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Abstract

In this thesis, we investigate group actions on certain families of pairwise combina-
torial designs, in particular Hadamard matrices and symmetric 2-(4t−1, 2t−1, t−1)
designs.

A Hadamard matrix H is called cocyclic if a certain quotient of the automorphism
group contains a subgroup acting regularly on the rows and columns of H. Cocyclic
Hadamard matrices (CHMs) were first investigated by de Launey and Horadam in
the early 1990s.

We develop an algorithm for constructing all CHMs of order 4t based on a known
relation between CHMs and relative difference sets. This method is then used to
produce a classification of all CHMs of order less than 40. This is an extension and
completion of work of de Launey and Ito.

Non-affine groups acting doubly transitively on a Hadamard matrix have been
classified by Ito. Implicit in this work is a list of Hadamard matrices with non-affine
doubly transitive automorphism group. We give this list explicitly, in the process
settling an old research problem of Ito and Leon.

We then use our classification to show that the only cocyclic Hadamard matrices
with non-affine automorphism group are those that arise from the Paley Hadamard
matrices. As a corollary of this result, we show that twin prime power difference
sets and Hall sextic residue difference sets each give rise to a unique CHM.

If H is a CHM developed from a difference set then the automorphism group of
H is doubly transitive. We classify all difference sets which give rise to Hadamard
matrices with non-affine doubly transitive automorphism group. A key component
of this is a complete list of difference sets corresponding to the Paley Hadamard
matrices. As part of our classification we uncover a new triply infinite family of skew-
Hadamard difference sets. To our knowledge, these are the first skew-Hadamard
difference sets to be discovered in non-abelian p-groups with no exponent restriction.
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Claas Röver, Jerome Sheahan and James Ward) and students (especially Marcus
Bishop, Liam Naughton and Tobias Rossmann) of the School of Mathematics, Statis-
tics and Applied Mathematics for many helpful discussions over the years and for
providing an environment conducive to mathematical research.

I acknowledge the financial support of College of Arts, Social Sciences and Celtic
Studies, which awarded me a fellowship. I express my gratitude to the Department of
Mathematics, Statistics and Applied Mathematics at NUIG, Science Foundation Ire-
land (08/RFP/MTH1331), RISC Linz and the Centro Internazionale per la Ricerca
Matematica Trento for covering travel expenses I incurred during my studies.

I thank my family and friends for their support over the past three years.

Last but not least, I acknowledge my supervisor Dane Flannery. Without his
encouragement and guidance this thesis would not have been possible.

1All lists of people in these acknowledgments are alphabetical.

v



1 Introduction

This thesis is concerned with existence and classification problems for balanced in-

complete block designs, Hadamard matrices and related algebraic and combinatorial

objects. These topics were first explored in the mid-nineteenth century, yet retain

a central importance in the field of design theory up to the present day. We begin

this Introduction with a historical overview of the area, continue with a summary

of our objectives and achievements and conclude with an outline of the thesis.

1.1 Historical overview

The origins of the study of combinatorial designs lie in the nineteenth century.

A paucity of primary sources (and a near absence of secondary sources) makes

investigation of this topic problematic. The first reference of which we are aware

is the Prize Question posed by the editor of The Lady’s and Gentleman’s diary in

1844.

Problem 1.1 (Woolhouse, 1844). Determine the number of combinations that can

be made of n symbols, p symbols in each; with this limitation, that no combination

of q symbols which may appear in any one of them shall be repeated in any other.

Remarkably, the description of Woolhouse is almost identical in substance to the

definition of a (balanced incomplete block) design as given by Ryser some 120 years

later.1 Unfortunately, it does not seem that a record of the investigations which led to

the posing of this question has been preserved, though in a personal communication

R. J. Wilson has suggested that the problem may have been suggested to Woolhouse

by Sylvester, based on work by Plücker on projective planes.

Definition 1.2 (Ryser, [69]). Let X be a v-set of elements, and let X1, X2, . . . , Xb

be b distinct subsets of X. These subsets are called a balanced incomplete block

design provided they satisfy the following requirements.

1In fact Ryser only defines 2-designs; we modify this to a definition of t-designs.
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1 Introduction

• Each Xi is a k-subset of X.

• Each t-subset of X is a subset of exactly λ of the sets X1, X2, . . . , Xb.

• The integers v, k and λ satisfy 0 < λ and k < v − 1.

We refer to a balanced incomplete block design with parameters (t, v, k, λ) as a

t-(v, k, λ) design. It is clear that a maximal solution to Woolhouse’s problem is given

by the number of blocks in a q-(n, p, 1) design, if such a design should exist. His

problem thus splits into the determination of the parameters for which a q-(n, p, 1)

design exists, and the determination of the number of blocks in a maximal partial

design in the remaining cases. Both of these questions, reformulated more generally

for t-(v, k, λ) designs, remain unanswered and are central to modern design theory.

Thus it is unsurprising that while Woolhouse and others made some progress on

these problems, a general solution escaped them.

A special case of the original problem was later posed, obtained by setting q = 2

and p = 3. Such 2-(n, 3, 1) designs later came to be known as Steiner triple systems.

Indeed by 1846, Kirkman [51] was able to show that a 2-(n, 3, 1) design exists if and

only if n ≡ 1 or n ≡ 3 mod 6. This is probably the first substantial result in design

theory. Kirkman [52] later investigated what are now called affine planes over Fq
and projective planes over Fp, as well as more general projective geometries over

F2. Relevant also to this thesis is Kirkman’s introduction of difference circles (now

known as cyclic difference sets), which he constructs in groups of orders 7, 13, 21, 31

and 73 (see [53]). He establishes necessary conditions for existence of a cyclic differ-

ence set and observes that in certain cases the difference set consists of the powers of

2 modulo n. His treatment of the subject is quite sophisticated, and involves what

he and later contributors term multipliers. He concludes this remarkable paper with

a comment that he has been unable to find a difference set in the cyclic group of

order 43, and considers it unlikely that one exists. On the other hand, he believes

that such difference sets exist in the cyclic groups of orders 57 and 91. Inspection of

the tables in Baumert’s book [4] proves him correct on all three counts.

Unfortunately, Kirkman’s legacy has been largely ignored: we became aware of

his work only through the survey paper of Biggs [6]. The study of combinatorial

designs flourished again in America in the middle of the twentieth century, spurred

by Hall, Ryser, Bruck and others.

In the meantime, block designs had become of interest to statisticians, notably

R.A. Fisher, who studied them in connection with problems in the design of ex-

periments. We will not consider the applications of block designs here or in the
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1 Introduction

thesis: we restrict our attention to the study of combinatorial designs as a branch

of combinatorics.

In later years, infinite families of designs were constructed, and new restrictions

on the parameters of a design were found, most notably those provided by the

Bruck-Ryser-Chowla theorem. Automorphism groups of designs were formalised and

difference sets in arbitrary finite groups were defined. Relations with many other

combinatorial structures were also discovered and formalised. The most important

of these for our purposes is the relationship with Hadamard matrices, which derive

their appellation from Hadamard’s celebrated determinantal inequality.

Theorem 1.3 (Hadamard, 1893, [26]). Let M be a matrix of order n with complex

entries satisfying ‖mi,j‖ ≤ 1. Then

‖det(M)‖ ≤ n
n
2 .

A real matrix whose determinant meets this bound is called a Hadamard matrix.

It turns out that a Hadamard matrix necessarily has order 1, 2 or 4n for some n ∈ N,

that all its entries lie in {±1} and that the existence of a Hadamard matrix of order

4n is equivalent to the existence of a 2-(4n− 1, 2n− 1, n− 1) design.

As is the case with most objects of study in design theory, the biggest open

question about Hadamard matrices concerns their existence.

Problem 1.4. Prove the Hadamard conjecture: there exists a Hadamard matrix of

order 4n for all n ∈ N.

Hadamard himself constructed matrices of orders 12 and 20. He also observed

that a family of matrices of orders 2n, for all n ∈ N, constructed by Sylvester

satisfy his bound and that the Kronecker product of two Hadamard matrices is

again Hadamard. Thus Hadamard matrices exist for all orders of the form 2n, 2x3y,

2x5y, with x ≥ 2y.

In light of Sylvester’s construction, it suffices to find a Hadamard matrix of order

4n for all odd n to prove the Hadamard conjecture. The first important step in this

direction was made by Paley in 1933, who constructed Hadamard matrices of orders

4n = pa + 1 and 4n = 2(qb + 1) where pa and qb are prime powers congruent to 3

and 1 mod 4 respectively [62]. The Hadamard conjecture is properly attributed to

Paley.

Many constructions of Hadamard matrices have been discovered, and all of these

may be divided into two types: algebraic and combinatorial. An algebraic construc-

tion takes an algebraic object as its starting point and constructs a Hadamard matrix
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1 Introduction

or a 2-(4n−1, 2n−1, n−1) design in a canonical way. For example, in the paper ref-

erenced above, Paley obtains designs from the quadratic residues of finite fields. Al-

gebraic constructions typically require detailed information about their base objects

and careful algebraic and combinatorial arguments. A combinatorial construction

typically describes a set of simple combinatorial objects, the existence of which is

equivalent to the existence of a Hadamard matrix. Thus, the well-known Williamson

construction asserts that the existence of four symmetric {±1}-circulant matrices

A,B,C,D of order n satisfying the equation AA> + BB> + CC> + DD> = 4nIn

implies the existence of a Hadamard matrix of order 4n (see [75]). Computer searches

are often used to find these simple combinatorial objects.

While the study of combinatorial designs is a branch of combinatorics, it has

always had close ties to abstract algebra, in particular the theories of finite permu-

tation groups and of finite fields. Already with the contribution of Kirkman, we see

the introduction of groups of automorphisms of a combinatorial design. Informally,

a difference set corresponds to a regular subgroup of the automorphism group of a

symmetric 2-(v, k, λ) design. The study of finite projective planes seems to have been

a spur for the development of the theory of difference sets: Singer’s seminal work on

Singer cycles and Hall’s introduction of multipliers being the earliest contributions

of which we are aware. Originally Hall introduced multipliers for finite projective

planes, that is difference sets associated with symmetric 2-(n2 + n+ 1, n+ 1, 1) de-

signs. This was later generalised to (v, k, λ)-difference sets in arbitrary cyclic groups,

and then to abelian groups. We note that in 1955 Bruck [9] defined difference sets in

an arbitrary finite group. This general theory of difference sets awaits further refine-

ment. A theory of multipliers for non-abelian groups has not yet been developed,

for example.

In a pioneering paper [27] of 1962, Marshall Hall defined the automorphism group

of a Hadamard matrix H as the group of all pairs of signed permutation matrices

(P,Q) satisfying

PHQ> = H.

This allows the introduction of algebraic techniques to the study of Hadamard ma-

trices. Hall also showed that all Hadamard matrices of order 12 are equivalent and

that the full automorphism group of such a matrix is a central extension of the

Mathieu group M12.

The automorphism group of a Hadamard matrix has a homomorphic image that

is a permutation group acting on the rows of the matrix. The kernel of this action
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consists of automorphisms (P,Q) such that P is a diagonal matrix. In the 1970s and

1980s, Kantor, Ito and others studied this action in considerable detail. A major

problem in this area was the following:

Problem 1.5 (p.9, [28]). Are the Sylvester matrices and the Hadamard matrix of

order 12 the only Hadamard matrices on which triply transitive permutation groups

act?

The (positive) solution of this problem is a direct result of Kantor’s [48] classifica-

tion of the symmetric designs on which a doubly transitive group acts. This result

relies on the classification of finite simple groups. A proof independent of the clas-

sification was obtained by Ito and Kimura [39] for the affine case. Ito also achieved

a classification of the non-affine doubly transitive permutation groups which act on

a Hadamard matrix. We use this in Chapter 4 to classify Hadamard matrices with

non-affine doubly transitive automorphism groups.

More recently, in the 1990s, de Launey and Horadam introduced cocyclic devel-

opment for Hadamard matrices [34]. A precise definition will be given in Chapter 3,

but essentially this theory relates to ‘almost regular’ actions on Hadamard matrices.

One of our goals in this thesis is to show that the action considered by Kantor and

Ito provides a natural setting in which to explore cocyclic development.

1.2 Pairwise Combinatorial Designs

The theory of pairwise combinatorial designs generalises and unifies many disparate

structures in design theory. It is closely related to the theory of cocyclic development

for Hadamard matrices, from which it has grown. While we will not consider PCDs

in their full generality in this thesis, we use much of this framework implicitly. This

may be visible in our attempts to discuss automorphisms of Hadamard matrices,

2-designs and other structures in a unified manner. We paraphrase de Launey and

Flannery [16]:

Definition 1.6. Let A be a non-empty finite set such that 0 /∈ A. Let Γ be a set of

2× b (0,A)-arrays that is closed under row and column permutations. Suppose also

that no array in Γ has a repeated row. Then we call Γ an orthogonality set.

We observe that this definition is purely combinatorial: neither A nor 0 possess

any algebraic qualities. As the theory is developed, it is often convenient to embed

A into a ring (where the symbol 0 becomes the zero of the ring). Perhaps the
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prototypical example of an orthogonality set is one defined by a condition on the

inner product of rows of a matrix.

Definition 1.7. Let ∆ be a v × b array with entries in A ∪ {0}. Then ∆ is a Γ-

pairwise combinatorial design if and only if every pair of distinct rows of ∆ belongs

to Γ.

It is clear that any standard definition of orthogonality arises as a special case

of Definition 1.6. We refer the reader to Chapter 2 of [16] for an extensive list of

examples of pairwise combinatorial designs.

1.3 Objectives, accomplishments and applications

Our original objective was a deeper investigation of cocyclic development than was

achieved in the author’s M.Litt. thesis [58]. This topic led eventually to theoret-

ical and computational work on classifying cocyclic Hadamard matrices of small

orders. As a byproduct of this investigation, we developed an interest in the various

permutation actions of the automorphism group of a Hadamard matrix. There are

many open questions concerning Hadamard matrices and their related combinatorial

objects. We list some of these to which we have been able to contribute here.

• Research Problem 43 of [33] asks: For t > 5, are there cocyclic matrices in

each equivalence class of Hadamard matrices of order 4t? If not, what propor-

tion of the equivalence classes are cocyclic? We answer the first question in

the negative, and provide several infinite families of non-cocyclic Hadamard

matrices. For the second part, we classify all cocyclic Hadamard matrices of

order 4t for t ≤ 9.

