Cocyclic-generated Hadamard matrices

Padraig Ó Catháin

National University of Ireland, Galway

PGTC, 2008

Padraig Ó Catháin Cocyclic-generated Hadamard matrices

(ロ) (四) (ヨ) (ヨ) (ヨ)

Outline

Padraig Ó Catháin Cocyclic-generated Hadamard matrices

イロト 不得 とくほと くほとう

3

Hadamard matrices

- Hadamard's determinant bound: $|detH| \le n^{n/2}$
- A ± 1 matrix of order *n* which satisfies the equation $HH^T = nI_n$ is called a Hadamard matrix
- A necessary condition for the existence of Hadamard matrices is that *n* be 1, 2, or a multiple of 4
- The Hadamard conjecture states that this condition is sufficient

Hadamard matrices

- Hadamard's determinant bound: $|detH| \le n^{n/2}$
- A ± 1 matrix of order *n* which satisfies the equation $HH^T = nI_n$ is called a Hadamard matrix
- A necessary condition for the existence of Hadamard matrices is that *n* be 1, 2, or a multiple of 4
- The Hadamard conjecture states that this condition is sufficient

Hadamard matrices

- Hadamard's determinant bound: $|detH| \le n^{n/2}$
- A ± 1 matrix of order *n* which satisfies the equation $HH^T = nI_n$ is called a Hadamard matrix
- A necessary condition for the existence of Hadamard matrices is that *n* be 1, 2, or a multiple of 4
- The Hadamard conjecture states that this condition is sufficient

イロン 不得 とくほ とくほ とうほ

Construction

- Hadamard matrices of all orders less than 668 have been found using a variety of constructions
- Existence of Hadamard matrices at all powers of 2 was proved by Sylvester
- The n^{th} Sylvester Hadamard matrix is $\otimes^n S$ where

$$S = \left(egin{array}{cc} 1 & 1 \ 1 & -1 \end{array}
ight)$$

• All Sylvester Hadamard matrices are cocyclic

Group Development

A Hadamard matrix, *H* is group developed over a group *G* if there exists a function φ : G ↦ ⟨−1⟩ such that

$$H = (\phi(gh))_{g,h\in G}$$

• Such a Hadamard matrix necessarily has constant row and column sum. We call such a matrix regular

Example: A matrix group developed from C_4

Let
$$\phi(1) = \phi(c) = \phi(c^3) = 1$$
 and $\phi(c^2) = -1$

イロン 不得 とくほ とくほ とうほ

Example: A matrix group developed from C_4

• Application of this function to the Cayley table of *C*₄ yields the following Hadamard matrix:

$$\left(\begin{array}{rrrrr}1&1&-1&1\\1&-1&1&1\\-1&1&1&1\\1&1&1&-1\end{array}\right)$$

 In fact, normalising this matrix (along with some rearrangement of rows) gives us the Sylvester Hadamard matrix of order 4. This matrix is no longer regular

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Hadamard equivalence

*H*₁ ≃ *H*₂ only if there exist a pair of signed permutation matrices, (*P*, *Q*) such that

$$PH_1Q^T = H_2$$

 Both matrices of order 4 given above are equivalent, and there is only one equivalence class of Hadamard matrices of order 4

イロト イポト イヨト イヨト 三日

Limitations of group development

Group developed Hadamard matrices exist only at orders 4n²

- Development over an arbitrary function φ : G × G ↦ ⟨−1⟩ is too coarse however
- Cocyclic development provides an interesting solution

イロト イポト イヨト イヨト 三日

Limitations of group development

- Group developed Hadamard matrices exist only at orders 4n²
- Development over an arbitrary function φ : G × G ↦ ⟨−1⟩ is too coarse however
- Cocyclic development provides an interesting solution

Limitations of group development

- Group developed Hadamard matrices exist only at orders 4n²
- Development over an arbitrary function φ : G × G ↦ ⟨−1⟩ is too coarse however
- Cocyclic development provides an interesting solution

Cocycles

 Let G be a finite group, and C a finitely generated Abelian group. A 2-cocycle is a map φ : G × G → C which satisfies the equation

 $arphi\left({m{g},{m{h}}}
ight) arphi\left({m{g}{m{h}},{m{k}}}
ight) = arphi\left({m{g},{m{h}}{m{k}}}
ight) arphi\left({m{h},{m{k}}}
ight) \quad orall {m{g},{m{h}},{m{k}} \in {m{G}}}$

• We call a cocycle normalised if for all $g \in G$,

$$\varphi(\mathbf{1}, \boldsymbol{g}) = \varphi(\boldsymbol{g}, \mathbf{1}) = \mathbf{1}_{C}$$

If φ is a normalised cocycle, then
 E (φ) = {(g, a) |g ∈ G, a ∈ C}, with suitably defined multiplication, is a group extension of C by G

Cocycles

 Let G be a finite group, and C a finitely generated Abelian group. A 2-cocycle is a map φ : G × G → C which satisfies the equation

