Doubly transitive group actions on designs and Hadamard matrices

Padraig Ó Catháin

National University of Ireland, Galway

16 November 2011

Introduction: Designs and Hadamard matrices

Cocyclic development

Doubly transitive group actions on Hadamard matrices

Incidence Structures

Definition

An *incidence structure* Δ is a pair (V, B) where V is a finite set and $B \subseteq \mathcal{P}(V)$.

Definition

An *automorphism* of Δ is a permutation $\sigma \in \text{Sym}(V)$ which preserves *B* setwise.

Definition

Define a function $\phi : V \times B \rightarrow \{0, 1\}$ given by $\phi(v, b) = 1$ if and only if $v \in b$. An *incidence matrix* for Δ is a matrix

$$M = \left[\phi(v, b)\right]_{v \in V, b \in B}.$$

Incidence structure $\iff \{0, 1\}$ -matrix (without repeated columns) $\Delta \iff M$ $\sigma \in \operatorname{Aut}(\Delta) \iff (P, Q) \text{ s.t. } PMQ^{\top} = M$

Designs

Definition

Let (V, B) be an incidence structure in which |V| = v and |b| = k for all $b \in B$. Then $\Delta = (V, B)$ is a *t*- (v, k, λ) *design* if and only if any *t*-subset of *V* occurs in exactly λ blocks.

Definition

The design Δ is *symmetric* if |V| = |B|.

Example

A 3-(8,4,1) design Δ with $V = \{1, \ldots, 7, \infty\}$ and blocks

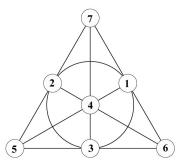
$\{\infty, 1, 2, 3\}$	$\{4, 5, 6, 7\}$	$\{\infty,1,4,5\}$	$\{2, 3, 6, 7\}$
$\{\infty, 1, 6, 7\}$	$\{2,3,4,5\}$	$\{\infty,2,4,6\}$	$\{1, 3, 5, 7\}$
$\{\infty,2,5,7\}$	$\{1, 3, 4, 6\}$	$\{\infty,3,4,7\}$	$\{1, 2, 5, 6\}$
$\{\infty, 3, 5, 6\}$	$\{1, 2, 4, 7\}$		

- Every 3-subset occurs in precisely 1 block.
- Every 2-subset occurs in 3 blocks: △ is also a 2-(8,4,3) design.
- Finally, Δ is a 1-(8,4,7) design.

Example

A symmetric 2-(7,3,1) design, Δ (the Fano plane). The point set is $V = \{1, ..., 7\}$, and the blocks are

 $\{1,2,3\} \ \{1,4,5\} \ \{1,6,7\} \ \{2,4,6\} \ \{2,5,7\} \ \{3,4,7\} \ \{3,5,6\}$



A sample automorphism of \mathcal{D} is (2,4,6)(3,5,7). In fact, Aut $(\mathcal{D}) \cong PGL_3(2)$.

Padraig Ó Catháin

Group actions on Hadamard matrices

Lemma

The $v \times v$ (0,1)-matrix M is the incidence matrix of a 2-(v, k, λ) symmetric design if and only if

$$MM^{\top} = (k - \lambda)I + \lambda J$$

Proof.

The entry in position (i, j) of MM^{\top} counts the number of blocks containing both v_i and v_j .

Theorem (Ryser)

Suppose the (0, 1)-matrix M satisfies

$$MM^{\top} = (k - \lambda)I + \lambda J.$$

Then $M^{\top}M = MM^{\top}$.

Corollary

The incidence structure \mathcal{D} is a symmetric 2-design if and only if D^* is.

Every pair of points lies on λ blocks \iff Every pair of blocks intersect in λ points.

Difference sets

- Let G be a group of order v, and \mathcal{D} a k-subset of G.
- Suppose that every non-identity element of G has λ representations of the form d_id_i⁻¹ where d_i, d_j ∈ D.
- Then \mathcal{D} is a (v, k, λ) -difference set in G.

Example: take $G = (\mathbb{Z}_7, +)$ and $\mathcal{D} = \{1, 2, 4\}$. Example: the Jordan 'miracle' in C_4^2 .

Definition

We say that G < Sym(V) is **regular** (on *V*) if for any $v_i, v_j \in V$ there exists a unique $g \in G$ such that $v_i^g = v_j$.

Theorem

If G contains a (v, k, λ) -difference set then there exists a symmetric 2- (v, k, λ) design on which G acts regularly. Conversely, a 2- (v, k, λ) design on which G acts regularly corresponds to a (v, k, λ) -difference set in G.

Proof - the first half

Proof.

