Automorphisms of Hadamard matrices and skew difference sets

Padraig Ó Catháin

National University of Ireland, Galway

Algebraic Combinatorics: in memory of Bob Liebler Fort Collins, 4 November 2011

Designs, difference sets and Hadamard matrices

Cocyclic development

Doubly transitive group actions on Hadamard matrices

Designs

Definition

Let (V, B) be an incidence structure in which |V| = v and |b| = k for all $b \in B$. Then $\Delta = (V, B)$ is a *t*- (v, k, λ) *design* if and only if any *t*-subset of *V* occurs in exactly λ blocks.

Definition

The design Δ is *symmetric* if |V| = |B|.

Definition

An *automorphism* of Δ is a permutation $\sigma \in \text{Sym}(V)$ which preserves *B* setwise.

Definition

Define a function $\phi : V \times B \rightarrow \{0, 1\}$ given by $\phi(v, b) = 1$ if and only if $v \in b$. An *incidence matrix* for Δ is a matrix

$$\boldsymbol{M} = [\phi(\boldsymbol{v}, \boldsymbol{b})]_{\boldsymbol{v} \in \boldsymbol{V}, \boldsymbol{b} \in \boldsymbol{B}}.$$

An automorphism σ of Δ induces permutations of the rows and columns of M, represented as a pair of permutation matrices (P, Q) such that $PMQ^{\top} = M$.

Difference sets

- Let G be a group of order v, and \mathcal{D} a k-subset of G.
- Suppose that every non-identity element of G has λ representations of the form d_id_i⁻¹ where d_i, d_i ∈ D.
- Then \mathcal{D} is a $(\mathbf{v}, \mathbf{k}, \lambda)$ -difference set in G.
- We say \mathcal{D} is *skew* if $G = \mathcal{D} \cup \mathcal{D}^{(-1)} \cup \{\mathbf{1}_G\}$.

Theorem

If G contains a (v, k, λ) -difference set then there exists a symmetric 2- (v, k, λ) design on which G acts regularly. Conversely, a 2- (v, k, λ) design on which G acts regularly corresponds to a (v, k, λ) -difference set in G.

Hadamard matrices

Definition

Let *H* be a matrix of order *n*, with all entries in $\{1, -1\}$. Then *H* is a *Hadamard matrix* if and only if $HH^{\top} = nI_n$.

The Hadamard conjecture: does there exist a Hadamard matrix of order 4*t* for all $t \in \mathbb{N}$?

Automorphisms of Hadamard matrices

- A pair of {±1} monomial matrices (P, Q) is an *automorphism* of H if PHQ^T = H.
- Aut(*H*) has an induced permutation action on the set $\{r\} \cup \{-r\}$.
- Quotient by diagonal matrices is a permutation group with an induced action on the set of pairs $\{r, -r\}$, which we identify with the rows of *H*, denoted A_H .

Hadamard matrices and 2-designs

Lemma

There exists a Hadamard matrix H of order 4t if and only there exists a 2-(4t - 1, 2t - 1, t - 1) design \mathcal{D} . Furthermore Aut(\mathcal{D}) < \mathcal{A}_H .

Corollary

Suppose that H is developed from a (4t - 1, 2t - 1, t - 1)-difference set. Then the stabiliser of the first row of H in A_H , is transitive on the remaining rows of H.

Group development

Definition

An $n \times n$ *R*-matrix, *M*, is group developed over *G*, a group of order *n*, if and only if there exists a set map $\phi : G \to R$ such that

 $M \approx [\phi(gh)]_{g,h\in G}$

Lemma

M is group developed over *G* if and only if Aut(M) contains a subgroup of pairs of permutation matrices isomorphic to *G*, which acts regularly on the rows and regularly on the columns of *M*.

Lemma

Suppose that H is a $4t \times 4t$ Hadamard matrix with constant row sums. Then t is a perfect square.

Corollary

A group developed Hadamard matrix has square order.

What about regular subgroups of A_H ?

Cocyclic development

Definition

Let *G* be a group and *C* an abelian group. We say that $\psi : G \times G \rightarrow C$ is a *cocycle* if

$$\psi(\boldsymbol{g},\boldsymbol{h})\psi(\boldsymbol{g}\boldsymbol{h},\boldsymbol{k})=\psi(\boldsymbol{h},\boldsymbol{k})\psi(\boldsymbol{g},\boldsymbol{h}\boldsymbol{k})$$

for all $g, h, k \in G$.

