Difference sets and Hadamard matrices

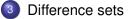
Padraig Ó Catháin

National University of Ireland, Galway

14 March 2012

Outline

2 Symmetric Designs



Doubly transitive group actions on Hadamard matrices

Projective planes

Definition

Let *V* be a set whose elements are **points**, and let *B* be a set of subsets of *V* whose elements are called **lines**. Then (V, B) is a **projective plane** if the following axioms hold:

- Any two distinct points are incident with a unique line.
- 2 Any two distinct lines are incident with a unique point.
- There exist four points no three of which are co-linear.

Bijections are easily established between:

- The lines containing x and the points on a line not containing x.
- Provide the points of two distinct lines.
- The number of lines and the number of points, etc.

Finite projective planes

Let \mathbb{F} be any field. Then there exists a projective plane over \mathbb{F} derived from a 3-dimensional \mathbb{F} -vector space. In the case that \mathbb{F} is a finite field of order q we obtain a geometry with

- $q^2 + q + 1$ points and $q^2 + q + 1$ lines.
- q + 1 points on every line and q + 1 lines through every point.
- Every pair of lines intersecting in a unique point.

Symmetric designs are a generalization of finite projective planes, and give a unified approach to many combinatorial objects.

Symmetric Designs

Definition

Let *V* be a set of size *v* and let *B* be a set of *k* subsets of *V* (now called **blocks**). Then $\Delta = (V, B)$ is a symmetric (v, k, λ) -design if every pair of blocks intersect in a fixed number λ of points.

A projective plane is a symmetric design with $(v, k, \lambda) = (q^2 + q + 1, q + 1, 1).$

Definition

Define a function $\phi : V \times B \rightarrow \{0, 1\}$ given by $\phi(v, b) = 1$ if and only if $v \in b$. An *incidence matrix* for Δ is a matrix

$$\boldsymbol{M} = \left[\phi(\boldsymbol{v}, \boldsymbol{b})\right]_{\boldsymbol{v} \in \boldsymbol{V}, \boldsymbol{b} \in \boldsymbol{B}}.$$

Incidence matrices

Lemma

The $v \times v$ (0,1)-matrix M is the incidence matrix of a 2-(v, k, λ) symmetric design Δ if and only if

$$MM^{\top} = (k - \lambda)I + \lambda J$$

Lemma (Ryser)

Suppose that M is a square (0,1) matrix satisfying $MM^{\top} = \alpha I + \beta J$. Then

$$\boldsymbol{M}^{\top}\boldsymbol{M} = \alpha \boldsymbol{I} + \beta \boldsymbol{J}.$$

The matrix M^{\top} is incidence matrix of the **dual** of Δ . Thus a little linear algebra and combinatorics recovers the classical duality of projective spaces (in this finite setting).

Hadamard matrices

Definition

Let *H* be a matrix of order *n*, with all entries in $\{1, -1\}$. Then *H* is a *Hadamard matrix* if and only if $HH^{\top} = nI_n$.

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$$

Hadamard matrices

- Sylvester constructed Hadamard matrices of order 2ⁿ.
- Hadamard showed that the determinant of a Hadamard matrix $H = [h_{i,j}]$ of order *n* is maximal among all matrices of order *n* over \mathbb{C} whose entries satisfy $||h_{i,j}|| \le 1$ for all $1 \le i, j \le n$.
- Hadamard also showed that the order of a Hadamard matrix is necessarily 1, 2 or 4n for some n ∈ N. He also constructed Hadamard matrices of orders 12 and 20.
- Paley constructed Hadamard matrices of order n = p^t + 1 for primes p, and conjectured that a Hadamard matrix of order n exists whenever 4 | n.
- This is the *Hadamard conjecture*, and has been verified for all $n \le 667$. Asymptotic results.

2-designs and Hadamard matrices

Lemma

There exists a Hadamard matrix H of order 4n if and only there exists a 2-(4n - 1, 2n - 1, n - 1) design D.

Proof.

Let *M* be an incidence matrix for \mathcal{D} . Then *M* satisfies $MM^{\top} = nI + (n-1)J$. So $(2M - J)(2M - J)^{\top} = 4nI - J$. Adding a row and column of 1s gives a Hadamard matrix, *H*.

For this reason, a symmetric 2 - (4n - 1, 2n - 1, n - 1) design is called a **Hadamard design**.

Automorphisms of 2-designs

Definition

Let $\Delta = (V, B)$ be a symmetric design, and let S_V be the full symmetric group on V. Then S_V has an induced action on B. The stabiliser of B under this action is the **automorphism group** of Δ , Aut(Δ).

Definition

A subgroup *G* of S_V is called **regular** if for any $v_i, v_j \in V$, there exists a unique $g \in G$ such that $v_i^g = v_j$.