• Deciding if Hadamard matrices from twin prime power difference sets are co-

cyclic. This is Research Problem 39 of [33]. We completely solve this problem,

and further we classify all cocyclic Hadamard matrices with non-affine doubly

transitive automorphism groups developed from difference sets.

• Classifying skew Hadamard difference sets. This is Open Problem 13 of [44].

We describe a new triply infinite family of skew Hadamard difference sets in

groups of order qnq
e
, parametrised by a prime power q, an odd integer n and

an integer e.

• Proving the uniqueness of the Hadamard matrix of order 36 described in [40].
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Our classification of cocyclic Hadamard matrices of small order may be used for

the testing of conjectures. For example, a counterexample to the conjecture made

by the author in [58], that the centre of the automorphism group of a cocyclic

Hadamard matrix has order 2, is immediately obtained. It should be noted that

enumeration of Hadamard matrices is an important open problem in design theory.

The enumeration of the (not necessarily cocyclic) Hadamard matrices of order 32 is

ongoing: currently there remain only two subcases of a major classification problem

to be resolved; see [49].

Horadam observes in [33] that at the time of publication there were no fami-

lies of Hadamard matrices which were known to not be cocyclic. We provide two

families here, both derived from difference sets. Our classification result for skew

Hadamard difference sets shows that a cocyclic Hadamard matrix derived from a

skew Hadamard difference set is a Paley Type I Hadamard matrix. This result

will provide more families of potentially non-cocyclic Hadamard matrices as more

families of skew Hadamard difference sets are discovered.

Skew Hadamard difference sets have been the object of intensive research over the

past several years, since the discovery by Ding and Yuan [20] of skew Hadamard

difference sets inequivalent to those of Paley. Our result gives a new infinite family.

More importantly, it lists all difference sets sharing the same underlying 2-design

as the Paley difference sets. It is to be hoped that this work eases the hurdle of

proving that a new family of skew Hadamard difference sets is inequivalent to the

Paley difference sets.

1.4 Outline of the thesis

In Chapter 2 we introduce all of the algebraic and combinatorial objects that will

be discussed in this thesis. We include an overview of theory of permutation groups,

with an emphasis on doubly transitive groups. We introduce symmetric balanced

incomplete block designs, their automorphism groups and difference sets. We then

relate these to Hadamard matrices. All of this material is well known. We conclude

the chapter with an original introduction to the theory of cocyclic development,

building on the material already introduced.

In Chapter 3 we discuss the classification of cocyclic Hadamard matrices. This

was the topic of the author’s M. Litt thesis [58]. We prove a well-known result

relating cocyclic Hadamard matrices to relative difference sets. We then describe

an algorithm for classifying relative difference sets. These results then allow us to
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classify the cocyclic Hadamard matrices of orders 32 and 36, a result not previously

known. Some of this work was carried out jointly with Marc Röder, and has appeared

in [59].

In Chapter 4 we discuss the Hadamard matrices which support the structure of

both a difference set and a relative difference set (as set out in Chapters 2 and 3).

We observe that a permutation group associated with such a matrix is necessarily

doubly transitive. We then use a result of Ito, which classifies such permutation

groups, to derive a classification of all Hadamard matrices with non-affine doubly

transitive automorphism groups. Our main result is that a Hadamard matrix which

is both cocyclic and developed from a difference set either has order 2n for some n,

or is equivalent to a Paley type I Hadamard matrix. In the rest of the chapter we

describe the central extensions, relative difference sets and difference sets associated

with each of these matrices.

Finally, in Chapters 5 and 6 we give some consequences of the classification of

Chapter 4. It is known that the Hadamard matrices developed from Paley differ-

ence sets and from Singer difference sets are cocyclic. We show that the Hadamard

matrices developed from twin prime power difference sets and Hall sextic residue

difference sets are each cocyclic in precisely one instance. We conclude with a dis-

cussion of skew Hadamard difference sets. We use our classification to determine

all skew Hadamard difference sets for which the corresponding Hadamard matrix

is cocyclic. In accomplishing this, we describe a new three parameter family of

skew Hadamard difference sets. Chronologically, this work was preceded by the re-

sult on twin prime power difference sets, which was obtained in collaboration with

Richard Stafford and published in [60]. Chapters 4, 5 and 6 constitute an extensive

generalisation of this work.
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2 Preliminaries

Combinatorial objects can have many definitions, which need not be obviously equiv-

alent. Furthermore, they generally exist in a web of closely related but distinct ob-

jects. It is the purpose of this chapter to define and distinguish between Hadamard

matrices and their related 2- and 3-designs. It is possible to associate to each of

these objects a group of automorphisms, from which more combinatorial objects

may be derived. In this vein we introduce difference sets and cocyclic development.

We also include a brief overview of the aspects of the theory of permutation groups

which are necessary to this thesis. Sections 2.1 and 2.2 are necessary for Chapters

4 and 5. Section 2.4 is necessary for Chapter 3. Section 2.3 finds use throughout.

2.1 Permutation groups

We assume a familiarity with basic group theory, but recall some definitions for the

sake of completeness. Our notation is standard. References for this material are

[21, 36, 63, 74].

Definition 2.1. We denote the symmetric group on the finite set Ω by Sym(Ω). We

write αg for the image of α ∈ Ω under g ∈ Sym(Ω). We will often identify Ω with

the set {1, 2, . . . , n}, in which case we denote the symmetric group by Sym(n).

Definition 2.2. We say that G is a permutation group of degree n if G ≤ Sym(Ω)

for some set Ω of size n. The group G is transitive if for any α, β ∈ Ω, there exists

some g ∈ G such that αg = β. We say that G is regular if there exists a unique

g ∈ G with this property for every α, β ∈ Ω.

Definition 2.3. Given a permutation group G on Ω, the orbit of α ∈ Ω is the set

{αg | g ∈ G}, denoted αG. The stabiliser of α is the subgroup Gα of G with the

property αg = α if and only if g ∈ Gα. The Orbit-Stabiliser theorem asserts that

|G| =
∣∣αG∣∣ |Gα|.

As finite simple groups are the building blocks of finite groups, so primitive per-

mutation groups are the building blocks of permutation groups.

9



2 Preliminaries

Definition 2.4. Let G ≤ Sym(Ω) and let Λ ⊆ Ω. We say that Λ is a block of G if

for all g ∈ G, either Λg = Λ or Λ ∩ Λg is empty.

Of course Ω and the singleton sets {α} for any α ∈ Ω are blocks of G: these are

called trivial blocks.

Definition 2.5. A permutation group which has only trivial blocks is called prim-

itive.

Primitivity imposes strong conditions on the structure of a permutation group.

Definition 2.6. Let G be a finite group. A normal subgroup of G is minimal normal

if it contains no non-trivial normal subgroup of G. The socle of G, denoted Soc(G),

is the subgroup generated by all minimal normal subgroups of G.

Theorem 2.7 ([21], Theorem 4.3B). Suppose that G is a primitive subgroup of

Sym(Ω), and that K is a minimal normal subgroup of G. Then one of the following

holds.

• For some prime p and some integer d, K is a regular elementary abelian group

of order pd and Soc(G) = K.

• K is a regular nonabelian group, the centraliser CG(K) of K in G is isomorphic

to K and Soc(G) = K × CG(K).

• K is non-abelian, CG(K) = 1, and Soc(G) = K.

As a consequence, Soc(G) is a direct product of isomorphic simple groups.

A stronger form of this result is the O’Nan-Scott theorem, which gives a partial

classification of primitive permutation groups.

An abstract group G acts on the set of right cosets of a subgroup H by right

multiplication. In this action, the stabiliser of a point is a subgroup conjugate to

H. Every transitive permutation action of G arises in this way. The primitive

permutation actions of G are described by the following result.

Lemma 2.8. Let G be a transitive permutation group on Ω. Then G is primitive if

and only if Gα is a maximal subgroup of G for each α ∈ Ω.

In fact we want to consider a special class of primitive permutation groups: the

doubly transitive permutation groups. These were historically important in the

classification of finite simple groups.

10



2 Preliminaries

Definition 2.9. Let G be a permutation group acting on Ω. Then G is doubly

transitive group if it is transitive on the set of ordered pairs of distinct elements of

Ω. That is, for any pairs (α, β) and (γ, δ) with α, β, γ, δ ∈ Ω, α 6= β and γ 6= δ,

there exists g ∈ G such that αg = γ and βg = δ.

The following is a well known characterisation of doubly transitive permutation

groups.

Lemma 2.10 (Proposition 3.6, [63]). Suppose that G acts transitively on Ω, and let

α ∈ Ω. Then G is doubly transitive if and only if the action of Gα on Ω − {α} is

transitive.

Burnside’s theorem on the socle of a doubly transitive group may be regarded as

a special case of Theorem 2.7.

Theorem 2.11 ([10], Sect.154). Let G be a doubly transitive group. Then the socle

of G is either regular and elementary abelian, or a non-regular non-abelian simple

group.

A permutation group with regular elementary abelian socle is said to be of affine

type, while a group with non-abelian simple socle is of almost simple type (often

referred to as non-affine type). As a consequence of the classification of finite simple

groups [25], a classification of doubly transitive groups has been obtained. Since

the classification of doubly transitive groups is used extensively in Chapters 3 and

4, we include an overview of it here. We begin by introducing two classical families

of doubly transitive groups in their natural actions on (finite) affine and projective

geometries.

2.1.1 Automorphisms of affine and projective geometries

In this short section, we introduce affine and projective spaces and their automor-

phism groups. The automorphism groups of these spaces give two infinite families

of doubly transitive permutation groups. This material is standard, and contained

in [2], for example. We begin by recalling the definitions of some important families

of linear groups.

Definition 2.12. Let F be a field, K the group of field automorphisms of F, and let

V be a vector space of finite dimension n over F. We denote by GLn(F) the general

linear group of all invertible n × n matrices over F. Any subgroup G ≤ GLn(F) is

11
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a linear group. The special linear group, SLn(F), is the kernel of the determinant

map

det : GLn(F)→ F∗,

where F∗ is the multiplicative group of F. We may extend GLn(F) by field auto-

morphisms to form the group ΓLn(F) = GLn(F) o K, where K acts entrywise on

elements of V . This is the general semilinear group. Any subgroup of ΓLn(F) is

a semilinear group. The special semilinear group is given by the restriction of the

action of K to SLn(F), and is denoted ΣLn(F).

We denote by V the natural module of GLn(F). Suppose that F is a finite field of

order q. Then GLn(F) and V are both finite, and GLn(F) has a faithful permutation

action on the qn points of V . This gives an injective map GLn(F) ↪→ Sym(V ). Note

that every element of GLn(F) fixes the 0 vector of V , so GLn(F) is intransitive. For

each v ∈ V , let tv : V → V be given by tv : u 7→ u+ v. Then R = {tv | v ∈ V } is a

regular subgroup of Sym(V ).

Definition 2.13. Let G ≤ ΓLn(F) be a semilinear group. Then the affine group of

G is the permutation group 〈R,G〉 ≤ Sym(V ), and is denoted AG. In particular,

AΓLn(F) is the full normaliser of R in Sym(V ). Thus any affine semilinear group

normalises R in Sym(V ).

Definition 2.14. Let F be a field, and let V be an n-dimensional vector space

over F. Then the n-dimensional affine geometry over F, AGn(F), is constructed as

follows.

• Points are elements of V .

• An affine subspace is a subset of V of the form {u+ a | u ∈ U} where U is a

subspace of V and a ∈ V is fixed.

• Incidence of affine subspaces is given by set-theoretic inclusion.

Remark 2.15. An automorphism of AGn(F) is a bijection on points which preserves

incidence. In fact, the full automorphism group of AGn(F) is AΓLn(F). We observe

that the subgroup R of AΓLn(F) is transitive on points, and that ΓLn(F) is transitive

on non-zero points. Hence by Lemma 2.10, the action ofAΓLn(F) is doubly transitive

on the points of AGn(F).

In Section 4.3.2, we will see that AΓLn(F2) is a quotient of the automorphism

group of the Sylvester matrix of order 2n.

12
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We continue with the definition of some important subgroups of AΓLn(F). These

preserve either a symplectic or orthogonal geometry on a vector space. We will not

need any more than the definition of these groups in the remainder of this thesis.

Definition 2.16. Let φ : V × V → F be a non-degenerate alternating bilinear

form on V . Then the dimension of V is even, 2n say. The symplectic group of V ,

Sp2n(F), is the group of all matrices preserving φ. That is g ∈ GL2n(F) is in Sp2n(F)

if and only if φ(gu, gv) = φ(u, v) holds for all u, v ∈ V . The definition of Sp2n(F) is

independent of the choice of φ.

Now let V have dimension n (not necessarily even). The orthogonal group On(F)

is the group of matrices preserving a non-degenerate symmetric bilinear form on V .1

Collectively, the general linear, special linear, symplectic and orthogonal groups are

known as classical groups.

We conclude this section with some definitions relevant to projective geometry.

Definition 2.17. Let F be a field and V a vector space of dimension n + 1 over

F. Then the n-dimensional projective geometry over F, PGn(F), is constructed as

follows.

• Projective points are 1-dimensional affine subspaces (lines) of V .

• A projective subspace of dimension k is a subspace of dimension k + 1 of V .

• Incidence is given by set-theoretic inclusion.

Definition 2.18. The group ΓLn+1(F) has an induced action on PGn(F), given

by its action on the underlying vector space. The kernel of this action consists of

scalar matrices. Its image is the projective general semilinear group, PΓLn(F). More

generally, any subgroup of H ≤ ΓLn+1(F) has a projective quotient denoted PH.

As in the affine case, when both the order of F and the dimension of the projective

space are finite, a projective linear group has an induced permutation action on the

projective points of PGn(F). We note that the action of PSLn(F) is always doubly

transitive, on qn−1
q−1 points.

In Section 4.3.1, we will see that PΣL2(Fq) is a quotient of the automorphism

group of the Paley matrix of order q + 1.

Remark 2.19. With a few exceptions at small parameter values, the projective special

linear groups, projective symplectic groups, and projective orthogonal groups over

finite vector spaces are three important families of finite simple groups.

1This definition needs to be refined in characteristic 2: see Chapter 5 of [2], for example.
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Finally, since all finite fields of order q are isomorphic, we generally substitute q

for Fq in our notation for linear and associated groups.

