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Designs, difference sets and Hadamard matrices

Designs

Definition
Let (V ,B) be an incidence structure in which |V | = v and |b| = k for all
b ∈ B. Then ∆ = (V ,B) is a t-(v , k , λ) design if and only if any
t-subset of V occurs in exactly λ blocks.

Definition
The design ∆ is symmetric if |V | = |B|.
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Designs, difference sets and Hadamard matrices

Definition
An automorphism of ∆ is a permutation σ ∈ Sym(V ) which preserves
B setwise.

Definition
Define a function φ : V × B → {0,1} given by φ(v ,b) = 1 if and only if
v ∈ b. An incidence matrix for ∆ is a matrix

M = [φ(v ,b)]v∈V ,b∈B .

An automorphism σ of ∆ induces permutations of the rows and
columns of M, represented as a pair of permutation matrices (P,Q)
such that PMQ> = M.
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Designs, difference sets and Hadamard matrices

Difference sets

Let G be a group of order v , and D a k -subset of G.
Suppose that every non-identity element of G has λ
representations of the form did−1

j where di ,dj ∈ D.
Then D is a (v , k , λ)-difference set in G.
We say D is skew if G = D ∪D(−1) ∪ {1G}.

Theorem
If G contains a (v , k , λ)-difference set then there exists a symmetric
2-(v , k , λ) design on which G acts regularly. Conversely, a 2-(v , k , λ)
design on which G acts regularly corresponds to a (v , k , λ)-difference
set in G.
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Designs, difference sets and Hadamard matrices

Hadamard matrices

Definition
Let H be a matrix of order n, with all entries in {1,−1}. Then H is a
Hadamard matrix if and only if HH> = nIn.

(
1
) (

1 1
1 −1

) 
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


The Hadamard conjecture: does there exist a Hadamard matrix of
order 4t for all t ∈ N?
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Designs, difference sets and Hadamard matrices

Automorphisms of Hadamard matrices

A pair of {±1} monomial matrices (P,Q) is an automorphism of H
if PHQ> = H.
Aut(H) has an induced permutation action on the set {r} ∪ {−r}.
Quotient by diagonal matrices is a permutation group with an
induced action on the set of pairs {r ,−r}, which we identify with
the rows of H, denoted AH .
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Designs, difference sets and Hadamard matrices

Hadamard matrices and 2-designs

Lemma
There exists a Hadamard matrix H of order 4t if and only there exists a
2-(4t − 1,2t − 1, t − 1) design D. Furthermore Aut(D) < AH .

Corollary

Suppose that H is developed from a (4t − 1,2t − 1, t − 1)-difference
set. Then the stabiliser of the first row of H in AH , is transitive on the
remaining rows of H.
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Cocyclic development

Group development

Definition
An n × n R-matrix, M, is group developed over G, a group of order n, if
and only if there exists a set map φ : G→ R such that

M ≈ [φ (gh)]g,h∈G

Lemma
M is group developed over G if and only if Aut (M) contains a subgroup
of pairs of permutation matrices isomorphic to G, which acts regularly
on the rows and regularly on the columns of M.
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Cocyclic development

Lemma
Suppose that H is a 4t × 4t Hadamard matrix with constant row sums.
Then t is a perfect square.

Corollary
A group developed Hadamard matrix has square order.

What about regular subgroups of AH?
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Cocyclic development

Cocyclic development

Definition
Let G be a group and C an abelian group. We say that ψ : G ×G→ C
is a cocycle if

ψ(g,h)ψ(gh, k) = ψ(h, k)ψ(g,hk)

for all g,h, k ∈ G.

Definition
Let H be an n × n Hadamard matrix. Let G be a group of order n. We
say that H is cocyclic if there exists a cocycle ψ : G ×G→ 〈−1〉 such
that

H ∼= [ψ (g,h)]g,h∈G .
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Cocyclic development

Classification of cocyclic Hadamard matrices

Theorem (De Launey, Flannery & Horadam)
The following statements are equivalent.

