.

This analysis, together with Lemma 9, gives us the following result.

Corollary 17. Let H be a TPP-Hadamard matrix of order 2m. Then H is
either of order 16 or of order 64.

Theorem 18. Let H be a TPP-Hadamard matrix. Then H is cocyclic if and
only if it is of order 16.

Proof. Let H be a cocyclic TPP-Hadamard matrix of order 4n. Then by
Lemma 11, the automorphism group of H acts 2-transitively on the rows of
H. Then by Theorem 10, we know that either 4n − 1 = pm or n = 2m. We
consider first the non-affine case.

Ito’s two sporadic 2-transitive actions are easily discarded: 11 is not a
product of twin prime powers, and by construction the TPP-matrix of order
36 is not cocyclic, as it has an intransitive automorphism group. This leaves
only the infinite family of matrices acted upon by PSL2(p

k). Recall that
PSL2(p

k) has a unique 2-transitive action on pk + 1 points. These are ruled
out by the following observation: suppose H is a TPP-Hadamard matrix, of
order q(q + 2) + 1. Then

pk = q(q + 2).
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The only solution to this equation in positive integers has p = q = 2, which
is not a valid solution since 8 6≡ 3 mod 4.

In the affine case, via Corollary 17, we have that the order of H is either
16 or 64. Construction of the matrices of these orders then shows that the
one of order 64 is not cocyclic, and that the one of order 16 is cocyclic.
Furthermore, the matrix of order 16 is equivalent to the Sylvester matrix of
that order. The required result follows.

We note that it is also possible to prove this result directly from the
classification of 2-transitive groups. With the exception of the projective
special linear groups of dimension 3, it is possible via elementary counting
arguments to show that no non-affine group acts 2-transitively on the rows
of a TPP-Hadamard matrix.

6. Conclusion

As remarked earlier, our treatment of TPP-Hadamard matrices is broadly
similar to that of [4]. In particular, we used the existence of a transitive
automorphism group for the incidence matrix of the underlying difference
set to force 2-transitivity of the automorphism group of the corresponding
Hadamard matrix. Most other constructions for Hadamard matrices do not
have such rigid algebraic structures underlying them. In fact, computer
generation of all Hadamard 2-designs for small orders suggests that most
such designs have small or trivial automorphism groups. As a result, it
seems unlikely that this method can be generalised to many other classes of
Hadamard matrices.

We conclude this paper with the following remarks and conjecture. Let
q = pn, and q + 2 = rm, where p and r are prime, and let D be the TPP
difference set of order q(q + 2). We observed in Lemma 8 that Aut (D)
contains a regular subgroup isomorphic to Cn

p ×Cm
r . In fact, it is possible to

say more: denote an arbitrary element of Fq × Fq+2 by (x, y). Then Dev (D)
has automorphisms of the following types.

• ta,b : (x, y) 7→ (x+ a, y + b) for a ∈ Fq and b ∈ Fq+2,

• mc,d : (x, y) 7→ (cx, dy) for c ∈ F∗q, d ∈ F∗q+2 and χ(c)χ(d) = 1,

• σp : (x, y) 7→ (xp, y), σr : (x, y)→ (x, yr).
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Conjecture 1. The full automorphism group of D is〈
(−I,−I) , ta,b,mc,d, σp, σr : a ∈ Fq, b ∈ Fq+2, c ∈ F∗q, d ∈ F∗q+2, χ(c)χ(d) = 1

〉
,

and has order mn(q + 2)(q + 1)(q)(q − 1).

The following table supports the conjecture, proving that the stated au-
tomorphism group order is correct for all TPP-Hadamard matrices of order
less than 1000.

Twin prime powers Matrix order Order of Automorphism Group
5, 7 36 840
7, 9 64 6048
9, 11 100 15840
11, 13 144 17160
17, 19 324 93024
23, 25 576 607200
25, 27 676 2527200
27, 29 784 1710072
29, 31 900 755160

Table 1: Orders of automorphism groups of small TPP-Hadamard matrices
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