In the remainder of this talk we will be interested in regular subgroups of $Aut(\Delta)$.

Difference sets

- Suppose that G acts regularly on V.
- Labelling one point with 1_G induces a labelling of the remaining points in V with elements of G.
- So blocks of Δ are subsets of *G*.
- *G* also acts regularly on the blocks (linear algebra again).
- Denote by \mathcal{D} one block of G. Then every other block of Δ is of the form $\mathcal{D}g$.

Difference sets

- Let G be a group of order v, and \mathcal{D} a k-subset of G.
- Suppose that every non-identity element of G has λ representations of the form d_id_i⁻¹ where d_i, d_j ∈ D.
- Then \mathcal{D} is a $(\mathbf{v}, \mathbf{k}, \lambda)$ -difference set in G.

Theorem

If G contains a (v, k, λ) -difference set then there exists a symmetric 2- (v, k, λ) design on which G acts regularly. Conversely, a 2- (v, k, λ) design on which G acts regularly corresponds to a (v, k, λ) -difference set in G.

Singer difference sets

Recall that the automorphism group of $PG_2(q)$ is $PGL_3(q)$.

Theorem (Singer)

The group $PGL_3(q)$ contains a cyclic subgroup of order $q^2 + q + 1$ which acts regularly on the points of $PG_2(q)$ and regularly on the lines of $PG_2(q)$.

Corollary

So there exists a $(q^2 + q + 1, q + 1, 1)$ difference set in the cyclic group of order $q^2 + q + 1$.

Example: Consider the set $\{0, 1, 3\}$ in $\mathbb{Z}/7\mathbb{Z}$, or the set $\{0, 1, 3, 9\}$ in $\mathbb{Z}/13\mathbb{Z}$, which generate the projective planes of orders 2 and 3.

Hadamard difference sets

- From a (v, k, λ)-difference set, we can construct a symmetric 2-(v, k, λ) design.
- From a symmetric 2-(4*t* − 1, 2*t* − 1, *t* − 1) design, we can construct a Hadamard matrix.
- So from a (4t 1, 2t 1, t 1) difference set, we can construct a Hadamard matrix.
- There are four classical families of difference sets with these parameters.

Example: the Paley construction

- Let \mathbb{F}_q be the finite field of size q, q = 4n 1.
- The quadratic residues in \mathbb{F}_q form a difference set in $(\mathbb{F}_q, +)$ with parameters (4n 1, 2n 1, n 1) (Paley).
- Let χ be the quadratic character of of \mathbb{F}_q^* , given by $\chi : x \mapsto x^{\frac{q-1}{2}}$, and let $Q = [\chi(x y)]_{x,y \in \mathbb{F}_q}$.

Then

$$H = \left(\begin{array}{cc} 1 & \overline{1} \\ \overline{1}^{\top} & Q - I \end{array}\right)$$

is a Hadamard matrix.

Families of Hadamard difference sets

Difference set	Matrix	Order
Singer	Sylvester	2 ⁿ
Paley	Paley Type I	$p^{lpha}+1$
Stanton-Sprott	TPP	$p^{lpha}q^{eta}+1$
Sextic residue	HSR	$p + 1 = x^2 + 28$

- Other sporadic Hadamard difference sets are known at these parameters.
- But every known Hadamard difference set has the same parameters as one of those in the series above.
- The first two families are infinite, the other two presumably so.

Automorphisms of Hadamard matrices

- A pair of {±1} monomial matrices (P, Q) is an *automorphism* of H if PHQ^T = H.
- Aut(*H*) has an induced permutation action on the set $\{r\} \cup \{-r\}$.
- Quotient by diagonal matrices is a permutation group with an induced action on the set of pairs $\{r, -r\}$, which we identify with the rows of *H*, denoted A_H .

Induced automorphisms

Let Δ be a symmetric 2-(4t – 1, 2t – 1, t – 1) design with incidence matrix M, and let σ be an automorphism of Δ . Then there exist permutation matrices P, Q such that

$$M = PMQ^{\top}$$

Lemma

Let Δ be a symmetric 2-(4t – 1, 2t – 1, t – 1) design with associated Hadamard matrix H. Then

$$\begin{pmatrix} 1 & \overline{0} \\ \overline{0}^{\top} & P \end{pmatrix} \begin{pmatrix} 1 & \overline{1} \\ \overline{1}^{\top} & 2M - J \end{pmatrix} \begin{pmatrix} 1 & \overline{0} \\ \overline{0}^{\top} & Q \end{pmatrix}^{\top} = H$$

So every automorphism of Δ induces an automorphism of *H*.