Definition

Let *H* be an $n \times n$ Hadamard matrix. Let *G* be a group of order *n*. We say that *H* is cocyclic if there exists a cocycle $\psi : G \times G \rightarrow \langle -1 \rangle$ such that

$$H\cong [\psi(g,h)]_{g,h\in G}.$$

Classification of cocyclic Hadamard matrices

Theorem (De Launey, Flannery & Horadam)

The following statements are equivalent.

- There is a cocyclic Hadamard matrix over G.
- There is a normal (4t, 2, 4t, 2t)-relative difference set in a central extension of N ≅ C₂ by G, relative to N.
- There is a divisible (4t, 2, 4t, 2t) design, class regular with respect to C₂ ≅ ⟨-1⟩, and with a central extension of ⟨-1⟩ by G as a regular group of automorphisms.

In particular: if H is cocyclic then A_H is transitive.

Definition

Let *G* be a finite group of order *mn*, with normal subgroup *N* of order *n*. We say that $R \subset G$ is a relative difference set (RDS) with respect to *N* if in the multiset of elements $\{r_1r_2^{-1} | r_1, r_2 \in R\}$ every element of G - N occurs exactly λ times, and no non-trivial element of *N* occurs.

If $|\mathbf{R}| = k$ we speak of a (m, n, k, λ) -RDS.

Theorem

A classification of (4t, 2, 4t, 2t)-RDSs in the groups of order 8t yields a classification of cocyclic Hadamard matrices of order 4t.

With Marc Röder: The cocyclic Hadamard matrices of order less than 40, *Designs, Codes and Cryptography*, 2011.

Table of results

Order	Cocyclic	Indexing Groups	Extension Groups
2	1	1	2
4	1	2	3 / 5
8	1	3 / 5	9 / 14
12	1	3 / 5	3 / 15
16	5	13 / 14	45 / 51
20	3	2/5	3 / 14
24	16 / 60	8 / 15	14 / 52
28	6 / 487	2 / 4	2 / 13
32	$100/\geq 3 imes 10^6$	49/51	261/267
36	35 / \geq $3 imes10^{6}$	12 /14	21 / 50

Comprehensive data available at: www.maths.nuigalway.ie/~padraig

We can compare the proportion of cocyclic Hadamard matrices (of order *n*) among all $\{\pm 1\}$ -cocyclic matrices to the proportion of Hadamard matrices among $\{\pm 1\}$ -matrices:

n	Hadamard matrices	Cocyclic Hadamard matrices
2	0.25	0.25
4	$7 imes 10^{-4}$	0.125
8	$1.3 imes10^{-13}$	$7.8 imes 10^{-3}$
12	$2.5 imes10^{-30}$	$1.4 imes 10^{-4}$
16	$1.1 imes10^{-53}$	$1.7 imes10^{-4}$
20	$1.0 imes10^{-85}$	$1.1 imes 10^{-6}$
24	$1.2 imes 10^{-124}$	$1.8 imes 10^{-7}$
28	1.3×10^{-173}	$1.0 imes 10^{-8}$

Doubly transitive group actions on Hadamard matrices

Two constructions of Hadamard matrices: from (4n - 1, 2n - 1, n - 1) difference sets, and from (4n, 2, 4n, 2n)-RDSs.

Problem

- How do these constructions interact?
- Can a Hadamard matrix support both structures?
- If so, can we classify such matrices?

Motivation

- Horadam: Are the Hadamard matrices developed from twin prime power difference sets cocyclic? (Problem 39 of Hadamard matrices and their applications)
- Jungnickel: Classify the skew Hadamard difference sets. (Open Problem 13 of the survey *Difference sets*).
- Ito and Leon: There exists a Hadamard matrix of order 36 on which Sp₆(2) acts. Are there others?

Doubly transitive group actions on Hadamard matrices

Lemma

Let H be a Hadamard matrix developed from a (4n - 1, 2n - 1, n - 1)-difference set, \mathcal{D} in the group G. Then the stabiliser of the first row of H in \mathcal{A}_H contains a regular subgroup isomorphic to G.

Lemma

Suppose that H is a cocyclic Hadamard matrix with cocycle $\psi : G \times G \rightarrow \langle -1 \rangle$. Then \mathcal{A}_H contains a regular subgroup isomorphic to G.

Corollary

If H is a cocyclic Hadamard matrix which is also developed from a difference set, then A_H is a doubly transitive permutation group.

The groups

Theorem (Ito, 1979)

Let $\Gamma \leq A_H$ be a non-affine doubly transitive permutation group acting on the set of rows of a Hadamard matrix H. Then the action of Γ is one of the following.