- Denote by \mathcal{D} the difference set in G (written multiplicatively).
- Define an incidence structure, Δ , by $V = \{g \mid g \in G\}$ and $B = \{gD \mid g \in G\}.$
- Let $g \in V$ be incident with $h\mathcal{D} \in \mathcal{B}$ if (and only if) $g \in h\mathcal{D}$.
- Furthermore $|g\mathcal{D} \cap h\mathcal{D}| = \lambda$: consider the equation $gd_i = hd_j$ with $d_i, d_j \in \mathcal{D}, g \neq h$. Rewrite as $d_i d_j^{-1} = g^{-1}h$.
- There are precisely λ solutions, since ${\cal D}$ is a difference set.
- So every pair of blocks meet in λ points.
- Thus Δ^* is a 2 (ν, k, λ) design as required.

The other direction requires careful labelling of points and blocks, but is similar.

Hadamard matrices

Definition

Let *H* be a matrix of order *n*, with all entries in $\{1, -1\}$. Then *H* is a *Hadamard matrix* if and only if $HH^{\top} = nI_n$.

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$$

- Sylvester constructed Hadamard matrices of order 2ⁿ.
- Hadamard showed that the determinant of a Hadamard matrix $H = [h_{i,j}]$ of order *n* is maximal among all matrices of order *n* over \mathbb{C} whose entries satisfy $||h_{i,j}|| \le 1$ for all $1 \le i, j \le n$.
- Hadamard also showed that the order of a Hadamard matrix is necessarily 1, 2 or 4t for some t ∈ N. He also constructed Hadamard matrices of orders 12 and 20.
- Paley constructed Hadamard matrices of order n = p^t + 1 for primes p, and conjectured that a Hadamard matrix of order n exists whenever 4 | n.
- This is the *Hadamard conjecture*, and has been verified for all $n \le 667$. Asymptotic results.

Automorphisms of Hadamard matrices

- A pair of {±1} monomial matrices (P, Q) is an *automorphism* of H if PHQ^T = H.
- Aut(*H*) has an induced permutation action on the set $\{r\} \cup \{-r\}$.
- Quotient by diagonal matrices is a permutation group with an induced action on the set of pairs $\{r, -r\}$, which we identify with the rows of *H*, denoted A_H .

Hadamard matrices and 2-designs

Lemma

There exists a Hadamard matrix H of order 4n if and only there exists a 2-(4n - 1, 2n - 1, n - 1) design \mathcal{D} . Furthermore Aut(\mathcal{D}) < \mathcal{A}_H .

Proof.

Let *M* be an incidence matrix for \mathcal{D} . Then *M* satisfies $MM^{\top} = nI + (n-1)J$. So $(2M - J)(2M - J)^{\top} = 4nI - J$. Adding a row and column of 1s gives a Hadamard matrix, *H*. Every automorphism of *M* is a permutation automorphism of *H* fixing the first row.

Example: the Paley construction

The existence of a (4n - 1, 2n - 1, n - 1)-difference set implies the existence of a Hadamard matrix *H* of order 4*n*. Difference sets with these parameters are called *Paley-Hadamard*.

- Let \mathbb{F}_q be the finite field of size q, q = 4n 1.
- The quadratic residues in \mathbb{F}_q form a difference set in $(\mathbb{F}_q, +)$ with parameters (4n 1, 2n 1, n 1) (Paley).
- Let χ be the quadratic character of of \mathbb{F}_q^* , given by $\chi : x \mapsto x^{\frac{q-1}{2}}$, and let $Q = [\chi(x y)]_{x,y \in \mathbb{F}_q}$.

Then

$$H = \left(egin{array}{cc} 1 & \overline{1} \ \overline{1}^{ op} & Q - I \end{array}
ight)$$

is a Hadamard matrix.

Cocyclic development

Definition

Let *G* be a group and *C* an abelian group. We say that $\psi : G \times G \rightarrow C$ is a *cocycle* if for all *g*, *h*, *k* \in *G*

$$\psi(\boldsymbol{g},\boldsymbol{h})\psi(\boldsymbol{g}\boldsymbol{h},\boldsymbol{k})=\psi(\boldsymbol{h},\boldsymbol{k})\psi(\boldsymbol{g},\boldsymbol{h}\boldsymbol{k})$$

Definition (de Launey & Horadam)

Let *H* be an $n \times n$ Hadamard matrix. Let *G* be a group of order *n*. We say that *H* is cocyclic if there exists a cocycle $\psi : G \times G \rightarrow \langle -1 \rangle$ such that

$$H\cong \left[\psi\left(g,h\right)\right]_{g,h\in G}.$$

Corollary

Suppose that H is a cocyclic Hadamard matrix. Then A_H contains a regular subgroup.

