Automorphisms of pairwise combinatorial designs

Padraig Ó Catháin

National University of Ireland, Galway

17 October 2011

Outline

- 1 Introduction: Designs and Hadamard matrices
- Outline of thesis

Ooubly transitive group actions on Hadamard matrices

Padraig Ó Catháin Viva defence talk 17 October 2011

Incidence Structures

Definition

An *incidence structure* Δ is a pair (V, B) where V is a finite set and $B \subseteq \mathcal{P}(V)$.

Definition

An *automorphism* of Δ is a permutation $\sigma \in \operatorname{Sym}(V)$ which preserves B setwise.

Definition

Define a function $\phi: V \times B \to \{0,1\}$ given by $\phi(v,b) = 1$ if and only if $v \in b$. An *incidence matrix* for Δ is a matrix

$$M = [\phi(\mathbf{v}, \mathbf{b})]_{\mathbf{v} \in \mathbf{V}, \mathbf{b} \in \mathbf{B}}$$
.

Designs

Definition

Let (V, B) be an incidence structure in which |V| = v and |b| = k for all $b \in B$. Then $\Delta = (V, B)$ is a t- (v, k, λ) **design** if and only if any t-subset of V occurs in exactly λ blocks.

Definition

The design Δ is **symmetric** if |V| = |B|.

Example

A symmetric 2-(7,3,1) design, Δ (the Fano plane). The point set is $V=\{1,\dots,7\}$, and the blocks are

$$\{1,2,3\}$$
 $\{1,4,5\}$ $\{1,6,7\}$ $\{2,4,6\}$ $\{2,5,7\}$ $\{3,4,7\}$ $\{3,5,6\}$

A sample automorphism of \mathcal{D} is (2,4,6)(3,5,7). In fact, $Aut(\mathcal{D}) \cong PGL_3(2)$.

Lemma

The $v \times v$ (0, 1)-matrix M is the incidence matrix of a 2-(v, k, λ) symmetric design if and only if

$$MM^{\top} = (k - \lambda)I + \lambda J$$

Proof.

The entry in position (i,j) of MM^{\top} counts the number of blocks containing both v_i and v_i .

Difference sets

- Let G be a group of order v, and \mathcal{D} a k-subset of G.
- Suppose that every non-identity element of G has λ representations of the form $d_i d_j^{-1}$ where $d_i, d_j \in \mathcal{D}$.
- Then \mathcal{D} is a (v, k, λ) -difference set in G.

Example: take $G = (\mathbb{Z}_7, +)$ and $\mathcal{D} = \{1, 2, 4\}$.

Example: the Jordan 'miracle'.

Definition

We say that $G < \operatorname{Sym}(V)$ is **regular** (on V) if for any $v_i, v_j \in V$ there exists a unique $g \in G$ such that $v_i^g = v_j$.

Theorem

If G contains a (v, k, λ) -difference set then there exists a symmetric 2- (v, k, λ) design on which G acts regularly. Conversely, a 2- (v, k, λ) design on which G acts regularly corresponds to a (v, k, λ) -difference set in G.

Hadamard matrices

Definition

Let H be a matrix of order n, with all entries in $\{1, -1\}$. Then H is a *Hadamard matrix* if and only if $HH^{\top} = nI_n$.

- Sylvester constructed Hadamard matrices of order 2ⁿ.
- Hadamard showed that the determinant of a Hadamard matrix $H = [h_{i,j}]$ of order n is maximal among all matrices of order n over $\mathbb C$ whose entries satisfy $\|h_{i,j}\| \le 1$ for all $1 \le i,j \le n$.
- Hadamard also showed that the order of a Hadamard matrix is necessarily 1, 2 or 4t for some $t \in \mathbb{N}$. He also constructed Hadamard matrices of orders 12 and 20.
- Paley constructed Hadamard matrices of order $n = p^t + 1$ for primes p, and conjectured that a Hadamard matrix of order n exists whenever $4 \mid n$.
- This is the Hadamard conjecture, and has been verified for all n ≤ 667. Asymptotic results.

Automorphisms of Hadamard matrices

- A pair of $\{\pm 1\}$ monomial matrices (P,Q) is an **automorphism** of H if $PHQ^{\top}=H$.
- Aut(H) has an induced permutation action on the set $\{r\} \cup \{-r\}$.
- Quotient by diagonal matrices is a permutation group with an induced action on the set of pairs $\{r, -r\}$, which we identify with the rows of H, denoted A_H .

Hadamard matrices and 2-designs

Lemma

There exists a Hadamard matrix H of order 4n if and only there exists a 2-(4n - 1, 2n - 1, n - 1) design \mathcal{D} . Furthermore $Aut(\mathcal{D}) < \mathcal{A}_H$.

Proof.

Let M be an incidence matrix for \mathcal{D} . Then M satisfies

 $MM^{\top} = nI + (n-1)J$. So $(2M-J)(2M-J)^{\top} = 4nI - J$. Adding a row and column of 1s gives a Hadamard matrix, H. Every automorphism of M is a permutation automorphism of H fixing the first row.