There is a cocyclic Hadamard matrix over G.
There is a normal (4t ,2,4t ,2t)-relative difference set in a central
extension of N ∼= C2 by G, relative to N.
There is a divisible (4t ,2,4t ,2t) design, class regular with respect
to C2

∼= 〈−1〉, and with a central extension of 〈−1〉 by G as a
regular group of automorphisms.

In particular: if H is cocyclic then AH is transitive.
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Cocyclic development

Definition
Let G be a finite group of order mn, with normal subgroup N of order n.
We say that R ⊂ G is a relative difference set (RDS) with respect to N
if in the multiset of elements

{
r1r−1

2 | r1, r2 ∈ R
}

every element of
G − N occurs exactly λ times, and no non-trivial element of N occurs.

If |R| = k we speak of a (m,n, k , λ)-RDS.

Theorem
A classification of (4t ,2,4t ,2t)-RDSs in the groups of order 8t yields a
classification of cocyclic Hadamard matrices of order 4t .

With Marc Röder: The cocyclic Hadamard matrices of order less than
40, Designs, Codes and Cryptography, 2011.
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Cocyclic development

Table of results

Order Cocyclic Indexing Groups Extension Groups
2 1 1 2
4 1 2 3 / 5
8 1 3 / 5 9 / 14
12 1 3 / 5 3 / 15
16 5 13 / 14 45 / 51
20 3 2 / 5 3 / 14
24 16 / 60 8 / 15 14 / 52
28 6 / 487 2 / 4 2 / 13
32 100/ ≥ 3× 106 49/51 261/267
36 35 / ≥ 3× 106 12 /14 21 / 50

Comprehensive data available at: www.maths.nuigalway.ie/∼padraig
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Cocyclic development

We can compare the proportion of cocyclic Hadamard matrices (of
order n) among all {±1}-cocyclic matrices to the proportion of
Hadamard matrices among {±1}-matrices:

n Hadamard matrices Cocyclic Hadamard matrices
2 0.25 0.25
4 7× 10−4 0.125
8 1.3× 10−13 7.8× 10−3

12 2.5× 10−30 1.4× 10−4

16 1.1× 10−53 1.7× 10−4

20 1.0× 10−85 1.1× 10−6

24 1.2× 10−124 1.8× 10−7

28 1.3× 10−173 1.0× 10−8
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Doubly transitive group actions on Hadamard matrices

Doubly transitive group actions on Hadamard matrices

Two constructions of Hadamard matrices: from (4n − 1,2n − 1,n − 1)
difference sets, and from (4n,2,4n,2n)-RDSs.

Problem
How do these constructions interact?
Can a Hadamard matrix support both structures?
If so, can we classify such matrices?
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Doubly transitive group actions on Hadamard matrices

Motivation

Horadam: Are the Hadamard matrices developed from twin prime
power difference sets cocyclic? (Problem 39 of Hadamard
matrices and their applications)
Jungnickel: Classify the skew Hadamard difference sets. (Open
Problem 13 of the survey Difference sets).
Ito and Leon: There exists a Hadamard matrix of order 36 on
which Sp6(2) acts. Are there others?
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Doubly transitive group actions on Hadamard matrices

Doubly transitive group actions on Hadamard matrices

Lemma
Let H be a Hadamard matrix developed from a
(4n − 1,2n − 1,n − 1)-difference set, D in the group G. Then the
stabiliser of the first row of H in AH contains a regular subgroup
isomorphic to G.

Lemma
Suppose that H is a cocyclic Hadamard matrix with cocycle
ψ : G ×G→ 〈−1〉. Then AH contains a regular subgroup isomorphic
to G.

Corollary
If H is a cocyclic Hadamard matrix which is also developed from a
difference set, then AH is a doubly transitive permutation group.

Padraig Ó Catháin Automorphisms of Hadamard matrices and skew difference sets 4 November 2011



Doubly transitive group actions on Hadamard matrices

The groups

Theorem (Ito, 1979)
Let Γ ≤ AH be a non-affine doubly transitive permutation group acting
on the set of rows of a Hadamard matrix H. Then the action of Γ is one
of the following.