2.1.2 Classification of doubly transitive groups

We now return to the classification of doubly transitive groups. We begin with the

groups of affine type: these are doubly transitive subgroups of AΓLn(q). Suppose

that G ≤ AΓLn(q) is doubly transitive. Then G = RK where R is the elementary

abelian socle of order qn, and K ≤ Aut(R) ∼= ΓLn(q) is transitive on the non-identity

elements of R. There are two cases: K is either solvable or non-solvable.

Theorem 2.20 (Huppert, [36], Theorem XII.7.3). Let G be a doubly transitive solv-

able group of degree qn. Then G = RoK where R = Soc(G) and K ≤ Aut(R) is sim-

ilar to a group of semilinear transformations on Fqn, or qn ∈
{

32, 52, 72, 112, 232, 34
}

.

The non-solvable case is a deeper result, and requires the classification of finite

simple groups. (The list of groups is given in Section 5 of [31] and proved to be

exhaustive in [32].)

Theorem 2.21 (Hering, [31, 32]). Let G = RK be an non-solvable doubly transitive

group of affine type. Then K is non-solvable and up to isomorphism one of the

following occurs:

• SLn(q) EK ≤ ΓLn(q),

• Sp2n(q) EK,

• On(q) EK and q = 2n,

• K is on a finite list of known groups, and q ∈
{

92, 112, 192, 292, 592, 24, 26, 36
}

.

Thus, with the exception of some sporadic groups of small degree, an affine doubly

transitive group is either a subgroup of AΓL1(q), or the stabiliser of a point contains

a classical group as a normal subgroup.

We now consider the case that G is almost simple. The classification here is

necessarily a case by case analysis of the classification of finite simple groups.

Theorem 2.22 ([25]). Let G be a finite simple group. Then G is isomorphic to one

of the following.

• A cyclic group of prime order Cp.

14
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• An alternating group An, n > 4.

• A Chevalley group An(q), Bn(q), Cn(q), Dn(q), E6(q), E7(q), E8(q),

F4(q), G2(q).

• A Steinberg group 2An(q),2Dn(q),2E6(q),3D4(q).

• A Suzuki-Ree group 2B2(22n+1),2G2(32n+1),2 F4(22n+1), n ≥ 1.

• The Tits group, 2F4(2)′.

• One of 26 sporadic groups.

The alternating group An is a subgroup of index 2 in Sym(n). An is (n − 2)-

transitive in its natural action on n points (i.e. the action of An on ordered (n− 2)-

tuples of distinct points is transitive). In particular, An is doubly transitive in its

natural action on n points for n ≥ 4.

Theorem 2.23 (Section 5, [11]). Suppose that G is a doubly transitive group with

Soc(G) = An, n ≥ 5. Then G = An or Sym(n) in its natural action, or Soc(G) acts

as one of the following.

• n = 5 and Soc(G) acts as PSL(2, 5) on 6 points.

• n = 6 and Soc(G) acts as PSL(2, 9) on 10 points.

• n = 7 and Soc(G) acts exceptionally on 15 points.

• n = 8 and Soc(G) acts as PSL(4, 2) on 15 points.

Theorem 2.24 (Curtis, Kantor & Seitz, [15]). Let G be a Chevalley group, and

suppose that G ≤ G∗ ≤ Aut(G). Suppose that G has a doubly transitive permutation

representation. Then one of the following occurs.

• PSLn(q) ≤ G∗ ≤ PΣLn(q), and the action of G∗ is its usual action on qn−1
q−1

points.

• G = PSL2(q), PSU3(q), Sz(q) or 2G2(q) and the stabiliser of a point is a Borel

subgroup.

• G∗ ∼= Sp(2n, 2) acting on 2n−1(2n ± 1) points.

• G∗ is isomorphic to A5, Sym(5), A6, Sym(6), A8, or Sym(8) in a non-standard

action.

15
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• G∗ is PSL2(11), PSL2(7) or PGL2(7) in a non-standard action.

• G is PΣL2(8) ∼= 2G2(3).

• G∗ is G2(2) or Aut(G2(2)).

Note that the first three cases of Theorem 2.24 refer to infinite families of doubly

transitive groups, while the remaining cases are exceptional actions of small groups.

The doubly transitive actions of the exceptional groups of Lie type are described in

the following result, for which we refer to [21, 76].

Theorem 2.25. Let G be an exceptional group of Lie type with a doubly transitive

permutation representation. Then G is one of the following.

• 2A2(q) = U3(q) acting on the q3 + 1 points of the corresponding unital.

• 2B2(q) = Sz(q) in its natural doubly transitive action on q2 + 1 points, q =

22n+1.

• 2G2(q) = R(q) in its natural doubly transitive action on q3 + 1 points, q =

32n+1.

Sufficient portions of the character tables of the sporadic finite simple groups are

known (see [12]) that it is elementary to write down a list of their multiply transitive

permutation representations.

Group Degree Transitivity

M11 11 4
M11 12 3
M12 12 5
M22 22 3
M23 23 4
M24 24 5
HS 176 2
Co3 276 2

Table 2.1: Transitive permutation representations of sporadic simple groups

Thus problems about doubly transitive permutation groups are reduced to ques-

tions about alternating groups, a list of groups of Lie type, and finitely many sporadic

doubly transitive groups.
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2.2 Balanced incomplete block designs and difference sets

Designs are incidence structures with special properties. Many of the concepts that

we treat for designs may be defined for an arbitrary incidence structure. The material

in this section is standard for the most part, and may be found in Chapter 1 of [5],

for example.

2.2.1 Incidence structures

Definition 2.26. Let V and B be finite sets, and let I ⊆ V × B. We refer to

the elements of V as points and the elements of B as blocks. If (v, b) ∈ I, then we

say that the point v is incident with the block b. We say that ∆ = (V,B, I) is an

incidence structure.

Definition 2.27. Let ∆1 = (V1, B1, I1) and ∆2 = (V2, B2, I2) be incidence struc-

tures. We say that ∆1 and ∆2 are equivalent if there exist bijections φ : V1 → V2

and ψ : B1 → B2 such that (φ(v), ψ(b)) ∈ I2 if and only if (v, b) ∈ I1. This is clearly

an equivalence relation on the class of incidence structures.

Definition 2.28. Let ∆ = (V,B, I) be an incidence structure, and suppose there

exist bijections φ : V → V and ψ : B → B such that (φ(v), ψ(b)) ∈ I for all

(v, b) ∈ I. Then (φ, ψ) is an automorphism of ∆.

The set of all automorphisms of ∆ = (V,B, I) forms a group, Aut(∆). Indeed,

Aut(∆) is the stabiliser of ∆ under the action of Sym(V ) × Sym(B) on the set of

all incidence structures with point set V and block set B. Often we will find it

desirable to work with concrete representations of incidence structures and their

automorphisms.

Definition 2.29. Let ∆ = (V,B, I) be an incidence structure. Define χ : V ×B →
{0, 1} by χ(v, b) = 1 if (v, b) ∈ I and χ(v, b) = 0 otherwise. Let M be a matrix

with rows indexed by the elements of V , and columns indexed by the elements of

B, whose entry in row v and column b is χ(v, b). Then M is an incidence matrix of

∆. We will often write

M = [χ(v, b)]v∈V,b∈B .

This notation presupposes an arbitrary but fixed ordering of the sets V and B.

Remark 2.30. This procedure works both ways: any (0, 1)-matrix determines an

incidence structure up to labeling of rows and columns.
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We will frequently identify ∆ with M . We observe that M may be considered a

matrix over any unital ring, with additive identity 0 and multiplicative identity 1.

Lemma 2.31. Let ∆ = (V,B, I) be a design with incidence matrix M . Then Aut(∆)

has induced faithful actions on both the rows and the columns of M , whose combined

effect preserves M .

Proof. Suppose that (φ, ψ) ∈ Sym(V ) × Sym(B) is an automorphism of ∆. Then

φ has an induced action on the rows of M , given by its action on the row labels.

Since φ permutes the rows of M , it has a representation as a permutation matrix,

P . Similarly, ψ permutes the columns of the matrix, and has a representation as a

permutation matrix Q>. The action is clearly faithful. Furthermore, (φ, ψ) preserves

I, so χ(v, b) = χ(φ(v), ψ(b)) for all v ∈ V , b ∈ B. Thus PMQ> = M as required.

Definition 2.32. Let M be a matrix over a unital ring R. The permutation auto-

morphism group of M is the group of all pairs of permutation matrices (P,Q) such

that PMQ> = M . It is denoted PermAut(M).

Lemma 2.33. Let ∆ be an incidence structure and M an incidence matrix for ∆.

Then Aut(∆) ∼= PermAut(M).

Proof. By Lemma 2.31, Aut(∆) embeds in PermAut(M). So it suffices to show that

every permutation automorphism of M induces an automorphism of ∆. But this

is clear: if PMQ> = M , then P induces a permutation on the labels of the rows,

φ ∈ Sym(V ). Similarly, Q induces a permutation of the column labels, ψ ∈ Sym(B).

We have that χ(v, b) = χ(φ(v), ψ(b)) for all v ∈ V and b ∈ B, so (φ, ψ) is an

automorphism of ∆ as required.

Remark 2.34. For a given incidence structure ∆, any two incidence matrices M and

M ′ for ∆ are equivalent up to permutation of rows and columns. Thus M ′ = UMV >

for some permutation matrices U and V . But this means that (P,Q) ∈ PermAut(M)

if and only if (UPU−1, V QV −1) ∈ PermAut(M ′). Thus it is easily seen that the au-

tomorphism groups of any two incidence matrices for ∆ are permutation isomorphic.

By Lemma 2.33, we will often identify Aut(∆) and PermAut(M) for any incidence

matrix of M .

Incidence structures in general have precisely as much structure as (0, 1)-matrices.

We restrict to a class of incidence structures with special properties, defined below,

for which the study of existence and classification problems is meaningful.
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Definition 2.35. Let ∆ = (V,B, I) be an incidence structure with |B| > 1, and

suppose that for any distinct b1, b2 ∈ B there exists some v ∈ V such that (v, b1) ∈ I
but (v, b2) /∈ I. Then ∆ is called reduced .

Suppose that ∆ = (V,B, I) is reduced. Then for distinct b1, b2 ∈ B, the sets

{v ∈ V | (v, b1) ∈ I} and {v ∈ V | (v, b2) ∈ I} are distinct. Thus we may suppress I

from our notation, and consider B as a set of subsets of V . Henceforth, all incidence

structures that we consider will be reduced.

Lemma 2.36. Suppose that ∆ = (V,B, I) is a reduced incidence structure. Then

the action of Aut(∆) is faithful on V .

Proof. Define π : Aut(∆)→ Sym(V ) by π(φ, ψ) = φ, and let N = Ker(π). Suppose

that N is nontrivial. Then there exist blocks b0 and b1 such that bψ0
0 = b1 for some

(1, ψ0) ∈ N . But then {v | (v, b0) ∈ I} = {v | (v, b1) ∈ I}, against our assumption

that ∆ is reduced.

By Lemma 2.36, given a reduced incidence structure ∆ = (V,B, I) there is an

obvious identification of Aut(∆) with a subgroup of Sym(V ) which allows us to

apply permutation group theory to the study of Aut(∆). Given the isomorphism

of Lemma 2.33, we may apply these results also to PermAut(M) for any incidence

matrix M of ∆. In this case, we can consider PermAut(M) as a permutation group

acting on the rows of M (whose elements are no longer automorphisms of M).

2.2.2 Designs, symmetric designs and difference sets

Definition 2.37. Let ∆ = (V,B) be a reduced incidence structure. Then we say

that ∆ is a t-(v, k, λ) design if the following hold:

• |V | = v,

• |b| = k for all b ∈ B,

• for any t-subset T of V , |{b | T ⊆ b}| = λ.

We call a t-(v, k, λ) design non-trivial if v − 1 > k > λ > t ≥ 0.

Remark 2.38. It is clear that the requirements for a t-design become more stringent

as t increases. In fact, every t-design is necessarily an s-design for all 0 ≤ s ≤ t.

Arguably the main problem in modern design theory remains the determination of

the sets of parameter quadruples (t, v, k, λ) for which a t-(v, k, λ) design exists.
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Definition 2.39. Consider a 2-(v, k, λ) design S with |V | = |B|. We say that S is

symmetric in this case. An incidence matrix M of S is square.2 Note that M> is

also the incidence matrix of a 2-(v, k, λ) design, which may or may not be equivalent

to S.

Remark 2.40. A design is defined in terms of properties of subsets of points. In the

case of symmetric designs, certain dual statements hold. A 2-(v, k, λ) design S is

symmetric if and only if the intersection of any two blocks has fixed size λ. It is

elementary to show that there are no symmetric t-(v, k, λ) designs for t > 2: the

number of blocks is necessarily larger than the number of points.

These ‘duality’ statements have implications for the automorphism group of a

symmetric design. We will use the following result, which relates the (induced)

action of Aut(S) on points to its induced action on blocks.

Theorem 2.41 (Theorem III.4.1, [5]). Let S be a non-trivial symmetric design, and

let G ≤ Aut(S). Then the number of orbits of G on points is equal to the number of

orbits of G on blocks.

Difference sets are algebraic objects closely related to symmetric 2-(v, k, λ) designs.

For finite sets Y ⊆ X we denote by X − Y the set {x | x ∈ X,x /∈ Y }.

Definition 2.42. Let G be a group of order v, and let D be a k-subset of G.

We say that D is a (v, k, λ)-difference set in G if for each g 6= 1 ∈ G, there exist

precisely λ pairs (di, dj) ∈ D such that did
−1
j = g. We say that D is nontrivial if

v− 1 > k > λ > 0. If D is a difference set, then so too is G−D. So, up to replacing

D by its complement in G, we can assume that k ≤ v
2 .

We often identify a difference set D = {d1, . . . , dk} in G with the sum
∑k

i=1 di in

the group ring ZG.

Definition 2.43. We call a map ϑ : G→ G an antiendomorphism of G if ϑ (gh) =

ϑ (h)ϑ (g), for all g, h ∈ G. An antiautomorphism is a bijective antiendomorphism.

