Doubly transitive group actions on Hadamard matrices and skew difference sets

Padraig Ó Catháin

National University of Ireland, Galway
De Brún Workshop 5, 11 April 2011

Outline

(1) Designs and difference sets
(2) Hadamard matrices
(3) The problem
4. The solution (in the non-affine case)

What is a design?

Definition
 Let V be a set of size v, and B a collection of subsets of V, each of (fixed) size $k>0$. We say that $\mathcal{D}=(V, B)$ is a $t-(v, k, \lambda)$ design if any t-subset of V occurs in exactly λ elements of B.

Definition
The permutation $\sigma \in \mathcal{S}_{P}$ is an automorphism of \mathcal{D} if $B^{\sigma}=B$.

Definition
The design \mathcal{D} is symmetric if $|V|=|B|$.

Example

- A symmetric 2-(7,3,1) design, \mathcal{D} (the Fano plane).
- $P=\{1,2,3,4,5,6,7\}, B=$ $\{\{1,2,3\},\{1,4,5\}, V\{1,6,7\},\{2,4,6\},\{2,5,7\},\{3,4,7\},\{3,5,6\}\}$

A sample automorphism of \mathcal{D} is $(2,4,6)(3,5,7)$. In fact, $\operatorname{Aut}(\mathcal{D}) \cong P G L_{3}(2)$.

Automorphisms of incidence matrices

Under a suitable labelling of rows and columns, \mathcal{D} is represented by

$$
M=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then $\operatorname{Aut}(\mathcal{D})$ has a representation as pairs (P, Q) of permutation matrices with action $(P, Q) M=P M Q^{\top}=M$. (Permutation action of Aut (\mathcal{D}) on rows of $M!$)

Difference sets

- Let G be a group of order v, and D a k-subset of G.
- Suppose that every non-identity element of G has λ representations of the form $d_{i} d_{j}^{-1}$ where $d_{i}, d_{j} \in D$.
- Then D is a (v, k, λ)-difference set in G.

Theorem

If G contains a (v, k, λ)-difference set then there exists a symmetric 2-($v, k, \lambda)$ design on which G acts regularly. Conversely, a 2-($v, k, \lambda)$ design on which G acts regularly corresponds to a (v, k, λ) difference set in G.

Proof - the first half

Proof.

- Denote by D the difference set in G (written multiplicatively).
- Define an incidence structure, \mathcal{D}, by $\mathcal{V}=\{g \mid g \in G\}$ and $\mathcal{B}=\{D g \mid g \in G\}$.
- Let $g \in \mathcal{V}$ be incident with $D h \in \mathcal{B}$ if (and only if) $g \in D h$.
- Every block has size $k:|D g|=|D h|$.
- Furthermore $|D g \cap D h|=\lambda$: consider the equation $d_{i} g=d_{j} h$ with $d_{i}, d_{j} \in D, g \neq h$. Rewrite as $d_{i} d_{j}^{-1}=\left(h g^{-1}\right)^{d_{j}^{-1}}$.
- There are precisely λ solutions, since D is a difference set.
- Thus \mathcal{D} is a $2-(v, k, \lambda)$ design as required.

The other direction requires careful labelling of points and blocks, but is similar.

Example

$$
M=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

- A circulant matrix: \mathbb{Z}_{7} acts regularly.
- So there exists a difference set in $\mathbb{Z}_{7}:\{1,2,4\}$.

Hadamard matrices

Definition

Let H be a matrix of order n, with all entries in $\{1,-1\}$. Then H is a Hadamard matrix if and only if $H H^{\top}=n I_{n}$.

- Sylvester constructed Hadamard matrices of order $n=2^{t}$.
- Hadamard constructed matrices of orders 12 and 20, and showed that the order had to be a multiple of 4.
- Paley constructed Hadamard matrices of order $n=p^{t}+1$ for primes p, and conjectured that a Hadamard matrix of order n exists whenever $4 \mid n$. (cf. Schmidt)
- This is the Hadamard conjecture, and has been verified for all $n \leq 667$. Asymptotic results.

Automorphisms of Hadamard matrices

- A pair of $\{ \pm 1\}$ monomial matrices (P, Q) is an automorphism of H if $P H Q^{\top}=H$.
- Aut (H) has an induced permutation action on the set $\{r\} \cup\{-r\}$.
- Quotient by diagonal matrices is a permutation group with an induced action on the set of pairs $\{r,-r\}$, which we identify with the rows of H, denoted \mathcal{A}_{H}.

Hadamard matrices and 2-designs

Lemma

There exists a Hadamard matrix H of order $4 n$ if and only there exists a $2-(4 n-1,2 n-1, n-1)$ design D. Furthermore $\operatorname{Aut}(D)<\mathcal{A}_{H}$.

Proof.

Let M be an incidence matrix for D. Then M satisfies
$M M^{\top}=n I+(n-1) J$. So $(2 M-J)(2 M-J)^{\top}=4 n I-J$. Adding a row and column of 1 s gives a Hadamard matrix, H. Every automorphism of M is a permutation automorphism of H fixing the first row.

Corollary
Suppose that D is a $(4 n-1,2 n-1, n-1)$-difference set. Then the stabiliser of the first row in \mathcal{A}_{H} is transitive on the remaining rows of H_{D}.

