Automorphisms of pairwise combinatorial designs

Padraig Ó Catháin

National University of Ireland, Galway

17 October 2011

Outline

(1) Introduction: Designs and Hadamard matrices
(2) Outline of thesis
(3) Doubly transitive group actions on Hadamard matrices

Incidence Structures

Definition

An incidence structure Δ is a pair (V, B) where V is a finite set and $B \subseteq \mathcal{P}(V)$.

Definition

An automorphism of Δ is a permutation $\sigma \in \operatorname{Sym}(V)$ which preserves B setwise.

Definition

Define a function $\phi: V \times B \rightarrow\{0,1\}$ given by $\phi(v, b)=1$ if and only if $v \in b$. An incidence matrix for Δ is a matrix

$$
M=[\phi(v, b)]_{v \in V, b \in B} .
$$

Designs

Definition

Let (V, B) be an incidence structure in which $|V|=v$ and $|b|=k$ for all $b \in B$. Then $\Delta=(V, B)$ is a $t-(v, k, \lambda)$ design if and only if any t-subset of V occurs in exactly λ blocks.

Definition
The design Δ is symmetric if $|V|=|B|$.

Example

A symmetric 2-($7,3,1$) design, Δ (the Fano plane). The point set is $V=\{1, \ldots, 7\}$, and the blocks are

$$
\{1,2,3\}\{1,4,5\}\{1,6,7\}\{2,4,6\}\{2,5,7\}\{3,4,7\}\{3,5,6\}
$$

A sample automorphism of \mathcal{D} is $(2,4,6)(3,5,7)$. In fact, $\operatorname{Aut}(\mathcal{D}) \cong P G L_{3}(2)$.

Lemma

The $v \times v(0,1)$-matrix M is the incidence matrix of a $2-(v, k, \lambda)$ symmetric design if and only if

$$
M M^{\top}=(k-\lambda) I+\lambda J
$$

Proof.

The entry in position (i, j) of $M M^{\top}$ counts the number of blocks containing both v_{i} and v_{j}.

Difference sets

- Let G be a group of order v, and \mathcal{D} a k-subset of G.
- Suppose that every non-identity element of G has λ representations of the form $d_{i} d_{j}^{-1}$ where $d_{i}, d_{j} \in \mathcal{D}$.
- Then \mathcal{D} is a (v, k, λ)-difference set in G.

Example: take $G=\left(\mathbb{Z}_{7},+\right)$ and $\mathcal{D}=\{1,2,4\}$.
Example: the Jordan 'miracle'.

Definition

We say that $G<\operatorname{Sym}(V)$ is regular (on V) if for any $v_{i}, v_{j} \in V$ there exists a unique $g \in G$ such that $v_{i}^{g}=v_{j}$.

Theorem

If G contains a (v, k, λ)-difference set then there exists a symmetric 2-($v, k, \lambda)$ design on which G acts regularly. Conversely, a 2-($v, k, \lambda)$ design on which G acts regularly corresponds to a (v, k, λ)-difference set in G.

Hadamard matrices

Definition

Let H be a matrix of order n, with all entries in $\{1,-1\}$. Then H is a Hadamard matrix if and only if $H H^{\top}=n I_{n}$.

$$
(1)\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

- Sylvester constructed Hadamard matrices of order 2^{n}.
- Hadamard showed that the determinant of a Hadamard matrix $H=\left[h_{i, j}\right]$ of order n is maximal among all matrices of order n over \mathbb{C} whose entries satisfy $\left\|h_{i, j}\right\| \leq 1$ for all $1 \leq i, j \leq n$.
- Hadamard also showed that the order of a Hadamard matrix is necessarily 1,2 or $4 t$ for some $t \in \mathbb{N}$. He also constructed Hadamard matrices of orders 12 and 20.
- Paley constructed Hadamard matrices of order $n=p^{t}+1$ for primes p, and conjectured that a Hadamard matrix of order n exists whenever $4 \mid n$.
- This is the Hadamard conjecture, and has been verified for all $n \leq 667$. Asymptotic results.