We denote the group consisting of all automorphisms and antiautomorphisms of

G by AntiAut (G). We observe that Aut (G) is a normal subgroup of index at most

2 in AntiAut (G), and that this group is generated by Aut (G) and the inversion

map. (Thus AntiAut(G) = Aut(G) if and only if G is abelian.)

2In general M is not a symmetric matrix.
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Definition 2.44. We say that difference sets D1 and D2 in G are equivalent if there

exist g ∈ G and σ ∈ AntiAut(G) such that D1 = Dσ2 g.

Remark 2.45. We observe that D is equivalent to gD for any g ∈ G. In fact gD =

Dσg, where σ is the inner automorphism of G induced by g−1.

Remark 2.46. A well known family of difference sets is given by the Paley con-

struction. One takes G = (Fq,+) and D =
{
g2 | g ∈ F∗q

}
, where q ≡ 3 mod 4. D

then has parameters (4t− 1, 2t− 1, t− 1). For a proof that this construction yields

difference sets, see [72, p.30].

The following theorem is well known, being essentially contained in [4, pp.5-6] or

[5, p.300] for example. We include the proof as an example of the type of phenomena

in which we are interested, and as an illustration of many of the ideas developed

thus far.

Theorem 2.47. Suppose G contains a (v, k, λ)-difference set D. Then there exists

a symmetric 2-(v, k, λ) design on which G acts regularly. Conversely, a symmetric

2-(v, k, λ) design on which G acts regularly corresponds to a (v, k, λ)-difference set

in G.

Proof. Set V = {g | g ∈ G} and B = {gD | g ∈ G}, and let S = (V,B). By the

‘duality’ of Remark 2.40, S is a 2-(v, k, λ) design if and only if every pair of blocks

intersect in λ points.

We consider the equation gdi = hdj for di, dj ∈ D, and g, h ∈ G. Suppose g 6= h,

and rewrite the equation as did
−1
j = g−1h. Since D is a difference set, there are

precisely λ solutions. Hence |gD ∩ hD| = λ as required.

In the other direction, suppose that S is a symmetric 2-(v, k, λ) design with G ≤
Aut(S) acting regularly on points. Identify the points of S with the elements of G.

Blocks of S become subsets of G. By Theorem 2.41, G acts regularly on blocks.

Then one finds that all blocks are of the form gb0 for some fixed block b0. But

|gb0 ∩ hb0| = λ for arbitrary g, h ∈ G, g 6= h implies that xix
−1
j = g−1h has precisely

λ solutions with xi, xj ∈ b0. So b0 is a (v, k, λ)-difference set in G as required.

Remark 2.48. If S1 and S2 are equivalent designs and G acts regularly on S1, then

G acts regularly on S2. Furthermore, any difference set in G obtained from S1 via

the construction of Theorem 2.47 is equivalent to some difference set obtained in

the same way from S2. Conversely, equivalent difference sets give rise to equivalent

symmetric designs via the construction of Theorem 2.47.
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Note that Aut(S) can contain many conjugacy classes of regular subgroups which

are isomorphic as abstract groups. Let Ri (i = 1, 2) be regular subgroups of Aut(S),

and let Di be the difference set in Ri constructed as in the proof of Theorem 2.47.

If R1 and R2 are Aut(S)-conjugate, then there is an isomorphism α : R1 → R2 such

that α(D1) is equivalent to D2. Conversely, if R1 and R2 are isomorphic but not

Aut(S)-conjugate, then there need not be such an isomorphism α.

We next give an example of a symmetric 2-(v, k, λ) design S for which Aut(S)

contains many conjugacy classes of regular subgroups, and hence corresponds to

many inequivalent difference sets, some of which occur in isomorphic groups. We

denote the all 1s matrix of order n by Jn.

Theorem 2.49 (Kantor [47]). Denote by H the nth Kronecker power of the matrix

J4 − 2I4
3. Then

M =
1

2
(H + J22n)

is the incidence matrix of a 2-(22n, 22n−1−2n−1, 22n−2−2n−1) design S. Furthermore

Aut(S) ∼= V.Sp2n(2), where V is an elementary abelian normal subgroup acting

regularly on the points of S and Sp2n(2) is the symplectic group on V .

Remark 2.50. We consider the 2-(16, 6, 2) design S constructed via Theorem 2.49.

The designs with these parameters have been extensively studied by Assmus and

Salwach [3]. In particular, they describe all of the following results which we have

verified computationally. The regular subgroups of V.Sp4(2) are easily computed,

using for example Magma [7]. We find that twelve of the fourteen groups of order

16 act regularly on S. Dillon [19] refers to this as the Jordan miracle. We also

find that Aut(S) contains 3 conjugacy classes of regular subgroups isomorphic to

C4 × C4. The difference sets these groups contain are inequivalent: this may be

tested with the GAP package rds [68]. This shows that the distinctions of Remark

2.48 are necessary.

There is an extensive literature on difference sets. The main question here is

similar to the main question of design theory: to describe the parameter sets for

which a (v, k, λ)-difference set exists. One may refine this question to ask in which

groups of order v such a difference set exists, or how many inequivalent difference

sets exist in a given group. Identifying the points of a symmetric design S with the

elements of a regular subgroup of Aut(S) allows for the introduction of algebraic

3this is equivalent to the Sylvester matrix of order 22n; see Section 4.3.2
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techniques: constructions and non-existence results for difference sets in abelian

groups generally make use of character theory and algebraic number theory. The

existence question here is far from settled even for cyclic groups [4]. For non-abelian

groups, the theory is less well developed. It is known, for example, that (v, k, λ)-

difference sets exist at parameters where no abelian difference set can exist [70].

2.3 Hadamard matrices

As noted in Chapter 1, Hadamard’s determinantal inequality is our starting point.

Theorem 2.51 (Hadamard, 1893, [26]). Let M be a n × n matrix with complex

entries satisfying ‖mi,j‖ ≤ 1. Then

‖det(M)‖ ≤ n
n
2 .

Definition 2.52. Let H be a n × n matrix with real entries satisfying |hi,j | ≤ 1.

We say that H is Hadamard if and only if |det(H)| = n
n
2 .

Remark 2.53. It is well known that a Hadamard matrix of order n necessarily has

entries drawn from {±1}, and that n = 1, 2 or 4 | n. The following conditions are

sufficient for a matrix H to be Hadamard.

• Every entry of H is drawn from {±1}, and HH> = nIn.

• Every entry of H is drawn from {±1}, and the dot product of distinct rows of

H is 0.

The definition of a Hadamard matrix does not specify the ring over which H is

defined. In most cases this is irrelevant, but where not stated, we generally consider

H as a matrix over Z. This makes the standard definition of the automorphism

group of a Hadamard matrix coincide with Definition 2.63. Occasionally, we may

need to invert H, in which case it is considered as a matrix over Q.

Now, it is clear that for any matrix M over C, the quantity ‖det(M)‖ is preserved

by permutation of rows and columns of M , and multiplication of rows and columns of

M by complex numbers of absolute value 1. In fact these are precisely the operations

which preserve orthogonality of rows. This motivates the definitions of equivalence

and automorphisms of Hadamard matrices.

Definition 2.54. We say that Hadamard matrices H and H ′ of order n are equiv-

alent if PHQ> = H ′, for some monomial {±1}-matrices P and Q. If Mon(n, 〈−1〉)
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denotes the group of all n × n monomial {±1}-matrices, then Mon(n, 〈−1〉) ×
Mon(n, 〈−1〉) acts on the set of all n×n Hadamard matrices via (P,Q)H = PHQ>.

The automorphism group of a Hadamard matrix H is the stabiliser of H under this

action. Its elements are automorphisms of H. We denote the automorphism group

of H by Aut(H). If (P,Q) ∈ Aut(H) and P and Q are both {0, 1}-matrices, we say

that (P,Q) is a permutation automorphism of H. Note that PermAut(H) ≤ Aut(H).

The following action will allow us to apply deep results from the theory of per-

mutation groups to the study of Aut(H).

Definition 2.55. Let X be a {±1}-monomial matrix of order n. Then X has a

unique factorization DXEX where DX is a diagonal matrix and EX is a permutation

matrix. For a Hadamard matrix H, and (P,Q) ∈ Aut(H), define ν(P,Q) = EP .

In this way each permutation automorphism (P,Q) of a Hadamard matrix H

induces a permutation of the rows of H. In fact, ν is a homomorphism and gives

a permutation representation of Aut(H) in the symmetric group on the rows of H.

For ease of notation, we will refer to A(H) = ν(Aut(H)) as a permutation group

on {1, 2, . . . , n} where i represents the ith row of H. We use standard permutation

group terminology for A(H). Henceforth, when A(H) has a permutation group

property, we will say that Aut(H) has this property.

Definition 2.56. We say that a Hadamard matrix H = [hi,j ]1≤i,j≤n is normalised

if and only if hi,1 = h1,j = 1 for all 1 ≤ i, j ≤ n. Every Hadamard matrix is

monomially equivalent to a normalised Hadamard matrix.

Any statements regarding Hadamard matrices (such as claims of uniqueness, clas-

sification etc.) are made only up to equivalence.

The following lemma is standard; see e.g. Lemma I.9.3 of [5], though our proof is

different from the one given there.

Lemma 2.57. Let S be a symmetric 2-(4n− 1, 2n− 1, n− 1)-design with incidence

matrix M . Define J to be the (4n−1)× (4n−1) all 1s matrix, and T to be 2M −J .

Let 1 be the all 1s vector of length 4n− 1. Then

H =

(
1 1

1
>

T

)

is a Hadamard matrix.
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Proof. First, we observe that MM> = nI + (n− 1)J . It follows that

TT> = (2M − J)(2M> − J)

= 4MM> − 2MJ − 2JM> + J2

= 4(nI + (n− 1)J)− (4n− 2)J − (4n− 2)J + (4n− 1)J

= 4nI − J.

Thus, adding an initial row and column of +1s to T gives a Hadamard matrix.

Remark 2.58. So a Hadamard matrix of order 4n exists if a symmetric 2-(4n −
1, 2n − 1, n − 1) design exists. The converse is also true: one obtains an incidence

matrix for a symmetric 2-(4n−1, 2n−1, n−1) design from the core of a normalised

Hadamard matrix by replacing every occurrence of −1 by 0. Notice that a symmetric

2-(4n−1, 2n−1, n−1) design corresponds to a unique equivalence class of Hadamard

matrices via the construction of Lemma 2.57. But the equivalence operations for

2-designs are finer than the equivalence relations for Hadamard matrices. So a single

equivalence class of Hadamard matrices can give rise to many inequivalent 2-designs.

Lemma 2.59. Let S be a symmetric 2-(4n − 1, 2n − 1, n − 1) design, and let H

be the Hadamard matrix constructed from S as in Lemma 2.57. Then Aut(S) ∼=
PermAut(H).

Proof. We extend (P,Q) ∈ Aut(S) to an automorphism((
1 0

0
>

P

)
,

(
1 0

0
>

Q

))

of H, which fixes the first row and column and acts as (P,Q) on the submatrix T .

Thus Aut(S) embeds in PermAut(H). In the other direction: (P,Q) ∈ PermAut(H)

must fix the unique first row and first column of 1s, and hence restricts to an auto-

morphism of S. So PermAut(H) ∼= Aut(S).

We observe that Theorem 2.47 can be combined with Lemma 2.57 to obtain a

Hadamard matrix from a difference set.

Definition 2.60. Let H be a Hadamard matrix, D a difference set in a group G

and S a symmetric design. If D and S are related as in Theorem 2.47, then we say

that S underlies D, or that D is over S. If H is a Hadamard matrix related to S
as in Lemma 2.57, then we say that H is developed from S, or that S corresponds
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to H. We use the same terminology for the relationship between D and H as for S
and H.

So by Lemma 2.57 and Theorem 2.47, we see that a (4n−1, 2n−1, n−1)-difference

set in a group G corresponds in a natural way to a Hadamard matrix H such that

G is a regular subgroup of the stabiliser A(H)1 of the first row of H in A(H).

Definition 2.61. A symmetric 2-(4t−1, 2t−1, t−1) design is called Paley-Hadamard .

Likewise a (4t−1, 2t−1, t−1)-difference set is called Paley-Hadamard . This terminol-

ogy acknowledges both the relation to Hadamard matrices and the role of R.E.A.C.

Paley in describing one of the best known families of (4t− 1, 2t− 1, t− 1)-difference

sets. We emphasise: Paley-Hadamard refers to any difference set with parameters

(4t− 1, 2t− 1, t− 1), whereas a Paley difference set belongs to a specific family with

these parameters (see Remark 2.46).

Remark 2.62. Paley-Hadamard designs are not to be confused with designs with

parameters 2-(4t2, 2t2−t, t2−t), which give rise to Hadamard matrices via a different

construction. We do not consider such designs per se in this thesis (they form

a special case of certain relative difference sets discussed in Chapter 3). Where

necessary we refer to them as Menon-Hadamard . Note that the term Hadamard

design is inconsistently used in the literature to refer to a design of either type:

different authors have different conventions. For this reason we avoid it entirely. We

direct the reader to a further discussion in the footnote to p.366 of [5].

2.4 Cocyclic development

Most of the ideas in this section can be traced back to work by Warwick de Launey

and by de Launey and Horadam in the early 1990s. These ideas were further ex-

tended to general pairwise combinatorial designs in the book [16]. Our treatment of

the topic is perhaps more closely related to the theory of permutation groups than

the standard accounts [16, 33].

In Theorem 2.47, we described a relation between symmetric 2-designs and differ-

ence sets. In the following theorem, we extend this to a relation between an arbitrary

matrix M over a commutative ring, regular subgroups of PermAut(M) and distin-

guished sets of elements of a group G. This is the base case for a generalisation of

the theory developed by Horadam and de Launey for Hadamard matrices in [34],

termed cocyclic development .
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We begin with a definition of the automorphism group of a matrix over a commu-

tative ring. This generalises the definitions of PermAut(M) for the incidence matrix

of a t-(v, k, λ) design, and Aut(H) for a Hadamard matrix H, for example.

Definition 2.63. Let R be a commutative unital ring with unit group U . Let M

be an R-matrix. Then the full automorphism group of M , denoted Aut(M) consists

of all pairs of monomial U -matrices (P,Q) such that PMQ> = M .

We observe that Aut(M) contains a central subgroup of diagonal matrices of the

form (uI, u−1I) which is isomorphic to the unit group U of R. We denote this

subgroup by Θ. We note also that PermAut(M) ≤ Aut(M).