Padraig Ó Catháin

16 November 2011

Classification of cocyclic Hadamard matrices

Theorem (De Launey, Flannery & Horadam)

The following statements are equivalent.

- There is a cocyclic Hadamard matrix over G.
- There is a normal (4t, 2, 4t, 2t)-relative difference set in a central extension of N ≅ C₂ by G, relative to N.
- There is a divisible (4t, 2, 4t, 2t) design, class regular with respect to C₂ ≅ ⟨-1⟩, and with a central extension of ⟨-1⟩ by G as a regular group of automorphisms.

With Marc Röder: The cocyclic Hadamard matrices of order less than 40, *Designs, Codes and Cryptography*, 2011.

Table of results

Order	Cocyclic	Indexing Groups	Extension Groups
2	1	1	2
4	1	2	3 / 5
8	1	3 / 5	9 / 14
12	1	3 / 5	3 / 15
16	5	13 / 14	45 / 51
20	3	2 / 5	3 / 14
24	16 / 60	8 / 15	14 / 52
28	6 / 487	2 / 4	2 / 13
32	$100/\geq 3 imes 10^6$	49/51	261/267
36	35 / \geq $3 imes10^{6}$	12 /14	21 / 50

Comprehensive data available at: www.maths.nuigalway.ie/~padraig

We can compare the proportion of cocyclic Hadamard matrices (of order *n*) among all $\{\pm 1\}$ -cocyclic matrices to the proportion of Hadamard matrices among $\{\pm 1\}$ -matrices:

n	Hadamard matrices	Cocyclic Hadamard matrices
2	0.25	0.25
4	$7 imes 10^{-4}$	0.125
8	$1.3 imes10^{-13}$	$7.8 imes 10^{-3}$
12	$2.5 imes10^{-30}$	$1.4 imes 10^{-4}$
16	$1.1 imes10^{-53}$	$1.7 imes 10^{-4}$
20	$1.0 imes10^{-85}$	$1.1 imes 10^{-6}$
24	$1.2 imes 10^{-124}$	$1.8 imes 10^{-7}$
28	$1.3 imes 10^{-173}$	$1.0 imes 10^{-8}$

Doubly transitive group actions on Hadamard matrices

Two constructions of Hadamard matrices: from (4n - 1, 2n - 1, n - 1) difference sets, and from (4n, 2, 4n, 2n)-RDSs.

Problem

- How do these constructions interact?
- Can a Hadamard matrix support both structures?
- If so, can we classify such matrices?

Motivation

- Horadam: Are the Hadamard matrices developed from twin prime power difference sets cocyclic? (Problem 39 of Hadamard matrices and their applications)
- Jungnickel: Classify the skew Hadamard difference sets. (Open Problem 13 of the survey *Difference sets*).
- Ito and Leon: There exists a Hadamard matrix of order 36 on which Sp₆(2) acts. Are there others?

Strategy

- We show that a cocyclic Hadamard matrix which is also developed from a difference set has A_H doubly transitive.
- The doubly transitive groups which can act on a Hadamard matrix have been classified by Ito.
- From this list a classification of Hadamard matrices with doubly transitive automorphism groups is easily deduced.

This list may be exploited to:

- Solve Horadam's problem.
- Solve Ito and Leon's problem.
- Construct a new family of skew Hadamard difference sets.

Doubly transitive groups

Definition

A permutation group G on Ω is *doubly transitive* if the induced action of G on ordered pairs of Ω is transitive.

Lemma

A transitive group G is doubly transitive if and only if G_{α} is transitive on $\Omega - \alpha$.

Theorem

The finite doubly transitive permutation groups are known.

Proof: Burnside, Hering, CFSG.

Doubly transitive group actions on Hadamard matrices

Lemma

Suppose that H is a cocyclic Hadamard matrix with cocycle $\psi : G \times G \rightarrow \langle -1 \rangle$. Then \mathcal{A}_H contains a regular subgroup isomorphic to G.

Lemma

Let H be a Hadamard matrix developed from a (4n - 1, 2n - 1, n - 1)-difference set, \mathcal{D} in the group G. Then the stabiliser of the first row of H in \mathcal{A}_H contains a regular subgroup isomorphic to G.

Corollary

If H is a cocyclic Hadamard matrix which is also developed from a difference set, then A_H is a doubly transitive permutation group.

The groups

Theorem (Ito, 1979)

Let $\Gamma \leq A_H$ be a non-affine doubly transitive permutation group acting on the set of rows of a Hadamard matrix H. Then the action of Γ is one of the following.