- $\Gamma \cong M_{12}$ acting on 12 points.
- $PSL_2(p^k) \leq \Gamma$ acting naturally on $p^k + 1$ points, for $p^k \equiv 3 \mod 4$, $p^k \neq 3, 11$.
- $\Gamma \cong Sp_6(2)$, and H is of order 36.

The matrices

Theorem

Each of Ito's doubly transitive groups is the automorphism group of exactly one equivalence class of Hadamard matrices.

Proof.

- If *H* is of order 12 then $A_H \cong M_{12}$. (Hall)
- If $PSL_2(q) \trianglelefteq A_H$, then H is the Paley matrix of order q + 1.
- *Sp*₆(2) acts on a unique matrix of order 36. (Computation)

Corollary

Twin prime power Hadamard matrices are not cocyclic.

With Dick Stafford: On twin prime power Hadamard matrices, *Cryptography and Communications*, 2011.

Padraig Ó Catháin

Automorphisms of Hadamard matrices and sk

Classifying difference sets

Suppose that *H* is developed from a difference set \mathcal{D} and that \mathcal{A}_H is non-affine doubly transitive. Then *H* is a Paley matrix.

Theorem (Kantor)

Let H be the Paley Hadamard matrix of order q + 1. Then $\mathcal{A}_H \cong P\Sigma L_2(q)$.

- A point stabiliser is of index 2 in $A\Gamma L_1(q)$.
- Difference sets correspond to regular subgroups of the stabiliser of a point in A_H.

Lemma

Let $\mathcal{D} \subseteq G$ be a difference set such that the associated Hadamard matrix H has \mathcal{A}_H non-affine doubly transitive. Then G is a regular subgroup of $A\Gamma L_1(q)$ in its natural action.

Suppose that $q = p^{kp^{\alpha}}$. A Sylow *p*-subgroup of $A\Gamma L_1(q)$ is

$$G_{p,k,\alpha} = \left\langle a_1, \ldots, a_n, b \mid a_i^p = 1, [a_i, a_j] = 1, b^{p^{\alpha}} = 1, a_i^b = a_{i+k} \right\rangle.$$

Lemma

There are $\alpha + 1$ conjugacy classes of regular subgroups of $A\Gamma L_1(q)$. The subgroups

$${m R}_{m e}=\left\langle a_1b^{p^e},a_2b^{p^e},\ldots,a_nb^{p^e}
ight
angle$$

for $0 \le e \le \alpha$ are a complete and irredundant list of representatives.

Skew difference sets

Definition

Let *D* be a difference set in *G*. Then *D* is *skew* if $G = D \cup D^{(-1)} \cup \{1_G\}$.

- The Paley difference sets are skew.
- Conjecture (1930's): *D* is skew if and only if *D* is a Paley difference set.
- Proved in the cyclic case (1950s Kelly).
- Exponent bounds obtained in the general abelian case.
- Disproved using permutation polynomials, examples in \mathbb{F}_{3^5} and \mathbb{F}_{3^7} (2005 Ding, Yuan).
- Infinite familes found in groups of order q³ and 3ⁿ. (2008-2011 -Muzychuk, Weng, Qiu, Wang, Xiang, ...).

Lemma

Let G be a group containing a difference set D, and let M be an incidence matrix of the underlying 2-design. Set $M^* = 2M - J$. That is,

$$M^* = [\chi(g_i g_j^{-1})]_{g_i,g_j \in G}$$

where the ordering of the elements of G used to index rows and columns is the same, and where $\chi(g) = 1$ if $g \in \mathcal{D}$ and -1 otherwise. Then $M^* + I$ is skew-symmetric if and only if \mathcal{D} is skew Hadamard.

- The Paley difference sets are skew.
- So the underlying 2-design \mathcal{D} is skew.
- So any difference set associated to \mathcal{D} is skew.

Theorem (Ó C., 2011)

Let p be a prime, and $n = kp^{\alpha} \in \mathbb{N}$.

• Define

$$G_{p,k,\alpha} = \left\langle a_1, \ldots, a_n, b \mid a_i^p = 1, \left[a_i, a_j\right] = 1, b^{p^{\alpha}} = 1, a_i^b = a_{i+k} \right\rangle.$$

The subgroups

$${\it R_e}=\left\langle {\it a_1b^{
ho^e}},{\it a_2b^{
ho^e}},\ldots,{\it a_nb^{
ho^e}}
ight
angle$$

for $0 \le e \le \alpha$ contain skew Hadamard difference sets.

- Each difference set gives rise to a Paley Hadamard matrix.
- These are the only skew difference sets which give rise to Hadamard matrices in which A_H is transitive.
- If A_H is transitive and H is developed from a difference set D, then D is one of the difference sets described above.