2.4.1 Group development

From the remainder of this chapter, we will restrict our attention to square matrices.

Definition 2.64. Let M be an n× n matrix with entries in a commutative ring R,

and let G be a group of order n. We say that M is group developed over G if there

exists a function µ : G→ R such that M =
[
µ(gh−1)

]
g,h∈G for a fixed but arbitrary

labeling of the rows and columns of M by the elements of G. We say that M is

group developed if it is group developed over G for some group G.

Remark 2.65. It is perhaps more usual to define a group developed matrix to be

of the form M = [µ(gh)]g,h∈G. The two forms are equivalent up to a suitable

permutation of the columns of M . Our choice of the above was motivated by the

discussion of skew Hadamard matrices and skew difference sets in Chapter 5. In

particular, our notation has the following advantages when the labeling of rows and

columns is identical.

• The main diagonal of a group developed matrix is constant, consisting of the

entries µ(gg−1) = µ(1).

• The transpose of M takes a particularly nice form: M> =
[
µ(gh−1)

]>
g,h∈G =[

µ(hg−1)
]
g,h∈G =

[
µ((gh−1)−1)

]
g,h∈G.

As an example, let π be a regular permutation matrix representation of G over

some unital ring R. Then any matrix of the form M =
∑

g∈G αgπ(g), where the

αg are drawn from R, is group developed. Up to permutation of rows and columns,

every group developed matrix is obtained in this way (see Lemma 3.7.4 of [16]).
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Remark 2.66. As previously mentioned, a standard technique in the theory of dif-

ference sets is to identify a difference set with the sum of its elements in the group

ring. Under this identification, we see the correspondence between difference sets

and symmetric 2-designs as part of a more general phenomenon. There are many

similar results which relate group developed matrices of particular types to group

ring elements with special properties. (Such constructions are common in coding

theory, for example.)

In the following results, we describe necessary and sufficient conditions on the

group PermAut(M) for a matrix M to be group developed over G. We recall the

Kronecker δhg function, which is 1 if g = h and 0 otherwise.

Lemma 2.67 (Cf. Theorem 3.7.5 of [16]). Let M be a matrix of order n with entries

in a commutative unital ring R, and G a group of order n. Fix an ordering of the

elements of G, and use this to index the rows and columns of M . Define Tx to be

[δgxa ]g,a∈G. Then M is group developed over G if and only if (Tx, Tx) ∈ PermAut (M)

for all x ∈ G.

Proof. Write M =
[
µ
(
g, h−1

)]
g,h∈G, and observe that T>x = T−1

x = Tx−1 . Now

TxMT>x = [δgxa ]g,a∈G
[
µ
(
a, b−1

)]
a,b∈G

[
δbx
−1

h

]
b,h∈G

=

[∑
a∈G

δgxa µ
(
a, b−1

)]
g,b∈G

[
δbx
−1

h

]
b,h∈G

=
[
µ
(
gx, b−1

)]
g,b∈G

[
δbx
−1

h

]
b,h∈G

=

[∑
b∈G

µ
(
gx, b−1

)
δbx
−1

h

]
g,h∈G

=
[
µ
(
gx, (hx)−1

)]
g,h∈G .

Thus (Tx, Tx) ∈ PermAut(M) ∀x ∈ G if and only if

µ
(
g, h−1

)
= µ

(
gx, x−1h−1

)
∀g, h, x ∈ G. (2.1)

If M is group developed, then µ
(
g, h−1

)
= φ

(
gh−1

)
for some set map φ : G→ R,

and (2.1) is certainly satisfied:

µ
(
gx, x−1h−1

)
= φ

(
gxx−1h−1

)
= φ

(
gh−1

)
= µ

(
g, h−1

)
.
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Conversely, suppose that (2.1) is satisfied, and define φ (g) = µ (g, 1). Then

µ
(
g, h−1

)
= µ

(
gh−1, hh−1

)
= µ

(
gh−1, 1

)
= φ

(
gh−1

)
∀g, h ∈ G.

Hence M is group developed over G.

The following theorem gives an effective procedure to determine if M is group

developed, under the assumption that there exist effective algorithms for the deter-

mination of PermAut(M) and the regular subgroups of a permutation group.

Theorem 2.68. An R-matrix M is group developed over the group G if and only

if PermAut(M) contains a subgroup isomorphic to G, acting regularly on the rows

and columns of M .

Proof. Suppose that M is group developed. Then by Lemma 2.67, for all x ∈ G,

(Tx, Tx) ∈ PermAut (M). The map x 7→ (Tx, Tx) defines an isomorphism from G

onto a subgroup of PermAut (M). Furthermore, this subgroup acts regularly on the

rows and columns of M .

Conversely, suppose that PermAut(M) contains a subgroup isomorphic to G act-

ing regularly on the rows and columns of M . We may write this subgroup as

{(Px, Qx) | x ∈ G} for permutation matrices Px, Qx, such that PxMQ>x = M . As is

well known, up to similarity, there is a single faithful regular permutation represen-

tation of G. This means that there exist permutation matrices U and V such that

UPxU
> = Tx and V QxV

> = Tx for all x ∈ G. Thus UMV > is group developed over

G by Lemma 2.67. Group development is preserved by permutation equivalence, so

M is also group developed over G.

Remark 2.69. It was consideration of factorization of the determinant of an arbitrary

group developed matrix with entries in C which originally led Frobenius to the

invention of character theory [14]. While his work is not directly relevant here,

we observe that his results lead to efficient methods to calculate the determinant

of a group developed matrix
[
φ(gh−1)

]
g,h∈G directly from knowledge of the group

development function φ. It is reasonable to consider that these results may be

generalised to cocyclic matrices, possibly by inducing characters to the extension

group.

Now we generalise these results to cocyclic development.
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2.4.2 Cocyclic development

Our cocycles are a very special case of the general definition of a cocycle as used in

e.g. algebraic topology.

Definition 2.70. Let G be a finite group, and let W be a finite abelian group. A

(2-)cocycle is a map ψ : G × G → W which obeys the following identity for all

g, h, k ∈ G.

ψ (g, h)ψ (gh, k) = ψ (g, hk)ψ (h, k)

Similarly, a (2-)coboundary is a map δφ : G×G→W such that

δφ(g, h) = φ(g)φ(h)φ(gh)−1

for some map φ : G→W .

Remark 2.71. Every coboundary is a cocycle. The set of cocycles forms an abelian

group under (pointwise) multiplication, normally denoted Z2(G,W ). The set of

coboundaries forms a subgroup, denoted B2(G,W ). The quotient group is the second

cohomology group of G with coefficients in W , H2(G,W ). We say that two cocycles

ψ1 and ψ2 are cohomologically equivalent if there exists a coboundary δφ such that

ψ2 = ψ1δφ.

Higher cohomology groups are defined analogously, but currently play no part in

the theory of cocyclic development. The following material on second cohomology

is standard; a more comprehensive account may be found in Chapter 11 of [65].

Definition 2.72. A group Γ is an extension of W by G if there exist an injective

map ι : W → Γ and a surjective map π : Γ→ G such that the sequence

1→W
ι→ Γ

π→ G→ 1

is exact. We say that the extension is central if ι(W ) ≤ Z(Γ).

From now on, all extensions we consider are central. Given a cocycle ψ ∈
Z2(G,W ), define a multiplication on the Cartesian product of the underlying sets

of W and G by

(u, g)(v, h) = (uvψ(g, h), gh).

where the multiplications in the first and second components are the group opera-

tions of W and G respectively. It is routine to verify that the group Γψ so formed
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is in fact an extension of W by G. Note that the trivial cocycle corresponds to the

direct product of W by G. In fact every central extension of W by G gives rise to

a central extension Γψ for some ψ ∈ Z2(G,W ), that is equivalent to the original

extension in the following sense.

Definition 2.73. Two extensions of W by G are equivalent if and only if the fol-

lowing diagram commutes, where γ0 and γ2 are identity maps. Note that if the

1 → W
ι→ Γψ

π→ G → 1
↓ γ0 ↓ γ1 ↓ γ2

1 → W
ι′→ Γϕ

π′→ G → 1

extensions are equivalent then γ1 is necessarily an isomorphism. However, if Γψ and

Γϕ are isomorphic then the extensions need not be equivalent.

Now, we have introduced equivalence relations on both the set of extensions of W

by G and the set of set of cocycles Z2(G,W ). In fact these notions of equivalence

coincide. Cohomologically equivalent cocycles give rise to equivalent extensions,

and conversely. Thus H2(G,W ) gives the structure of an abelian group to the set

of equivalence classes of extensions of W by G.

Definition 2.74. Let R be a commutative unital ring with unit group U , and let

W ≤ U be finite. Let M be an n×n matrix with entries in R, and G a group of order

n. Then M is cocyclic over G if and only if there exist a cocycle ψ : G × G → W

and a set map φ : G→ R such that M is equivalent to the matrix

[
ψ(g, h−1)φ(gh−1)

]
g,h∈G

up to permutation of rows and columns and multiplication of rows and columns by

elements of U . We say that ψ is a cocycle of M , that M is cocyclic over G, and

that the extension of W by G determined by ψ is an extension group of M .

This definition is broader than that given by Horadam in Definition 6.3 of [33],

where a cocyclic matrix over an abelian group C is defined as one that is equivalent

to [ψ(g, h)]g,h∈G for some cocycle ψ. In Chapter 13 of [16], de Launey and Flannery

give a definition, broader than ours, in which the equivalence relations on rows and

columns need not coincide. Inclusion of the function φ : G→ R allows us to consider

a broader class of matrices. We give an example.

Example 2.75. Let C =
〈
c | c3 = 1

〉
, and ω be a primitive complex cube root of

unity. Let ρ (1) = 1 and ρ (c) = ρ
(
c2
)

= ω. Define the cocycle ψ : C × C → 〈ω〉 by
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ψ
(
ci, cj

)
= ρ

(
ci
)
ρ
(
cj
)
ρ
(
ci+j

)−1
. Indexing row i and column i by ci−1, we obtain

the pure cocyclic matrix

M = [ψ(g, h)]g,h∈C =

 1 1 1

1 ω ω2

1 ω2 ω

 .

This matrix is a Butson Hadamard matrix of order 3 over the third roots of unity.

Note that M is certainly not group developed, although it is 〈ω〉-equivalent to a

group developed matrix.

The following lemma is an example of restrictions on the permutation automor-

phism group of a normalised matrix.

Lemma 2.76. Suppose that the R-matrix M is invertible and normalised. Define

G to be the stabiliser in Aut(M) of the first column and the first row of M . Then

PermAut(M) is a complement of Θ in G.

Proof. Suppose that (P,Q) is a permutation automorphism of M . Then (P,Q) fixes

the first row and column of M . So it is contained in G. Conversely, suppose that

(P,Q) is in G. Then the first row and column of M are fixed. So (uP, u−1Q) is a

permutation automorphism for any unit u of R. In particular, we observe that G

splits over Θ.

Our goal is to develop a characterisation of cocyclic matrices in terms of their

automorphism groups analogous to Lemma 2.67 for group developed matrices. We

will also explore some properties of cocyclic matrices which will be of use in later

chapters. Assuming that each matrix M discussed is invertible over an implicit ring,

and that all entries of M are non-zero, we introduce some important quotients of

Aut(M).

We observe that a monomial matrix P has a unique decomposition P = DPEP

into diagonal and permutation parts.

Definition 2.77 (cf. Definition 2.55). Let (P,Q) ∈ Aut(M) and define the projec-

tions µ : (P,Q) 7→ (EP , EQ) and ν : (P,Q) 7→ EP . We define G(M) = µ(Aut(M))

and A(M) = ν(Aut(M)). We consider A(M) a permutation group on the rows of

M and G(M) a permutation group on the rows and columns of M . We observe that

Ker(µ) = Θ, and that Ker(µ)EKer(ν). However these subgroups need not coincide.
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Remark 2.78. Let ρ be the map that projects onto the first component, so that

ν = ρµ. In many cases ρ can be shown to be injective. For example this will

happen if M is a (0, 1) matrix, so that Aut(M) = PermAut(M). We are not aware

of necessary and sufficient conditions for ρ to be injective in general. An example

where Ker(ρ) is non-trivial (and even transitive) is given in Theorem 4.2. If one

restricts to the case that ρ is injective, the statement of Theorem 2.86 below takes

a much simpler form.

In particular, if we insist that M is a normalised matrix, then ν(PermAut(M))

is never transitive, and this excludes some interesting behaviour. The Hadamard

matrix H constructed in Theorem 2.49 is not normalised and has PermAut(H) ∼=
V.Sp2n(2), which is doubly transitive. H is cocyclic in the sense of Definition 2.74.

Definition 2.79. Suppose that G is a subgroup of G(M) such that the action of G

on the rows of M is regular, and the action of G on the columns of M is regular.

We say that the action of G on M is totally regular .

Remark 2.80. We recall that M is group developed if and only if PermAut(M)

contains a subgroup G which acts regularly on both rows and columns of M . In

this case G(M) contains a totally regular subgroup. Furthermore, ΘG is a direct

product, and µ(ΘG) = G.

A group developed matrix is a special kind of cocyclic matrix (i.e. one with trivial

cocycle) on which a group acts regularly. We next show that G(M) contains a totally

regular subgroup if M is cocyclic.

Lemma 2.81. Suppose that M is cocyclic over G. Then G(M) contains a totally

regular subgroup isomorphic to G.

Proof. Suppose that ψ is a cocycle of M . Define the following monomial matrices

for all a ∈ G:

Pa = [ψ(x, a)δxay ]x,y∈G, Q>a = [ψ(a, a−1w−1)−1δza
−1

w ]z,w∈G.