$$\operatorname{Aut}(\Delta) \hookrightarrow \mathcal{A}_H$$

Cocyclic development

Definition

Let *G* be a group and *C* an abelian group. We say that $\psi : G \times G \rightarrow C$ is a *cocycle* if for all *g*, *h*, *k* \in *G*

$$\psi(\boldsymbol{g},\boldsymbol{h})\psi(\boldsymbol{g}\boldsymbol{h},\boldsymbol{k})=\psi(\boldsymbol{h},\boldsymbol{k})\psi(\boldsymbol{g},\boldsymbol{h}\boldsymbol{k})$$

Definition (de Launey & Horadam)

Let *H* be an $n \times n$ Hadamard matrix. Let *G* be a group of order *n*. We say that *H* is cocyclic if there exists a cocycle $\psi : G \times G \rightarrow \langle -1 \rangle$ such that

$$H\cong \left[\psi\left(g,h\right)\right]_{g,h\in G}.$$

Sylvester matrices are cocyclic

- Let $\langle -, \rangle$ be the usual dot product on $k = \mathbb{F}_2^n$.
- This is a 2-cocycle.
- The matrix $H = [-1^{\langle u, v \rangle}]_{u,v \in k}$ is Hadamard and equivalent to the Sylvester matrix.
- So the Sylvester matrices are cocyclic.
- Likewise the Paley matrices are cocyclic, though this is not as easily seen.

Conjecture (Horadam): The TPP-Hadamard matrices are cocyclic. We answer this, and the corresponding question for HSR-matrices also.

Doubly transitive groups

Lemma

Suppose that H is a cocyclic Hadamard matrix with cocycle $\psi : G \times G \rightarrow \langle -1 \rangle$. Then \mathcal{A}_H contains a regular subgroup isomorphic to G.

Lemma

Let H be a Hadamard matrix developed from a (4n - 1, 2n - 1, n - 1)-difference set, \mathcal{D} in the group G. Then the stabiliser of the first row of H in \mathcal{A}_H contains a regular subgroup isomorphic to G.

Corollary

If H is a cocyclic Hadamard matrix which is also developed from a difference set, then A_H is a doubly transitive permutation group.

Classification of doubly transitive groups

- Burnside: Either a doubly transitive group contains a regular elementary abelian subgroup (and so is of degree p^k), or is almost simple.
- Following the CFSG, all (finite) doubly transitive permutation groups have been classified.
- The classification provides detailed character theoretic information on the doubly transitive groups.
- This can be used to show that most doubly transitive groups do not act on Hadamard matrices. (Ito)
- Then the Hadamard matrices can be classified, and we can test whether the TPP and HSR-matrices are among them.

The groups

Theorem (Ito, 1979)

Let $\Gamma \leq A_H$ be a non-affine doubly transitive permutation group acting on the set of rows of a Hadamard matrix H. Then the action of Γ is one of the following.

- $\Gamma \cong M_{12}$ acting on 12 points.
- $PSL_2(p^k) \leq \Gamma$ acting naturally on $p^k + 1$ points, for $p^k \equiv 3 \mod 4$, $p^k \neq 3, 11$.
- $\Gamma \cong Sp_6(2)$, and H is of order 36.

The matrices

Theorem (Ó C.?)

Each of Ito's doubly transitive groups is the automorphism group of exactly one equivalence class of Hadamard matrices.

Proof.

- If *H* is of order 12 then $\mathcal{A}_H \cong M_{12}$. (Hall)
- If $PSL_2(q) \leq A_H$, then H is the Paley matrix of order q + 1.
- $Sp_6(2)$ acts on a unique matrix of order 36. (Computation)

TPP matrices are not cocyclic

Corollary

Twin prime power Hadamard matrices are not cocyclic.

Proof.

A twin prime power matrix has order $p^{\alpha}q^{\beta} + 1$. Non-affine: The only order of this form among those in Ito's list is 36, but $Sp_6(2)_1$ does not contain a regular subgroup. So no TPP-matrix has a non-affine doubly transitive permutation group.

Affine: The result follows from an application of Zsigmondy's theorem.

With Dick Stafford: On twin prime power Hadamard matrices, *Cryptography and Communications*, 2011.

HSR matrices are not cocyclic

Corollary

The sextic residue difference sets are not cocyclic.

Proof.

Non-affine: An argument using cyclotomy shows that the sextic residue difference sets and Paley difference sets never co-incide. Affine: An old result of Mordell shows that $2^n = x^2 + 7$ has a solution only for n = 3, 4, 5, 7, 15. Now, $2^{n+2} = (2x)^2 + 28$ is of the form p + 1 only if $p \in \{31, 127, 131071\}$. We deal with these via ad hoc methods.

Ó C.: Difference sets and doubly transitive group actions on Hadamard matrices. (Includes a full classification of the difference sets for which H is non-affine cocyclic **and** a new family of skew-Hadamard difference sets.) *JCTA*, 2012.