Automorphisms of Hadamard matrices

- A pair of $\{ \pm 1\}$ monomial matrices (P, Q) is an automorphism of H if $P H Q^{\top}=H$.
- Aut (H) has an induced permutation action on the set $\{r\} \cup\{-r\}$.
- Quotient by diagonal matrices is a permutation group with an induced action on the set of pairs $\{r,-r\}$, which we identify with the rows of H, denoted \mathcal{A}_{H}.

Hadamard matrices and 2-designs

Lemma

There exists a Hadamard matrix H of order $4 n$ if and only there exists a 2-($4 n-1,2 n-1, n-1)$ design \mathcal{D}. Furthermore $\operatorname{Aut}(\mathcal{D})<\mathcal{A}_{H}$.

Proof.

Let M be an incidence matrix for \mathcal{D}. Then M satisfies
$M M^{\top}=n I+(n-1) J$. So $(2 M-J)(2 M-J)^{\top}=4 n I-J$. Adding a row and column of 1 s gives a Hadamard matrix, H. Every automorphism of M is a permutation automorphism of H fixing the first row.

Example: the Paley construction

The existence of a ($4 n-1,2 n-1, n-1$)-difference set implies the existence of a Hadamard matrix H of order $4 n$. Difference sets with these parameters are called Paley-Hadamard.

- Let \mathbb{F}_{q} be the finite field of size $q, q=4 n-1$.
- The quadratic residues in \mathbb{F}_{q} form a difference set in $\left(\mathbb{F}_{q},+\right)$ with parameters $(4 n-1,2 n-1, n-1)$ (Paley).
- Let χ be the quadratic character of of \mathbb{F}_{q}^{*}, given by $\chi: x \mapsto x^{\frac{q-1}{2}}$, and let $Q=[\chi(x-y)]_{x, y \in \mathbb{F}_{q}}$.
- Then

$$
H=\left(\begin{array}{rr}
1 & \overline{1} \\
\overline{1}^{\top} & Q-I
\end{array}\right)
$$

is a Hadamard matrix.

Outline of Thesis

Chapters:

- Preliminary material
- Classification of cocyclic Hadamard matrices of order ≤ 40
- Doubly transitive group actions on Hadamard matrices
- Classification of cocyclic Hadamard matrices from difference sets (non-affine case)
- Non-cocyclic Hadamard matrices from difference sets (two families)
- Skew Hadamard difference sets (a new 3-parameter infinite family)

Cocyclic development

Definition

Let G be a group and C an abelian group. We say that $\psi: G \times G \rightarrow C$ is a cocycle if

$$
\psi(g, h) \psi(g h, k)=\psi(h, k) \psi(g, h k)
$$

for all $g, h, k \in G$.

Definition (de Launey \& Horadam)
Let H be an $n \times n$ Hadamard matrix. Let G be a group of order n. We say that H is cocyclic if there exists a cocycle $\psi: G \times G \rightarrow\langle-1\rangle$ such that

$$
H \cong[\psi(g, h)]_{g, h \in G}
$$

In particular, if H is cocyclic, then \mathcal{A}_{H} is transitive.

Classification of cocyclic Hadamard matrices

Theorem (De Launey, Flannery \& Horadam)
The following statements are equivalent.

- There is a cocyclic Hadamard matrix over G.
- There is a normal ($4 t, 2,4 t, 2 t$)-relative difference set in a central extension of $N \cong C_{2}$ by G, relative to N.
- There is a divisible ($4 t, 2,4 t, 2 t$) design, class regular with respect to $C_{2} \cong\langle-1\rangle$, and with a central extension of $\langle-1\rangle$ by G as a regular group of automorphisms.

With Marc Röder: The cocyclic Hadamard matrices of order less than 40, Designs, Codes and Cryptography, 2011.