The cocycle equation can be written as ψ(g, h) = ψ(g, hk)ψ(h, k)ψ(gh, k)−1, from

which we derive the identity

ψ(x, a) = ψ(x,w−1)ψ(a, a−1w−1)ψ(xa, a−1w−1)−1,

which is used in the argument below. We show that (Pa, Qa) is an automorphism of

M for all a ∈ G:
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PaMQ>a =
[
ψ(x, a)δxay

]
x,y∈G

[
ψ(y, z−1)φ(yz−1)

]
y,z∈G [ψ(a, a−1w−1)−1δza

−1

w ]z,w∈G

=

[∑
y

δxay ψ(x, a)ψ(y, z−1)φ(yz−1)

]
x,z∈G

[ψ(a, a−1w−1)−1δza
−1

w ]z,w∈G

=
[
ψ(x, a)ψ(xa, z−1)φ(xaz−1)

]
x,z∈G [ψ(a, a−1w−1)−1δza

−1

w ]z,w∈G

=

[∑
z

δza
−1

w ψ(x, a)ψ(xa, z−1)ψ(a, a−1w−1)−1φ(xaz−1)

]
x,w∈G

=
[
ψ(x, a)ψ(xa, (wa)−1)ψ(a, a−1w−1)−1φ(xa(wa)−1)

]
x,w∈G

=
[
ψ(x,w−1)φ(xw−1)

]
x,w∈G

= M.

Now, to conclude it suffices to observe that the subgroup{
(
[
δxay
]
x,y∈G ,

[
δxay
]
x,y∈G) | a ∈ G

}
∼= G

of G(M) is totally regular (cf. Lemma 2.67:
[
δxay
]
x,y∈G = Ta in the notation of that

result).

We now show that a matrix M for which G(M) contains a totally regular subgroup

with a preimage in Aut(M) of a specified type is cocyclic. To do this, we introduce

the expanded matrix of M .

Definition 2.82. Let M be an n × n R-matrix, and W a finite subgroup of the

group of units of R. Then

EM = [vwmi,j ]v,w∈W,1≤i,j≤n

is an expanded matrix of M . That is, EM is the Kronecker product of M with a

Cayley table for W .

The following result allows us to embed Aut(M) in PermAut(EM ). We omit the

proof (it is elementary but long). For the rest of this section, M is a matrix with

entries in a ring R with finite unit group W .

Lemma 2.83 (Lemma 3.14, [58]; and cf. Theorem 9.6.11 of [16]). Define εw(M) =[
δwmi,j

]
1≤i,j≤n

. Then the homomorphism ι : Aut(M) → PermAut(EM ) given by

ι(P,Q) = ([εvw−1(P )]v,w∈W , [εvw−1(Q)]v,w∈W ) is injective.
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Corollary 2.84. The group G ≤ G(M) is totally regular on M if and only if the full

preimage Γ of G in Aut(M) under µ (see Definition 2.77) has an induced regular

action on the rows of EM and an induced regular action on the columns of EM .

Proof. First, the preimage Γ of G in Aut(M) is a central extension of the group

W =
{

(wI,w−1I) | w ∈W
}

by G.

Let ι be as in Lemma 2.83. Suppose that G is totally regular. We claim the

action of ι(Γ) on the rows and columns of EM is fixed-point-free. By hypothesis, a

non-trivial element (P,Q) ∈ G is fixed-point-free on the rows and columns of M .

So all diagonal entries of P and Q are zero. Thus every element in Γ −W has all

diagonal entries zero. So certainly every element of ι(Γ −W ) is fixed-point-free on

rows and columns of EM . But the action of ιW is specified in Definition 2.82, and

is easily seen to be fixed-point-free.

So ι(Γ) is fixed-point-free on the rows and columns of EM . But |ι(Γ)| = |G| |W |,
which is equal to the dimension of EM . So ι(Γ) is regular on the rows and regular

on the columns of EM .

Lemma 2.85. Suppose that G ≤ G(M) acts totally regularly on M . Then M is

cocyclic over G.

Proof. By Theorem 2.68 and Corollary 2.84, EM is group developed over the central

extension Γ = Γψ, for some cocycle ψ : G × G → W . So EM can be expressed as

follows.

EM =
[
φ((v, g)(w, h)−1)

]
(v,g),(w,h)∈Γ

.

In fact, we can say more: the action of W E Γ is specified by Definition 2.82. So

φ(w, g) = wφ(1, g) for all w ∈W and all g ∈ G. We observe that M is a submatrix

of EM with rows and columns labelled by (1, g) and (1, h−1) respectively:

M =
[
φ((1, g)(1, h−1))

]
g,h∈G

=
[
φ(ψ(g, h−1), gh−1)

]
g,h∈G

=
[
ψ(g, h−1)φ(1, gh−1)

]
g,h∈G .

Define φ : G → R by φ(g) = φ(1, g). Then M =
[
ψ(g, h−1)φ(gh−1)

]
g,h∈G is a

cocyclic matrix as required.

Theorem 2.86 (cf. Theorem 14.7.1 of [16]). The matrix M is cocyclic over the

group G if and only if G(M) contains a totally regular subgroup isomorphic to G.
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Proof. One direction follows from Lemma 2.81, the other from Lemma 2.85.

Remark 2.87. We note that Chapter 14 of [16] gives a full treatment of cocyclic devel-

opment for pairwise combinatorial designs. There, a cocyclic design is characterised

in terms of ‘centrally regular’ actions on the expanded matrix of the design.

This concludes our discussion of cocyclic development. In Chapter 3, we apply

much of the theory developed in this chapter to classify the cocyclic Hadamard

matrices of orders less than 40.
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matrices

In Chapter 2, we defined cocyclic development for certain matrices over a commu-

tative ring. The author’s M. Litt. thesis [58] contains an extensive discussion of

the theory of cocyclic development for Hadamard matrices. It also contains an al-

gorithm for determining the cocycles of a given Hadamard matrix. We begin this

chapter with a proof of the well-known fact that a cocyclic Hadamard matrix of

order 4t corresponds to a (4t, 2, 4t, 2t)-relative difference set. (This has been shown

by de Launey, Flannery and Horadam in [17]. Also cf. [43], and Ito’s series of papers

beginning with [38]. Note that a Hadamard group is precisely an extension group of

a cocyclic Hadamard matrix; see [23].) Then we give an algorithm for the compu-

tation of all such relative difference sets in a given group. Running this algorithm

for all groups of orders 64 and 72 yields all cocyclic Hadamard matrices of orders 32

and 36. We collect and summarize the results obtained in the final section. Some

of this work was carried out jointly with Marc Röder, and has appeared in print in

[59].

3.1 Cocyclic Hadamard matrices and relative difference sets

We begin with an overview of cocyclic development for Hadamard matrices. Since

all entries in a Hadamard matrix are drawn from 〈−1〉, the theory is simpler than

in the general case.

Remark 3.1. Suppose that ψ : G × G → 〈−1〉 is a cocycle. Then ψ(g, h−1) =

ψ(g, h−1)−1 for all g, h ∈ G. This allows us some liberty in rearranging identities

involving cocycles.

Suppose that the Hadamard matrix H is cocyclic over the group G. That is

H =
[
ψ(g, h−1)φ(gh−1)

]
g,h∈G
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for some cocycle ψ and set map φ : G→ 〈−1〉. Recall that a coboundary is defined

by the equation δφ(g, h−1) = φ(gh−1)φ(g)φ(h−1).

Now consider the matrix

H =
[
ψ(g, h−1)φ(gh−1)φ(g)−1φ(h−1)−1

]
g,h∈G =

[
ψ(g, h−1)

]
g,h∈G .

H differs from H only in the multiplication of rows and columns by scalars. Hence H

and H are equivalent cocyclic Hadamard matrices. We say that H is a pure cocyclic

matrix. We have the following result.

Lemma 3.2. The Hadamard matrix H is cocyclic if and only if it is equivalent to

a pure cocyclic Hadamard matrix.

Remark 3.3. We again remark that Horadam [33] defines a cocyclic Hadamard ma-

trix according to the statement of Lemma 3.2. Also, a cocycle of H under our

definition may not be a cocycle of H under Horadam’s definition.

In Theorem 2.47 we related the existence of a regular subgroup G in the auto-

morphism group of a symmetric design S to the existence of a difference set in G.

Now we relate the existence of a regular subgroup G in A(H) (satisfying some addi-

tional conditions) to the existence of a relative difference set in a group Γ ≤ Aut(H)

satisfying ν(Γ) = G (see Definition 2.55). Although a difference set is a relative

difference set, we emphasise that these two sets of relationships are quite separate

from each other; cf. Remark 2.62.

We first recall the definition of a relative difference set.

Definition 3.4. Let Γ be a finite group, with normal subgroup N . We say that

R ⊂ Γ is a relative difference set (RDS) with respect to N if in the multiset{
r1r
−1
2 | r1, r2 ∈ R

}
every element of Γ −N occurs exactly λ times (for some fixed

λ), and no non-trivial element of N occurs.

We refer to N as the forbidden subgroup. If N is of order n, Γ is of order nm

and the RDS contains k elements, then we speak of a (m,n, k, λ)-RDS. A group

of order 8t containing a (4t, 2, 4t, 2t)-RDS is called a Hadamard group by Ito [38].

Following this usage, we call a (4t, 2, 4t, 2t)-relative difference set a Hadamard relative

difference set (HRDS). The reason for this will become apparent in the remainder

of this section.

If H is a Hadamard matrix, then the expanded matrix of H is

EH =

(
H −H
−H H

)
.
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We denote the subgroup of PermAut(EH) generated by the central involution((
0 I

I 0

)
,

(
0 I

I 0

))

by Θ. Note that Θ is the image of 〈(−I,−I)〉 ≤ Aut(H) under the embedding ι of

Lemma 2.83.

Lemma 3.5. The Hadamard matrix H is cocyclic over G if and only if EH is group

developed over an extension Γ ≤ PermAut(EH) of Θ ≤ Γ by G.

Proof. This is the restriction of Corollary 2.84 to the special case of Hadamard

matrices, together with Theorem 2.68. Alternatively, see Section 16.2 of [16] or

Theorem 3.24 of [58].

Lemma 3.6. Suppose that H is a Hadamard matrix, and that Γ ≤ PermAut(EH)

contains Θ and acts regularly on EH . Then Γ contains a HRDS with forbidden

subgroup Θ.

Proof. Suppose that H has order 4t. First, since Γ acts regularly on EH , we have

that

EH =
[
φ(gh−1)

]
g,h∈Γ

for some function φ : Γ→ 〈−1〉, where the first 4t rows and 4t columns of EH are la-

belled by a set of representatives for the cosets of Θ in Γ. Let R = {g ∈ Γ | φ(g) = 1}.
We show that R is a HRDS.

Observe first that the inner product of the rows of EH labelled by h and gh is∑
k∈Γ

φ(hk−1)φ(ghk−1) =
∑
k∈Γ

φ(k−1)φ(gk−1),

which is the inner product of the row labelled by g with the first row. Now,

φ(k−1)φ(gk−1) = −1 if exactly one of k−1 and gk−1 is in R, and +1 otherwise. The

crucial observation here is that since EH is the expanded matrix of a Hadamard ma-

trix, any pair of distinct rows not of the form {r,−r} is orthogonal. So |R ∩ gR| = 2t,

for g ∈ Γ−Θ. But then the equation rir
−1
j = g for ri, rj ∈ R has precisely 2t solutions

for g /∈ Θ.

Rows of EH labelled by elements in the same coset of Θ have inner product −8t1.

So |gR ∩R| = 0 for g ∈ Θ, g 6= 1. Thus R is a HRDS as required.

1This is the reason that we require Θ E Γ. Thus not every regular subgroup of PermAut(EH)
corresponds to a cocycle of H.
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In Lemma 3.6, we obtain a HRDS from a cocyclic Hadamard matrix. We can also

proceed in the other direction.

Definition 3.7. Let R be a subset of a group Γ of order n. The development of R

is the matrix

Dev(R) =
[
χR
(
ab−1

)]
a,b∈Γ

where χR(x) = 1 if x ∈ R and χR(x) = −1 otherwise.

Theorem 3.8. Suppose that R is a HRDS in a group Γ of order 8t, with forbidden

subgroup of order 2. Then Dev(R) is the expanded matrix of a cocyclic Hadamard

matrix of order 4t.

Proof. The idea behind the proof is similar to that of Lemma 3.6.

Denote by z the unique non-trivial element in the forbidden subgroup. We have

that Γ = R∪ zR. By definition, the rows and columns of Dev(R) can be labelled by

the elements of Γ so that Dev(R) =
[
φ(gh−1)

]
g,h∈Γ

, where φ(gh−1) = 1 if gh−1 ∈ R
and φ(gh−1) = −1 otherwise.

For r ∈ R, the row labelled by zr is the negation of the row labelled by r: gh−1 is

in R if and only if zgh−1 is not in R (since R is a transversal of 〈z〉 in Γ). Labelling

the first 4t rows of Dev(R) with elements of R, and the first 4t columns with their

inverses, we have that

Dev(R) =

(
M −M
−M M

)
.

By Lemma 3.6, it suffices to show that two rows of Dev(R) labelled by elements of

R are orthogonal.

This is equivalent to showing that |gR ∩ hR| = 2t for any g, h ∈ R, g 6= h. But

|gR ∩ hR| is the number of solutions of rir
−1
j = g−1h, for ri, rj ∈ R, which by

hypothesis is 2t. The conclusion follows.

So given a HRDS R in Γ of order 8t, a cocyclic Hadamard matrix corresponds to a

set of 4t linearly independent rows and columns in Dev(R). A canonical choice is the

set of rows and columns labelled by the elements of R, in which case the Hadamard

matrix so obtained is normalised. In any case, we state the result formally.

Theorem 3.9 (cf. Theorem 2.4 of [17]). Let G be a group of order 4t. Then there

exists a Hadamard matrix cocyclic over G if and only if there exists a (4t, 2, 4t, 2t)-

RDS in a central extension of N ∼= C2 by G, with forbidden subgroup N .
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Proof. The ‘if’ direction follows from Theorem 3.8; the ‘only if’ from Lemmas 3.5

and 3.6.

We have shown a relationship between cocyclic Hadamard matrices and relative

difference sets. Unfortunately this relation is not well behaved in general: in the

next section we deal with questions of equivalence.

Remark 3.10. Chapter 7 of [33] and Section 15.4 of [16] contain comprehensive

discussions of relative difference sets corresponding to other kinds of cocyclic pairwise

combinatorial designs.

3.2 Equivalence of HRDSs and Hadamard equivalence

In this section, we relate the standard definitions for equivalence of RDSs and

Hadamard matrices to show that a given HRDS corresponds to either one or two

cocyclic Hadamard matrices. Equivalence of RDSs motivates the following defini-

tions.

Our definition of equivalence for RDSs differs from that in [33, p.164], in that we

allow not just automorphisms, but antiautomorphisms (see Definition 2.43) of the

containing group.