Example: the Paley construction

The existence of a (4n-1,2n-1,n-1)-difference set implies the existence of a Hadamard matrix H of order 4n. Difference sets with these parameters are called *Paley-Hadamard*.

- Let \mathbb{F}_q be the finite field of size q, q = 4n 1.
- The quadratic residues in \mathbb{F}_q form a difference set in $(\mathbb{F}_q, +)$ with parameters (4n-1, 2n-1, n-1) (Paley).
- Let χ be the quadratic character of of \mathbb{F}_q^* , given by $\chi: x \mapsto x^{\frac{q-1}{2}}$, and let $Q = [\chi(x-y)]_{x,y \in \mathbb{F}_q}$.
- Then

$$H = \left(\begin{array}{cc} 1 & \overline{1} \\ \overline{1}^{\top} & Q - I \end{array}\right)$$

is a Hadamard matrix.

Outline of Thesis

Chapters:

- Preliminary material
- Classification of cocyclic Hadamard matrices of order ≤ 40
- Doubly transitive group actions on Hadamard matrices
- Classification of cocyclic Hadamard matrices from difference sets (non-affine case)
- Non-cocyclic Hadamard matrices from difference sets (two families)
- Skew Hadamard difference sets (a new 3-parameter infinite family)

Cocyclic development

Definition

Let G be a group and C an abelian group. We say that $\psi: G \times G \to C$ is a *cocycle* if

$$\psi(g,h)\psi(gh,k)=\psi(h,k)\psi(g,hk)$$

for all $g, h, k \in G$.

Definition (de Launey & Horadam)

Let H be an $n \times n$ Hadamard matrix. Let G be a group of order n. We say that H is cocyclic if there exists a cocycle $\psi: G \times G \to \langle -1 \rangle$ such that

$$H\cong \left[\psi\left(g,h\right)\right]_{g,h\in G}.$$

In particular, if H is cocyclic, then A_H is transitive.

Classification of cocyclic Hadamard matrices

Theorem (De Launey, Flannery & Horadam)

The following statements are equivalent.

- There is a cocyclic Hadamard matrix over G.
- There is a normal (4t, 2, 4t, 2t)-relative difference set in a central extension of $N \cong C_2$ by G, relative to N.
- There is a divisible (4t, 2, 4t, 2t) design, class regular with respect to $C_2 \cong \langle -1 \rangle$, and with a central extension of $\langle -1 \rangle$ by G as a regular group of automorphisms.

With Marc Röder: The cocyclic Hadamard matrices of order less than 40, *Designs, Codes and Cryptography*, 2011.

Table of results

Order	Cocyclic	Indexing Groups	Extension Groups
2	1	1	2
4	1	2	3 / 5
8	1	3 / 5	9 / 14
12	1	3 / 5	3 / 15
16	5	13 / 14	45 / 51
20	3	2/5	3 / 14
24	16 / 60	8 / 15	14 / 52
28	6 / 487	2/4	2 / 13
32	$100/ \ge 3 \times 10^6$	49/51	261/267
36	$35 / \geq 3 \times 10^6$	12 /14	21 / 50

Comprehensive data available at: www.maths.nuigalway.ie/~padraig

We can compare the proportion of cocyclic Hadamard matrices (of order n) among all $\{\pm 1\}$ -cocyclic matrices to the proportion of Hadamard matrices among $\{\pm 1\}$ -matrices:

n	Hadamard matrices	Cocyclic Hadamard matrices
2	0.25	0.25
4	7×10^{-4}	0.125
8	$1.3 imes 10^{-13}$	7.8×10^{-3}
12	2.5×10^{-30}	1.4×10^{-4}
16	$1.1 imes 10^{-53}$	1.7×10^{-4}
20	$1.0 imes 10^{-85}$	1.1×10^{-6}
24	1.2×10^{-124}	1.8×10^{-7}
28	1.3×10^{-173}	1.0×10^{-8}

Doubly transitive group actions on Hadamard matrices

Two constructions of Hadamard matrices: from (4n - 1, 2n - 1, n - 1) difference sets, and from (4n, 2, 4n, 2n)-RDSs.

Problem

- How do these constructions interact?
- Can a Hadamard matrix support both structures?
- If so, can we classify such matrices?

Motivation

- Horadam: Are the Hadamard matrices developed from twin prime power difference sets cocyclic? (Problem 39 of Hadamard matrices and their applications)
- Jungnickel: Classify the skew Hadamard difference sets. (Open Problem 13 of the survey Difference sets).
- Ito and Leon: There exists a Hadamard matrix of order 36 on which Sp₆(2) acts. Are there others?

Strategy

- We show that a cocyclic Hadamard matrix which is also developed from a difference set has A_H doubly transitive.
- The doubly transitive groups which can act on a Hadamard matrix have been classified by Ito.
- From this list a classification of Hadamard matrices with doubly transitive automorphism groups is easily deduced.

This list may be exploited to:

- Solve Horadam's problem.
- Solve Ito and Leon's problem.
- Construct a new family of skew Hadamard difference sets.

Doubly transitive group actions on Hadamard matrices

Lemma

Let H be a Hadamard matrix developed from a (4n-1,2n-1,n-1)-difference set, $\mathcal D$ in the group G. Then the stabiliser of the first row of H in $\mathcal A_H$ contains a regular subgroup isomorphic to G.