Example: the Paley construction

The existence of a $(4 n-1,2 n-1, n-1)$ difference set implies the existence of a Hadamard matrix H of order $4 n$. Difference sets with these parameters are called Paley-Hadamard.

- Let \mathbb{F}_{q} be the finite field of size $q, q=4 n-1$.
- The quadratic residues in \mathbb{F}_{q} form a difference set in $\left(\mathbb{F}_{q},+\right)$ with parameters $(4 n-1,2 n-1, n-1)$ (Paley).
- Let χ be the quadratic character of of \mathbb{F}_{q}^{*}, given by $\chi: x \mapsto x^{\frac{q-1}{2}}$, and let $Q=[\chi(x-y)]_{x, y \in \mathbb{F}_{q}}$.
- Then

$$
H=\left(\begin{array}{rr}
1 & \overline{1} \\
\overline{1}^{\top} & Q-I
\end{array}\right)
$$

is a Hadamard matrix.

Lemma

If G is transitive on X and G_{α} is transitive on $X-\{\alpha\}$ then G is doubly transitive on X.

Corollary

If a Hadamard matrix H is developed from a difference set, and \mathcal{A}_{H} is transitive, then \mathcal{A}_{H} is doubly transitive on the rows of H.

Problem

- Classify the doubly transitive groups which act on Hadamard matrices.
- Classify the Hadamard matrices with doubly transitive automorphism groups.
- Classify the difference sets (if any) from which these Hadamard matrices are developed.

Motivation

- Horadam: Do the Hadamard matrices developed from twin prime power difference sets have transitive automorphism groups? (Problem 39 of Hadamard matrices and their applications)
- Jungnickel: Classify the skew Hadamard difference sets. (Open Problem 13 of the survey Difference sets).
- Ito and Leon: There exists a Hadamard matrix of order 36 on which $S p_{6}(2)$ acts. Are there others?

The groups

Theorem (Ito, 1979)

Let $\Gamma \leq \mathcal{A}_{H}$ be a non-affine doubly transitive permutation group acting on the set of rows of a Hadamard matrix H. Then the action of Γ is one of the following.

- $\Gamma \cong M_{12}$ and H is the unique Hadamard matrix of order 12.
- $P S L_{2}\left(p^{k}\right) \unlhd \Gamma$ acting naturally on $p^{k}+1$ points, for $p^{k} \equiv 3 \bmod 4$, $p^{k} \neq 3,11$.
- $\Gamma \cong \operatorname{Sp}_{6}(2)$, and H is of order 36 .

The matrices

Theorem

Each of Ito's doubly transitive groups is the automorphism group of exactly one equivalence class of Hadamard matrices.

Proof.

- M_{12} is the automorphism group of the unique Hadamard matrix of order 12. (Hall)
- If $P S L_{2}(q) \unlhd \mathcal{A}_{H}$, then H is the Paley matrix of order $q+1$.
- $S p_{6}(2)$ acts on a unique matrix of order 36. (Nakic)

Skew difference sets

Definition

Let D be a difference set in G. Then D is skew if $G=D \cup D^{(-1)} \cup\left\{1_{G}\right\}$.

- The Paley difference sets are skew.
- Conjecture (1930's): D is skew if and only if D is a Paley difference set.
- Proved in the cyclic case (1950s - Kelly).
- Exponent bounds obtained in the general abelian case.
- Disproved using permutation polynomials, examples in $\mathbb{F}_{3^{5}}$ and $\mathbb{F}_{3^{7}}$ (2005-Ding, Yuan).
- Infinite familes found in groups of order q^{3} and 3^{n}. (2008-2011Muzychuk, Weng, Qiu, Wang, ...).

Theorem (Ó C.)

Let p be a prime, and $n=k p^{\alpha} \in \mathbb{N}$.

- Define

$$
G_{p, k, \alpha}=\left\langle a_{1}, \ldots, a_{n}, b \mid a_{i}^{p}=1,\left[a_{i}, a_{j}\right]=1, b^{p^{\alpha}}=1, a_{i}^{b}=a_{i+k}\right\rangle .
$$

- The subgroups

$$
R_{e}=\left\langle a_{1} b^{p^{e}}, a_{2} b^{p^{e}} \ldots a_{n} b^{p^{e}}\right\rangle
$$

for $0 \leq \boldsymbol{e} \leq \alpha$ contain skew Hadamard difference sets.

- Each difference set gives rise to a Paley Hadamard matrix.
- These are the only non-affine difference sets which give rise to Hadamard matrices in which \mathcal{A}_{H} is transitive.

Proof.

- Ito's theorem: suffices to find all regular subgroups of the stabiliser of a point in \mathcal{A}_{H}, where H is Paley.
- Kantor's theorem: \mathcal{A}_{H} is $P \Sigma L_{2}(q)$ in its natural action.
- So a point stabiliser is of index 2 in $A \Gamma L_{1}(q)$.
- We constructed all regular subgroups of this group: there is a single $P \Sigma L_{2}(q)$ conjugacy class of each of the groups described above.
- A calculation together with Paley's theorem shows that the sets given above are difference sets.
- Assumption of the existence of others leads to a contradiction.