- $\Gamma \cong M_{12}$ acting on 12 points.
- $PSL_2(p^k) \leq \Gamma$ acting naturally on $p^k + 1$ points, for $p^k \equiv 3 \mod 4$, $p^k \neq 3, 11$.
- $\Gamma \cong Sp_6(2)$, and H is of order 36.

The matrices

Theorem

Each of Ito's doubly transitive groups is the automorphism group of exactly one equivalence class of Hadamard matrices.

Proof.

- If *H* is of order 12 then $A_H \cong M_{12}$. (Hall)
- If $PSL_2(q) \trianglelefteq A_H$, then H is the Paley matrix of order q + 1.
- *Sp*₆(2) acts on a unique matrix of order 36. (Computation)

Corollary

Twin prime power Hadamard matrices are not cocyclic.

With Dick Stafford: On twin prime power Hadamard matrices, *Cryptography and Communications*, 2011.

Padraig Ó Catháin

Group actions on Hadamard matrices

Skew difference sets

Definition

Let *D* be a difference set in *G*. Then *D* is *skew* if $G = D \cup D^{(-1)} \cup \{1_G\}$.

- The Paley difference sets are skew.
- Conjecture (1930's): *D* is skew if and only if *D* is a Paley difference set.
- Proved in the cyclic case (1950s Kelly).
- Exponent bounds obtained in the general abelian case.
- Disproved using permutation polynomials, examples in \mathbb{F}_{3^5} and \mathbb{F}_{3^7} (2005 Ding, Yuan).
- Infinite familes found in groups of order q³ and 3ⁿ. (2008-2011 -Muzychuk, Weng, Qiu, Wang, ...).

Suppose that *H* is developed from a difference set D and that A_H is non-affine doubly transitive. Then:

- *H* is a Paley matrix.
- A result of Kantor: $A_H \cong P\Sigma L_2(q), q > 11$.
- A point stabiliser is of index 2 in $A\Gamma L_1(q)$.
- Difference sets correspond to regular subgroups of the stabiliser of a point in A_H.

Lemma

Let $\mathcal{D} \subseteq G$ be a difference set such that the associated Hadamard matrix H has \mathcal{A}_H non-affine doubly transitive. Then G is a regular subgroup of $A\Gamma L_1(q)$ in its natural action.

Suppose that $q = p^{kp^{\alpha}}$. A Sylow *p*-subgroup of $A\Gamma L_1(q)$ is

$$G_{p,k,\alpha} = \left\langle a_1, \ldots, a_n, b \mid a_i^p = 1, \left[a_i, a_j\right] = 1, b^{p^{\alpha}} = 1, a_i^b = a_{i+k} \right\rangle.$$

Lemma (Ó C., 2011)

There are $\alpha + 1$ conjugacy classes of regular subgroups of $A\Gamma L_1(q)$. The subgroups

$${\sf R}_{e}=\left\langle a_{1}b^{p^{e}},a_{2}b^{p^{e}},\ldots,a_{n}b^{p^{e}}
ight
angle$$

for $0 \le e \le \alpha$ are a complete and irredundant list of representatives.

Lemma

Let G be a group containing a difference set D, and let M be an incidence matrix of the underlying 2-design. Set $M^* = 2M - J$. That is,

$$M^* = [\chi(g_i g_j^{-1})]_{g_i,g_j \in G}$$

where the ordering of the elements of G used to index rows and columns is the same, and where $\chi(g) = 1$ if $g \in \mathcal{D}$ and -1 otherwise. Then $M^* + I$ is skew-symmetric if and only if \mathcal{D} is skew Hadamard.

- The Paley difference sets are skew.
- So the underlying 2-design \mathcal{D} is skew.
- So any difference set associated \mathcal{D} is skew.

Theorem (Ó C., 2011)

Let p be a prime, and $n = kp^{\alpha} \in \mathbb{N}$.

Define

$$G_{p,k,\alpha} = \left\langle a_1, \ldots, a_n, b \mid a_i^p = 1, [a_i, a_j] = 1, b^{p^{\alpha}} = 1, a_i^b = a_{i+k} \right\rangle.$$

The subgroups

$${\it R_e}=\left\langle a_1b^{p^e},a_2b^{p^e},\ldots,a_nb^{p^e}
ight
angle$$

for $0 \le e \le \alpha$ contain skew Hadamard difference sets.

- Each difference set gives rise to a Paley Hadamard matrix.
- These are the only non-affine difference sets which give rise to Hadamard matrices in which A_H is transitive.
- These are the only skew difference sets which give rise to Hadamard matrices in which A_H is transitive.