Table of results

Order	Cocyclic	Indexing Groups	Extension Groups
2	1	1	2
4	1	2	$3 / 5$
8	1	$3 / 5$	$9 / 14$
12	1	$3 / 5$	$3 / 15$
16	5	$13 / 14$	$45 / 51$
20	3	$2 / 5$	$3 / 14$
24	$16 / 60$	$8 / 15$	$14 / 52$
28	$6 / 487$	$2 / 4$	$2 / 13$
32	$100 / \geq 3 \times 10^{6}$	$49 / 51$	$261 / 267$
36	$35 / \geq 3 \times 10^{6}$	$12 / 14$	$21 / 50$

Comprehensive data available at: www.maths.nuiga/way.ie/~padraig

We can compare the proportion of cocyclic Hadamard matrices (of order n) among all $\{ \pm 1\}$-cocyclic matrices to the proportion of Hadamard matrices among $\{ \pm 1\}$-matrices:

n	Hadamard matrices	Cocyclic Hadamard matrices
2	0.25	0.25
4	7×10^{-4}	0.125
8	1.3×10^{-13}	7.8×10^{-3}
12	2.5×10^{-30}	1.4×10^{-4}
16	1.1×10^{-53}	1.7×10^{-4}
20	1.0×10^{-85}	1.1×10^{-6}
24	1.2×10^{-124}	1.8×10^{-7}
28	1.3×10^{-173}	1.0×10^{-8}

Doubly transitive group actions on Hadamard matrices

Two constructions of Hadamard matrices: from ($4 n-1,2 n-1, n-1$) difference sets, and from ($4 n, 2,4 n, 2 n$)-RDSs.

Problem

- How do these constructions interact?
- Can a Hadamard matrix support both structures?
- If so, can we classify such matrices?

Motivation

- Horadam: Are the Hadamard matrices developed from twin prime power difference sets cocyclic? (Problem 39 of Hadamard matrices and their applications)
- Jungnickel: Classify the skew Hadamard difference sets. (Open Problem 13 of the survey Difference sets).
- Ito and Leon: There exists a Hadamard matrix of order 36 on which $S p_{6}(2)$ acts. Are there others?

Strategy

- We show that a cocyclic Hadamard matrix which is also developed from a difference set has \mathcal{A}_{H} doubly transitive.
- The doubly transitive groups which can act on a Hadamard matrix have been classified by Ito.
- From this list a classification of Hadamard matrices with doubly transitive automorphism groups is easily deduced.

This list may be exploited to:

- Solve Horadam's problem.
- Solve Ito and Leon's problem.
- Construct a new family of skew Hadamard difference sets.

Doubly transitive group actions on Hadamard matrices

Lemma

Let H be a Hadamard matrix developed from a $(4 n-1,2 n-1, n-1)$-difference set, \mathcal{D} in the group G. Then the stabiliser of the first row of H in \mathcal{A}_{H} contains a regular subgroup isomorphic to G.

Lemma

Suppose that H is a cocyclic Hadamard matrix with cocycle $\psi: G \times G \rightarrow\langle-1\rangle$. Then \mathcal{A}_{H} contains a regular subgroup isomorphic to G.

Corollary

If H is a cocyclic Hadamard matrix which is also developed from a difference set, then \mathcal{A}_{H} is a doubly transitive permutation group.

The groups

Theorem (Ito, 1979)

Let $\Gamma \leq \mathcal{A}_{H}$ be a non-affine doubly transitive permutation group acting on the set of rows of a Hadamard matrix H. Then the action of Γ is one of the following.

- $\Gamma \cong M_{12}$ acting on 12 points.
- $P S L_{2}\left(p^{k}\right) \unlhd \Gamma$ acting naturally on $p^{k}+1$ points, for $p^{k} \equiv 3 \bmod 4$, $p^{k} \neq 3,11$.
- $\Gamma \cong S p_{6}(2)$, and H is of order 36 .

The matrices

Theorem

Each of Ito's doubly transitive groups is the automorphism group of exactly one equivalence class of Hadamard matrices.

Proof.

- If H is of order 12 then $\mathcal{A}_{H} \cong M_{12}$. (Hall)
- If $P S L_{2}(q) \unlhd \mathcal{A}_{H}$, then H is the Paley matrix of order $q+1$.
- $S p_{6}(2)$ acts on a unique matrix of order 36. (Computation)

Corollary
Twin prime power Hadamard matrices are not cocyclic.
With Dick Stafford: On twin prime power Hadamard matrices, Cryptography and Communications, 2011.