Lemma

Suppose that H is a cocyclic Hadamard matrix with cocycle $\psi: G \times G \to \langle -1 \rangle$. Then \mathcal{A}_H contains a regular subgroup isomorphic to G.

Corollary

If H is a cocyclic Hadamard matrix which is also developed from a difference set, then A_H is a doubly transitive permutation group.

The groups

Theorem (Ito, 1979)

Let $\Gamma \leq \mathcal{A}_H$ be a non-affine doubly transitive permutation group acting on the set of rows of a Hadamard matrix H. Then the action of Γ is one of the following.

- $\Gamma \cong M_{12}$ acting on 12 points.
- $PSL_2(p^k) \leq \Gamma$ acting naturally on $p^k + 1$ points, for $p^k \equiv 3 \mod 4$, $p^k \neq 3, 11$.
- $\Gamma \cong Sp_6(2)$, and H is of order 36.

The matrices

Theorem

Each of Ito's doubly transitive groups is the automorphism group of exactly one equivalence class of Hadamard matrices.

Proof.

- If *H* is of order 12 then $A_H \cong M_{12}$. (Hall)
- If $PSL_2(q) \leq A_H$, then H is the Paley matrix of order q + 1.
- $Sp_6(2)$ acts on a unique matrix of order 36. (Computation)

Corollary

Twin prime power Hadamard matrices are not cocyclic.

With Dick Stafford: On twin prime power Hadamard matrices, *Cryptography and Communications*, 2011.

Skew difference sets

Definition

Let D be a difference set in G. Then D is *skew* if $G = D \cup D^{(-1)} \cup \{1_G\}$.

- The Paley difference sets are skew.
- Conjecture (1930's): D is skew if and only if D is a Paley difference set.
- Proved in the cyclic case (1950s Kelly).
- Exponent bounds obtained in the general abelian case.
- Disproved using permutation polynomials, examples in \mathbb{F}_{3^5} and \mathbb{F}_{3^7} (2005 Ding, Yuan).
- Infinite familes found in groups of order q^3 and 3^n . (2008-2011 Muzychuk, Weng, Qiu, Wang, . . .).

Suppose that H is developed from a difference set \mathcal{D} and that \mathcal{A}_H is non-affine doubly transitive. Then:

- H is a Paley matrix.
- A result of Kantor: $A_H \cong P\Sigma L_2(q)$.
- A point stabiliser is of index 2 in $A\Gamma L_1(q)$.
- Difference sets correspond to regular subgroups of the stabiliser of a point in A_H .

Lemma

Let $\mathcal{D} \subseteq G$ be a difference set such that the associated Hadamard matrix H has \mathcal{A}_H non-affine doubly transitive. Then G is a regular subgroup of $A\Gamma L_1(q)$ in its natural action.

Suppose that $q = p^{kp^{\alpha}}$. A Sylow *p*-subgroup of $A\Gamma L_1(q)$ is

$$G_{p,k,\alpha} = \left\langle a_1, \dots, a_n, b \mid a_i^p = 1, [a_i, a_j] = 1, b^{p^{\alpha}} = 1, a_i^b = a_{i+k} \right\rangle.$$

Lemma (Ó C., 2011)

There are $\alpha + 1$ conjugacy classes of regular subgroups of AFL₁(q). The subgroups

$$R_e = \left\langle a_1 b^{p^e}, a_2 b^{p^e}, \dots, a_n b^{p^e} \right
angle$$

for $0 \le e \le \alpha$ are a complete and irredundant list of representatives.

Lemma

Let G be a group containing a difference set \mathcal{D} , and let M be an incidence matrix of the underlying 2-design. Set $M^* = 2M - J$. That is,

$$M^* = [\chi(g_ig_j^{-1})]_{g_i,g_j \in G}$$

where the ordering of the elements of G used to index rows and columns is the same, and where $\chi(g)=1$ if $g\in\mathcal{D}$ and -1 otherwise. Then M^*+I is skew-symmetric if and only if $\mathcal D$ is skew Hadamard.

- The Paley difference sets are skew.
- So the underlying 2-design $\mathcal D$ is skew.
- So any difference set associated \mathcal{D} is skew.

Theorem (Ó C., 2011)

Let p be a prime, and $n = kp^{\alpha} \in \mathbb{N}$.

Define

$$G_{p,k,\alpha} = \left\langle a_1, \ldots, a_n, b \mid a_i^p = 1, [a_i, a_j] = 1, b^{p^{\alpha}} = 1, a_i^b = a_{i+k} \right\rangle.$$

The subgroups

$$R_e = \left\langle a_1 b^{p^e}, a_2 b^{p^e}, \dots, a_n b^{p^e} \right
angle$$

for $0 \le e \le \alpha$ contain skew Hadamard difference sets.

- Each difference set gives rise to a Paley Hadamard matrix.
- These are the only non-affine difference sets which give rise to Hadamard matrices in which A_H is transitive.
- These are the only skew difference sets which give rise to Hadamard matrices in which A_H is transitive.