Definition 3.11 (cf. Definition 2.44). Let R,R′ ⊂ G be (m,n, k, λ)-RDSs, with

forbidden subgroups N and N ′ respectively. Then R is equivalent to R′ if and only

if there exist g ∈ G and ϑ ∈ AntiAut (G) such that Nϑ = N ′ and R′ = Rϑg.

It is routine to check that this is indeed an equivalence relation on the set of all

(m,n, k, λ)-RDSs in G.

We write M ≈ M ′ if there exist permutation matrices P and Q such that M =

PM ′Q>.

Lemma 3.12. Let R ⊂ G be an RDS, g ∈ G and ζ ∈ Aut(G). Then

1. Dev(Rζg) ≈ Dev(R);

2. Dev(R−1) ≈ Dev(R)>.

Proof. The first part follows directly from the fact that automorphisms of G induce

permutations on the rows and columns of Dev(R).

For the second part, observe that Dev(R) =
[
χR
(
gh−1

)]
g,h∈G. Then Dev(R−1) =[

χR−1

(
g−1h

)]
g,h∈G =

[
χR(hg−1)

]
g,h∈G = Dev(R)>. (Note in particular that unless

G is abelian, Dev(R) and its transpose need not be permutation equivalent.)
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Lemma 3.13. Let H and H ′ be Hadamard matrices. Then EH ≈ EH′ if and only if

H and H ′ are equivalent as Hadamard matrices.

Proof. Assume that H and H ′ are Hadamard equivalent. Then there exist a pair

of {±1}-monomial matrices, (P,Q) such that PHQ> = H ′. Both P and Q may

be uniquely decomposed into disjoint (0, 1)-matrices, P1, P−1, Q1 and Q−1 such that

P = P1 − P−1, Q = Q1 −Q−1. It is then easily verified that(
P1 P−1

P−1 P1

)(
H −H
−H H

)(
Q>1 Q>−1

Q>−1 Q>1

)
=

(
H ′ −H ′

−H ′ H ′

)
.

This suffices for one direction of the proof.

Now, assume that EH ≈ EH′ . Then(
Pα Pβ

Pγ Pδ

)(
H −H
−H H

)(
Q>α Q>γ

Q>β Q>δ

)
=

(
H ′ −H ′

−H ′ H ′

)

where the first and third matrices are permutation matrices. Multiplying out these

block matrices, we obtain four equations of the form

(Pα − Pβ)H
(
Q>α −Q>β

)
= H ′. (3.1)

Consideration of any one suffices in this context. The matrix H ′ is Hadamard, and so

contains no zero entries. Thus Pα−Pβ and Q>α −Q>β are necessarily {±1}-monomial

matrices. Hence H and H ′ are Hadamard equivalent as required.

Note that this result can be extended in several directions. As an example, the

equations (3.1) imply that Pα = Pδ, Pβ = Pγ , Qα = Qδ and Qβ = Qγ , which

imposes non-trivial restrictions on the automorphism group of an expanded matrix.

In this chapter, we develop these ideas only enough for our purpose, which is the

proof of Theorem 3.15.

Definition 3.14. Let R ⊂ G be a HRDS with Dev(R) ≈ EH for some cocyclic

Hadamard matrix, H. We say that R is associated with H.

Theorem 3.15. Suppose that R is a HRDS associated with H. If R is also associ-

ated with H ′ then H and H ′ are equivalent as Hadamard matrices. R is equivalent

to a HRDS associated with H>. Furthermore, if R′ is a HRDS equivalent to R then

R′ is equivalent to either H or H>.

Proof. Immediate from Lemmas 3.12 and 3.13.

42



3 Classification of cocyclic Hadamard matrices

Now, we have shown that a Hadamard matrix H is cocyclic if and only if EH ≈
Dev(R) for some HRDS, R. Furthermore, any cocyclic Hadamard matrix, H ′, which

is Hadamard equivalent either to H or H> will have EH′ ≈ Dev(R′), where R′ is

equivalent to R. Thus, to find representatives of all equivalence classes of cocyclic

Hadamard matrices of order 4t, up to transposition, it suffices to find all HRDSs in

groups of order 8t, up to equivalence. This list will not be irredundant in general,

but can be made so using standard inequivalence tests for Hadamard matrices as

implemented in Magma [7], for example.

3.3 Construction of relative difference sets

There is an extensive literature devoted to the study of difference sets in abelian

groups. In contrast, difference sets in non-abelian groups have received relatively

little attention. While multipliers have been defined for difference sets in non-abelian

groups, there are no analogues of the multiplier theorems (see Section 5.2 for a

discussion of multipliers). Likewise, results using characters and algebraic number

theory fail to carry over to the non-abelian case.

It is unsurprising that there has been little attention paid to the theory of the

more general relative difference sets. Our algorithm for the construction of RDSs in

a group G is essentially a depth first backtrack search over the tree of all subsets

of G. We outline some refinements to the search which make it feasible for the

groups of order 64 and 72, as promised in the introduction to this chapter. The

most important of these is a theorem of Bruck, generalised by Röder.

Theorem 3.16. Let G be a group of order mn. Let R be a (m,n, k, λ)-RDS in G,

with forbidden subgroup N , of order n. Let U be a normal subgroup of G, and denote

by T =
{
g1, g2, . . . , g|G:U |

}
a transversal of U in G. Furthermore, let vi = |R ∩ giU |

and vij = |R ∩ gigjU |. Then the following relations hold.∑
i∈T

vi = k (3.2)∑
i∈T

v2
i = λ (|U | − |U ∩N |) + k (3.3)∑

j∈T
vjvij = λ (|U | − |giU ∩N |) for gi /∈ U . (3.4)

Proof. Let ϑ : Z[G] → Z[G/U ] be the epimorphism of group-rings induced by the
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canonical epimorphism of groups ρ : G→ G/U .

We have:

ϑ(R) =
∑
gi∈T

vigiU

ϑ(R−1) = ϑ(
∑
r∈R

r−1) =

|G:N |∑
i=1

vig
−1
i U.

Hence

ϑ(RR−1) =
( |G:N |∑

i=1

vigiU
)( |G:N |∑

j=1

vjg
−1
j U

)
=

|G:N |∑
i=1

( |G:N |∑
j=1

vjvij

)
giU. (3.5)

Writing N = {gi ∈ T | giU∩N 6= ∅} and assuming g1 ∈ U , we get from the definition

of relative difference sets

ϑ(RR−1) = k · g1U + λ
( ∑
g∈(G−N)

gU
)

(3.6)

= k · g1U + λ
( ∑
gi∈T−N

giU |U | −
∑
gi∈N

giU |giU ∩N |
)
. (3.7)

Comparing coefficients in (3.5) and (3.7), we get∑
viv1i =

∑
v2
i = k + λ(|U | − |U ∩N |)

and ∑
j

vjvij =

λ|U | if giU 6∈ ρ(N)

λ(|U | − |U ∩N |) if ρ(gi) ∈ ρ(N)− {U}

We call [vi | 1 ≤ i ≤ |G : U |] a signature for R with respect to U . Note that the

ordering of the signature depends on the ordering of the cosets of U .

A signature is entirely determined by the parameters of R and the index of U in

G, so that we may speak of a signature for a given set of parameters in G, whether

there exists a difference with these parameters or not. If the equations of Theorem

3.16 have no solution for a given group G, then there can be no relative difference

set with the given parameters.
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This result suggests the following algorithm for the construction of all (m,n, k, λ)-

RDSs in the group G.

1. Calculate all normal subgroups of order n in G.

2. Calculate a system of representatives N of Aut(G)-orbits on the normal sub-

groups of order n.

The elements of N are used as forbidden subgroups of relative difference sets. So

for every N ∈ N , we find the relative difference sets with respect to N :

3. Calculate signatures (solutions of the equations of Theorem 3.16) with respect

to every normal subgroup of index at most l for some suitable choice of l. (

The signatures of subgroups of smaller index may be used in the reduction

step.)

4. Find U EG with unique signature of the form [i, . . . , i] (all entries the same).

Such a subgroup always exists in the cases we consider in Section 3.3.1.

Next, we generate all relative difference sets coset-wise.

Definition 3.17. We call R ⊂ G a partial relative difference set (short: pRDS)

with parameters (4t, 2, 4t, 2t) relative to N E G, if every element of G − N can be

written in at most 2t ways as a quotient in R, and no element of N can be expressed

in this way. We say that a pRDS has length k if it contains k elements.

We start with the coset U and the set P = {{1}} of partial difference sets (note

that this can be done without loss of generality). For the reduction step (6) below,

we use equivalence as defined in Definition 2.44 with a smaller automorphism group

A ≤ (Aut(G)N )U which acts trivially on G/U .

5. Calculate P ′ :=
⋃
p∈P {p ⊂ p′ ⊂ U | |p′| = |p|+ 1, and p′ is pRDS}.

6. Calculate a system of representatives P ′′ of equivalence classes on P ′.

Steps 5 and 6 are iterated to get partial difference sets of length i in U . By step

4, we know that this is the maximal length for partial difference sets in U .

This procedure is repeated with the next coset modulo U starting with partial

difference sets of length i and generating sets of length 2i. Continuing in this fashion,

we find all relative difference sets in G with forbidden subgroup N ∈ N .
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Remark 3.18. The choice of l, the maximal index of normal subgroups considered

for generation of signatures, was determined by trial and error for the cases that we

consider in Section 3.3.1. In general, the algorithm depends essentially on finding a

normal subgroup with a suitable signature. Indeed, the algorithm may fail at Step

4 should it fail to find such a signature. In this case, the search branches in separate

cases depending on the number of elements required in each of the cosets. We did

not implement the algorithm in this more general setting: it was not necessary for

the problem considered in this chapter.

3.3.1 Implementation for groups of order 64 and 72

We show there are only two signatures possible for a HRDS in a group of order

64. We consider a normal subgroup of order 16. This is permissible: a routine

calculation shows that all groups of order 64 contain a normal subgroup of index 4.

Lemma 3.19. Let G be a group of order 64 and let U be a normal subgroup of index

4. Suppose that R is a HRDS in G with forbidden subgroup N . Then the signature of

R with respect to U is of one of two types: [6, 6, 10, 10], or [8, 8, 8, 8]. Furthermore,

signatures of the first kind occur only when G/U ∼= C4, and the non-trivial element

of N lies in the unique coset of U of order 2.

Proof. We simply apply the conditions of Theorem 3.16 to a HRDS in G. Now, from

(3.2) we have that

v1 + v2 + v3 + v4 = 32.

From here we break our analysis into two cases: in the first, |U ∩N | = 1, and in

the second N ≤ U .

• If |U ∩N | = 1, then by (3.3)

v2
1 + v2

2 + v2
3 + v2

4 = 16 · 17.

We observe that all squares modulo 16 lie in {0, 1, 4, 9}. The only solutions

modulo 16 to the above equation are:

0 + 0 + 0 + 0 = 0, 4 + 4 + 4 + 4 = 0.

Inspection shows that there exist only two valid solutions to the above equa-

tion, namely 22 + 62 + 62 + 142 = 272 and 62 + 62 + 102 + 102 = 272. However

2 + 6 + 6 + 14 6= 32. Thus we are left with only a single valid solution.
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3 Classification of cocyclic Hadamard matrices

• If |U ∩N | = 2, then

v2
1 + v2

2 + v2
3 + v2

4 = 16 (16− 2) + 32 = 162.

We observe that in this case the sum of the squares is in fact minimal, and is

achieved only if

v1 = v2 = v3 = v4 = 8.

As for the second part of the lemma, we observe that if |U ∩N | = 1 then U ×N
is a normal subgroup of G of index 2. Now G/U ∼= C2 ×C2 only if G splits over N .

In this case the corresponding Hadamard matrix is equivalent to a group developed

matrix. This is a contradiction as the order of the matrix, 32, is not a square. Thus

G/U ∼= C4 =
〈
α | α4 = 1

〉
, and n 6= 1 ∈ N lies in the coset α2U .

Remark 3.20. In fact every group of order 64 contains a normal subgroup with sig-

nature [8, 8, 8, 8]. So while some groups did contain normal subgroups with signature

[6, 6, 10, 10], it was not necessary for us to consider this case.

A similar result for the groups of order 72 can be derived by the same method. Of

the 50 groups of order 72, all but one contain a normal subgroup of order 12. The

exception does not contain a normal subgroup of order 2, and so does not warrant

further consideration. There are four possible signatures when |U ∩N | = 1.

Lemma 3.21. Let G be a group of order 72 and let U be a normal subgroup of index

6. Suppose that R is a HRDS in G with forbidden subgroup N . Then the signature

of R is one of the following:

• [6, 6, 6, 6, 6, 6] if |U ∩N | = 2,

• one of [3, 5, 6, 6, 8, 8] , [3, 6, 6, 6, 6, 9] , [4, 4, 5, 7, 8, 8] , [4, 4, 6, 6, 7, 9]

if |U ∩N | = 1.

The actual implementation of our algorithm uses Röder’s GAP package ‘rds’ [68].

It differs slightly from the outline above, as we made use of the following heuristic

methods.

1. The signatures calculated in step 3 can be used in the reduction step 6 as an

invariant. See [66, 67] for details.

2. The reduction steps are very time-consuming, so steps 5 and 6 are not iterated

i times, but a brute-force algorithm is used after fewer steps.
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3 Classification of cocyclic Hadamard matrices

Also, steps 5 and 6 were not used for all cosets modulo U . Depending on the

specific case, we used a brute-force method after a few cosets.

3. A final reduction step was introduced just before changing cosets to compen-

sate for the redundancy generated by the brute-force method.

4. After generating all difference sets in G (for all possible forbidden subgroups

in N ), we apply a reduction step with the full group Aut(G) to get all RDSs

up to equivalence.

3.4 Classification of cocyclic Hadamard matrices of order

less than 40

By ‘classification’ we mean a list of cocyclic Hadamard matrices which is complete

and irredundant with respect to Hadamard equivalence. From these, the algorithm

of Appendix A of [58] may be used to obtain cocycles. Relative difference sets, as-

sociated 2- and 3-designs or any other data of interest may also be recovered from

this list using relatively standard techniques. As mentioned in the introduction to

this chapter, a classification for Hadamard matrices of orders at most 28 was given

in [58]. The methods of Section 3.3 were used to classify the cocyclic Hadamard ma-

trices of orders 32 and 36, thus extending the classification to all cocyclic Hadamard

matrices of order less than 40. The following table summarises our results. We list

the number of cocyclic Hadamard matrices for all orders less than 40 (given as a

fraction of the total number of Hadamard matrices where appropriate - these num-

bers are taken from [49] for order 32 and [61] for order 36). Likewise we list the

number of indexing and extension groups at each order as a fraction of the total.