Skew difference sets

Definition

Let D be a difference set in G. Then D is skew if $G=D \cup D^{(-1)} \cup\left\{1_{G}\right\}$.

- The Paley difference sets are skew.
- Conjecture (1930's): D is skew if and only if D is a Paley difference set.
- Proved in the cyclic case (1950s - Kelly).
- Exponent bounds obtained in the general abelian case.
- Disproved using permutation polynomials, examples in $\mathbb{F}_{3^{5}}$ and $\mathbb{F}_{3^{7}}$ (2005-Ding, Yuan).
- Infinite familes found in groups of order q^{3} and 3^{n}. (2008-2011Muzychuk, Weng, Qiu, Wang, ...).

Suppose that H is developed from a difference set \mathcal{D} and that \mathcal{A}_{H} is non-affine doubly transitive. Then:

- H is a Paley matrix.
- A result of Kantor: $\mathcal{A}_{H} \cong P \Sigma L_{2}(q)$.
- A point stabiliser is of index 2 in $А Г L_{1}(q)$.
- Difference sets correspond to regular subgroups of the stabiliser of a point in \mathcal{A}_{H}.

Lemma

Let $\mathcal{D} \subseteq G$ be a difference set such that the associated Hadamard matrix H has \mathcal{A}_{H} non-affine doubly transitive. Then G is a regular subgroup of $А Г L_{1}(q)$ in its natural action.

Suppose that $q=p^{k p^{\alpha}}$. A Sylow p-subgroup of $A \Gamma L_{1}(q)$ is

$$
G_{p, k, \alpha}=\left\langle a_{1}, \ldots, a_{n}, b \mid a_{i}^{p}=1,\left[a_{i}, a_{j}\right]=1, b^{p^{\alpha}}=1, a_{i}^{b}=a_{i+k}\right\rangle .
$$

Lemma (Ó C., 2011)

There are $\alpha+1$ conjugacy classes of regular subgroups of $А\left\lceil L_{1}(q)\right.$. The subgroups

$$
R_{e}=\left\langle a_{1} b^{p^{e}}, a_{2} b^{p^{e}}, \ldots, a_{n} b^{p^{e}}\right\rangle
$$

for $0 \leq \boldsymbol{e} \leq \alpha$ are a complete and irredundant list of representatives.

Lemma

Let G be a group containing a difference set \mathcal{D}, and let M be an incidence matrix of the underlying 2-design. Set $M^{*}=2 M-J$. That is,

$$
M^{*}=\left[\chi\left(g_{i} g_{j}^{-1}\right)\right]_{g_{i}, g_{j} \in G}
$$

where the ordering of the elements of G used to index rows and columns is the same, and where $\chi(g)=1$ if $g \in \mathcal{D}$ and -1 otherwise. Then $M^{*}+I$ is skew-symmetric if and only if \mathcal{D} is skew Hadamard.

- The Paley difference sets are skew.
- So the underlying 2-design \mathcal{D} is skew.
- So any difference set associated \mathcal{D} is skew.

Theorem (Ó C., 2011)

Let p be a prime, and $n=k p^{\alpha} \in \mathbb{N}$.

- Define

$$
G_{p, k, \alpha}=\left\langle a_{1}, \ldots, a_{n}, b \mid a_{i}^{p}=1,\left[a_{i}, a_{j}\right]=1, b^{p^{\alpha}}=1, a_{i}^{b}=a_{i+k}\right\rangle .
$$

- The subgroups

$$
R_{e}=\left\langle a_{1} b^{p^{e}}, a_{2} b^{p^{e}}, \ldots, a_{n} b^{p^{e}}\right\rangle
$$

for $0 \leq \boldsymbol{e} \leq \alpha$ contain skew Hadamard difference sets.

- Each difference set gives rise to a Paley Hadamard matrix.
- These are the only non-affine difference sets which give rise to Hadamard matrices in which \mathcal{A}_{H} is transitive.
- These are the only skew difference sets which give rise to Hadamard matrices in which \mathcal{A}_{H} is transitive.