 $arphi\left({m{g},{m{h}}}
ight) arphi\left({m{g}{m{h}},{m{k}}}
ight) = arphi\left({m{g},{m{h}}{m{k}}}
ight) arphi\left({m{h},{m{k}}}
ight) \quad orall {m{g},{m{h}},{m{k}} \in {m{G}}}$

• We call a cocycle normalised if for all $g \in G$,

$$\varphi(\mathbf{1}, \boldsymbol{g}) = \varphi(\boldsymbol{g}, \mathbf{1}) = \mathbf{1}_{C}$$

If φ is a normalised cocycle, then
 E(φ) = {(g, a) |g ∈ G, a ∈ C}, with suitably defined multiplication, is a group extension of C by G

Cocyclic Development

• A Hadamard matrix, *H*, is cocyclic developed if it is Hadamard equivalent to some *H*' where

$$H' = (\varphi(g,h))_{g,h\in G}$$

 Given a cocycle φ that generates a Hadamard matrix, it does not follow a cohomologous cocycle generates an equivalent Hadamard matrix

Cocyclic development

- If we begin with a Hadamard matrix, *H*, there is an efficient method for determining over which groups, if any, *H* is cocyclic developed
- An automorphism of a Hadamard matrix, H, is an ordered pair of signed permutation matrices, (P, Q) such that $PHQ^T = H$
- The automorphism group of the matrix is then the group of all automorphisms

Cocyclic development

- If we begin with a Hadamard matrix, *H*, there is an efficient method for determining over which groups, if any, *H* is cocyclic developed
- An automorphism of a Hadamard matrix, *H*, is an ordered pair of signed permutation matrices, (*P*, *Q*) such that *PHQ^T* = *H*
- The automorphism group of the matrix is then the group of all automorphisms

イロン 不得 とくほ とくほ とうほ

A useful isomorphism

 Let X be a signed permutation matrix. Then there exist unique matrices Y, Z such that X = Y - Z

$$heta\left(X
ight)=\left(egin{array}{cc} Y & Z \\ Z & Y \end{array}
ight)$$

• Then $Aut(H) \cong Aut(E_H)$, where E_H is defined by

$$E_H = \left(egin{array}{cc} H & -H \ -H & H \end{array}
ight)$$

• *E_H* is not Hadamard, but it is regular

Cocyclic development

- Theorem: A matrix is cocyclic developed, with cocycle $\varphi: G \times G \rightarrow \langle -1 \rangle$, if and only if its automorphism group has a regular subgroup of order 2*n* isomorphic to $E(\varphi)$, containing a special central involution.
- This subgroup acts regularly on the rows and columns of E_H
- E_H is group developed over $E(\varphi)$
- *H* is cocyclic developed over *G*.

Cocyclic development

- Theorem: A matrix is cocyclic developed, with cocycle $\varphi: G \times G \rightarrow \langle -1 \rangle$, if and only if its automorphism group has a regular subgroup of order 2*n* isomorphic to $E(\varphi)$, containing a special central involution.
- This subgroup acts regularly on the rows and columns of *E_H*
- E_H is group developed over $E(\varphi)$
- *H* is cocyclic developed over *G*.

Cocyclic development

- Theorem: A matrix is cocyclic developed, with cocycle $\varphi: G \times G \rightarrow \langle -1 \rangle$, if and only if its automorphism group has a regular subgroup of order 2*n* isomorphic to $E(\varphi)$, containing a special central involution.
- This subgroup acts regularly on the rows and columns of *E_H*
- E_H is group developed over $E(\varphi)$
- *H* is cocyclic developed over *G*.

Results

The automorphism group of the Hadamard matrix of order 12 is of order 190,080. In fact it is the Schur cover of M_{12} . It has three regular subgroups, given below.

Indexing Group	Extension Group
$C_2 \times C_6$	$Q_8 imes C_3$
<i>Alt</i> (4)	$Q_8 times C_3$
D ₆	$C_3 times Q_8$

ヘロン ヘアン ヘビン ヘビン

э

Results

Order	Cocyclic	Indexing Groups	Extension Groups
2	1	1	2
4	1	2	3 / 5
8	1	3 / 5	9 / 14
12	1	3 / 5	3 / 15
16	5	13 / 14	45 / 51
20	3	2/5	3 / 14
24	18 / 60	6 / 15	15 / 52
28	6 / 487	2 / 4	2 / 13

Goethals-Seidel Construction

- Many construction techniques can be proven to always generate cocyclic Hadamard matrices
- It was unknown whether the construction of Goethals and Seidel was of this type
- We found two inequivalent Goethals-Seidel Hadamard matrices of order 28
- They had automorphism groups of order 24 and 48

Goethals-Seidel Construction

- Many construction techniques can be proven to always generate cocyclic Hadamard matrices
- It was unknown whether the construction of Goethals and Seidel was of this type
- We found two inequivalent Goethals-Seidel Hadamard matrices of order 28
- They had automorphism groups of order 24 and 48

Summary

- Hadamard matrices may be developed from cocycles
- All matrices of order at most 20 have this property

- Outlook
 - The cocyclic Hadamard conjecture: Does a cocyclic Hadamard matrix exist for all orders 4n?