Γ ∼= M12 acting on 12 points.
PSL2(pk ) E Γ acting naturally on pk + 1 points, for pk ≡ 3 mod 4,
pk 6= 3,11.
Γ ∼= Sp6(2), and H is of order 36.
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Doubly transitive group actions on Hadamard matrices

The matrices

Theorem
Each of Ito’s doubly transitive groups is the automorphism group of
exactly one equivalence class of Hadamard matrices.

Proof.
If H is of order 12 then AH

∼= M12. (Hall)
If PSL2(q) E AH , then H is the Paley matrix of order q + 1.
Sp6(2) acts on a unique matrix of order 36. (Computation)

Corollary
Twin prime power Hadamard matrices are not cocyclic.

With Dick Stafford: On twin prime power Hadamard matrices,
Cryptography and Communications, 2011.
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Doubly transitive group actions on Hadamard matrices

Classifying difference sets

Suppose that H is developed from a difference set D and that AH is
non-affine doubly transitive. Then H is a Paley matrix.

Theorem (Kantor)
Let H be the Paley Hadamard matrix of order q + 1. Then
AH
∼= PΣL2(q).

A point stabiliser is of index 2 in AΓL1(q).
Difference sets correspond to regular subgroups of the stabiliser
of a point in AH .

Lemma
Let D ⊆ G be a difference set such that the associated Hadamard
matrix H has AH non-affine doubly transitive. Then G is a regular
subgroup of AΓL1(q) in its natural action.
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Doubly transitive group actions on Hadamard matrices

Suppose that q = pkpα
. A Sylow p-subgroup of AΓL1(q) is

Gp,k ,α =
〈

a1, . . . ,an,b | ap
i = 1,

[
ai ,aj

]
= 1,bpα

= 1,ab
i = ai+k

〉
.

Lemma
There are α + 1 conjugacy classes of regular subgroups of AΓL1(q).
The subgroups

Re =
〈

a1bpe
,a2bpe

, . . . ,anbpe
〉

for 0 ≤ e ≤ α are a complete and irredundant list of representatives.

Padraig Ó Catháin Automorphisms of Hadamard matrices and skew difference sets 4 November 2011



Doubly transitive group actions on Hadamard matrices

Skew difference sets

Definition

Let D be a difference set in G. Then D is skew if G = D ∪D(−1) ∪{1G}.

The Paley difference sets are skew.
Conjecture (1930’s): D is skew if and only if D is a Paley
difference set.
Proved in the cyclic case (1950s - Kelly).
Exponent bounds obtained in the general abelian case.
Disproved using permutation polynomials, examples in F35 and
F37 (2005 - Ding, Yuan).
Infinite familes found in groups of order q3 and 3n. (2008-2011 -
Muzychuk, Weng, Qiu, Wang, Xiang, . . . ).
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Doubly transitive group actions on Hadamard matrices

Lemma
Let G be a group containing a difference set D, and let M be an
incidence matrix of the underlying 2-design. Set M∗ = 2M − J. That is,

M∗ = [χ(gig−1
j )]gi ,gj∈G

where the ordering of the elements of G used to index rows and
columns is the same, and where χ(g) = 1 if g ∈ D and −1 otherwise.
Then M∗ + I is skew-symmetric if and only if D is skew Hadamard.

The Paley difference sets are skew.
So the underlying 2-design D is skew.
So any difference set associated to D is skew.
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Doubly transitive group actions on Hadamard matrices

Theorem (Ó C., 2011)
Let p be a prime, and n = kpα ∈ N.

Define

Gp,k ,α =
〈

a1, . . . ,an,b | ap
i = 1,

[
ai ,aj

]
= 1,bpα

= 1,ab
i = ai+k

〉
.

The subgroups

Re =
〈

a1bpe
,a2bpe

, . . . ,anbpe
〉

for 0 ≤ e ≤ α contain skew Hadamard difference sets.
Each difference set gives rise to a Paley Hadamard matrix.
These are the only skew difference sets which give rise to
Hadamard matrices in which AH is transitive.
If AH is transitive and H is developed from a difference set D, then
D is one of the difference sets described above.
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