Order Cocyclic Indexing Groups Extension Groups

2 1 1 2
4 1 2 3 / 5
8 1 3 / 5 9 / 14
12 1 3 / 5 3 / 15
16 5 13 / 14 45 / 51
20 3 2 / 5 3 / 14
24 16 / 60 8 / 15 14 / 52
28 6 / 487 2 / 4 2 / 13
32 100/ ≥ 13× 106 49/51 261/267
36 35 / ≥ 18× 106 12 /14 21 / 50

Table 1: Cocyclic Hadamard matrices of order less than 40.
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3 Classification of cocyclic Hadamard matrices

All Hadamard matrices of order at most 20 are cocyclic. Beyond this, it seems

that that the number of cocyclic Hadamard matrices is approximately proportional

to the number of indexing groups. Results of Ito [38, Propositions 6,7] prove that a

group of order 8t cannot contain a (4t, 2, 4t, 2t)-RDS if it has cyclic or dihedral type

Sylow 2-subgroup. The existence of a cocyclic Hadamard matrix with cyclic indexing

group of order greater than 4 would disprove the Circulant Hadamard conjecture.

We observe that up to order 36, groups of lower exponent are more likely to be

Hadamard groups.

The algorithm of Appendix A in [58] and the classification of Hadamard matrices

in [71] were used to construct all cocyclic Hadamard matrices of order less than 30.

The algorithm of Section 3.3 and information from the Small Groups Library, avail-

able in Magma [7], were used to generate all (4t, 2, 4t, 2t)-RDSs in groups of orders

40, 48, 56, 64 and 72, whence all cocyclic Hadamard matrices of orders 20, 24, 28, 32

and 36 were obtained. Both classifications agreed on their intersection.

The classification of cocyclic Hadamard matrices of order 32 is, to our knowledge,

entirely new. The classification of cocyclic Hadamard matrices of order 36 was

begun by Ito and Okomoto [41], who found 15 matrices, but is completed here. We

conclude this chapter with some more detailed information on the data generated

at orders 32 and 36.

3.4.1 Selected data

In general, H and H> need not be equivalent as Hadamard matrices. Their auto-

morphism groups are isomorphic however, with an obvious bijection between regular

subgroups. Thus the cocyclic development properties of H and H> are the same,

so for the purposes of this section we introduce the notion of strong inequivalence,

where we add transposition to equivalence relations for Hadamard matrices.

Of the 100 classes of cocyclic Hadamard matrices of order 32, there are precisely 30

pairs of classes {Hi} , {Hj} i 6= j such that H>i is Hadamard equivalent to Hj . The

remaining 40 equivalence classes are closed under transposition. Thus we obtained

70 strongly inequivalence classes of Hadamard matrices, of which 40 classes are

equivalent to their transpose classes and 30 are not. We describe the automorphism

groups of these matrices in the two tables following. Where we could not find a nice

description of a group, we describe it as an extension K of a normal subgroup by a

quotient group (represented as a truncated exact sequence). Note in particular, that

K represents a different group in each line of the table. The dihedral, quasidihedral

and quaternion groups of order n are denoted Dn
2
, QDn and Qn respectively.
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3 Classification of cocyclic Hadamard matrices

|Aut(H)| Description Remarks

64 C16 o C4

64 Q64 4 matrices
64 C3

2 → G→ D4

64 C4 oQ16

128 C16 → G→ D4

128 C8 → G→ C2 ×D4 3 matrices
128 (C16 × C4) o C2

128 C32 → G→ C2
2 2 matrices

128 C3
2 → G→ C2 ×D4 central extension

128 C3
2 → G→ D8 2 matrices

128 C2 → G→ D2
4 2 matrices, central extension

192 C3
2 → G→ S4 Z(Syl2(G)) = C2 × C4

192 C3
2 → G→ S4 Z(Syl2(G)) = C3

2 , 2 matrices

256 C16 → G→ C2 ×D4 SmallGroup 26854
256 C16 → G→ C2 ×D4 SmallGroup 26843
256 C2

2 → G→ C3
2 ×D4 central extension, SmallGroup 54577

256 C2
2 → G→ C3

2 ×D4 central extension, SmallGroup 55556
256 C2

2 → G→ C3
2 ×D4 central extension, SmallGroup 55593

256 C8 → G→ C4
2 o C2 SmallGroup 26530

320 (C2 ×Q8) o C2 → G→ D5

512 C8 → G→ D2
4

512 C4
2 → G→ (C2 ×D4) o C2

512 C4
2 → G→ D16

512 C8 → G→ K K a group of order 64, exponent 4
512 C4

2 → G→ C4
2 o C2

512 C3
2 → G→ D2

4

Table 2: Automorphism groups of order ≤ 1000

It is notable that only the automorphism groups of the Sylvester and Paley matri-

ces are doubly transitive on rows. We give an extended discussion of the Sylvester

and Paley matrices later, in Chapter 4. Indeed, Chapters 4 and 5 are concerned with

Hadamard matrices that have doubly transitive automorphism groups in general.

We note also the relative paucity of Hadamard matrices with non-solvable automor-

phism groups. It is likely that each of these is built in some manner from Hadamard

matrices of order 8: the non-solvable factors occurring all have distinguished actions

on 8 points. If so, it would be interesting to learn if these constructions are known,

and if they generalise to larger orders.
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3 Classification of cocyclic Hadamard matrices

|Aut(H)| Description Remarks

1024 C2
2 → G→ K C3

2 → K → C5
2

1024 C2
2 → G→ K C3

2 → K → C5
2

1024 C2 → G→ K C4
2 → K → C5

2 , two matrices
1024 C2 → G→ K C4

2 → K → C5
2

1152 C2 → G→ C36 ×D8

1536 C6
2 → G→ C2 ×A4

1536 C2
2 ×GL2(3)→ G→ D8

2048 C7
2 → G→ D8

3072 C2 → G→ K C5
2 → K → D4 × S3, central

8192 C2
2 × C2

4 → G→ C6
2 o C2

8192 C4
2 × C2

4 → G→ C4
2 o C2

8192 C5
2 → G→ K |K| = 256, exponent 8

8192 C7
2 → G→ K |K| = 64, exponent 4

10752 C5
2 → G→ PGL2(7)

10752 C6
2 → G→ C3

2 o F21 F21 Frobenius of order 21

16384 C7
2 → G→ D2

4 o C2

16384 C4
2 → G→ K |K| = 1024, exponent 8

29760 SL2(31) Paley I Matrix

32768 C5
2 → G→ K C5

2 → K → C5
2

32768 C5
2 → G→ K C4

2 × C4 → K → C4
2

32768 C8
2 → G→ K C4

2 → K → C3
2

98304 C5
2 → G→ K C6

2 → K → D4 × S3

122880 C5
2 → G→ K C5

2 → K → S5

131072 C10
2 → G→ D2

4 o C2

688128 C10
2 → G→ K C2 → K → PGL2(7)

688128 C10
2 → G→ K C2 → K → PGL2(7), 2 matrices

786432 C6
2 → G→ K C8

2 → K → D4 × S3, two matrices
786432 C4

2 → G→ K C8
2 → K → (C2 ×D4 × S3) o C2

917504 C4
2 → G→ K C12

2 → K → C14

1048576 C10
2 → G→ K C6

2 → K → D8

18874368 C12
2 → G→ K C5

2 → K → S3 × S4

20478689280 C6
2 oAGL5(2) Sylvester matrix

Table 3: Automorphism groups of order > 1000
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3 Classification of cocyclic Hadamard matrices

We obtain 35 equivalence classes of cocyclic Hadamard matrices of order 36, of

which 17 classes are self-transpose equivalent, and 18 are not. Thus there are 26

strongly inequivalent classes of cocyclic Hadamard matrices at order 36.

At order 36, all of the full automorphism groups act imprimitively on the rows of

their corresponding matrices. Furthermore, the Paley II Hadamard matrix of this

order has a non-solvable automorphism group, containing a subgroup isomorphic

to PSL2(17). The occurrence of SL2(3) and GL2(3) suggests that some of these

matrices may have natural constructions over F9. Again, it would be interesting

to examine the matrices and their automorphism groups for possible new algebraic

constructions of Hadamard matrices. Note that there are many matrices with full

automorphism groups of order 72, i.e. the automorphism group acts regularly on

the expanded matrix.

|Aut(H)| Description Remarks

72 C2
3 oQ8 4 matrices

72 C3 × SL2(3) 2 matrices
72 C3 × (C3 oQ8) 3 matrices
72 C2

3 oQ8

144 Q8 ×D9

144 (C3 oQ8)× S3

144 ((C12 × C2) o C2)× C3

216 (C9 ×Q8) o C3

216 (C2
3 ×Q8) o C3

432 ((C9 ×Q8) o C3) o C2

432 C3 × S3 × SL2(3)
432 C2 × (C2

6 o C3) o C2

1152 C2
6 → G→ C2 ×QD16

1296 C4
3 → G→ (C2 × C4) o C2

1728 (Q8 × (C2
3 oQ8)) o C3

1944 C4
3 → G→ SL2(3)

3456 C2 × C2
6 → G→ GL2(3)

3888 C4
3 → G→ C2 × S4

19584 PSL2(17)→ G→ Q8 Paley II Matrix

31104 K → G→ S4 C4
3 → K → C2 ×Q8

Table 4: Automorphism groups of cocyclic Hadamard matrices of order 36
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4 Cocyclic Hadamard matrices from

difference sets

In this chapter we turn from the computational work of Chapter 3 to more theoretical

work. For a Hadamard matrix H, we study the action of the permutation group

A(H) on the rows of H. Detailed structural information is given in the special

case that A(H) is a non-affine doubly transitive group. A corollary of this result is

a partial classification of cocyclic Hadamard matrices H developed from difference

sets (as per Definition 2.60).

4.1 The action of a permutation group on a Hadamard

matrix

Let H be a Hadamard matrix. We described the permutation action of Aut(H) on

the rows and columns of EH in Lemma 2.83. It is clear that this action is never

primitive on rows: a system of imprimitivity consists of the pairs of rows {r,−r}.
In fact, this can be a maximal system of imprimitivity in the sense that the induced

action of Aut(H) on the set of pairs {r,−r} is primitive (even doubly transitive).

This is the action considered by Kantor and by Ito in [46] and [37] respectively.

Equivalently, Kantor and Ito’s action may be described in terms of Definition 2.55.

We observe that this action no longer consists of automorphisms of any obvious

incidence structure associated with H. We outline some of the properties of A(H)

in the remainder of this section.

Lemma 4.1. The kernel of the map ν : Aut(H) → A(H) consists of matrices

diagonal in the first component.

Proof. Suppose that (P,Q) ∈ Ker(ν). Then EP = I, so P is a diagonal matrix.

The next theorem is due to Ito. We give a proof that is somewhat less terse than

the original.
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4 Cocyclic Hadamard matrices from difference sets

Theorem 4.2 ([39], Lemma 1). Suppose that A(H) acts 2-transitively on the rows

of H and that Ker(ν) is not 〈ζ〉, where ζ = (−I,−I). Then H is a Sylvester matrix1.

Proof. An automorphism (P,Q) of H such that P is a diagonal matrix is called a

dilatation by Kimberley [50]. A dilatation which is in 〈ζ〉 or which does not fix any

column is called a translation. Theorem 8 of [50] states that a Hadamard matrix H

with a transitive group of translations is equivalent to a Sylvester matrix. We show

that Ker(ν) is such a transitive translation group for H.

First, we observe that (P,Q) ∈ Ker(ν) implies that P 2 = I, so that every non-

identity element of Ker(ν) has order 2. Hence Ker(ν) is an elementary abelian group

containing ζ. Note that every element of Ker(ν) is a dilatation.

We describe an incidence structure on which Ker(ν) has non-trivial action. Sup-

pose that H = [hi,j ]i,j has order 4n. Define a set P = {1, 2, . . . , 4n, 1∗, 2∗, . . . , 4n∗}
of points and a set of blocks B = {b1, b2, . . . , b4n, b∗1, b∗2, . . . , b∗4n} with i incident to bj

if hi,j = 1, and i∗ incident to bj otherwise. Set b∗j = P − bj and ∆ = (P,B). For any

x, y ∈ B we observe that x ∩ y = 2n if y 6= x, x∗. The elements of P are identified

with the rows of H and their negations, which induces an action of Aut(H) on ∆.

We denote by P the system of imprimitivity given by the blocks x = {x, x∗} for

x ∈ P . Then the induced action of Aut(H) on P is permutation isomorphic to the

action of A(H) on the rows of H.

Now, choose σ ∈ Ker(ν) − 〈ζ〉. Then there exist i and j in P such that iσ = i∗

and jσ = j. Hence the action of σ on B is fixed-point-free: σ is a translation. Now

Ker(ν) is semiregular on B, so |Ker(ν)| ≤ 8n.

Let b be an arbitrary block. Then (b ∩ bσ) ∪ (b∗ ∩ (b∗)σ) is the fixed point set

of σ. Now, |(b ∩ bσ)| = |(b∗ ∩ (b∗)σ)| = 2n. Thus σ fixes 4n points in total. Let

F (σ) = {x | xσ = x}. Then |F (σ)| = 2n, and F (σ) uniquely determines σ.

Denote by u the number of distinct sets F (σ), so u = |Ker(ν)| − 2. Let x and

y be distinct elements of P , and denote by v the number of distinct F (σ) which

contain both x and y. By hypothesis, the action of A(H) on P is doubly transitive.

It follows that v is independent of the choice of x and y:

v

(
4n

2

)
= u

(
2n

2

)
⇒ v = (2n− 1)

u

2(4n− 1)

But v is an integer, so 2(4n− 1) divides u. The action of Ker(ν) is semiregular, so

1We describe the Sylvester matrices in detail in Section 4.3.2.
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|Ker(ν)| = u + 2 ≤ 8n. Hence u = 8n − 2, and Ker(ν) is transitive on the columns

of H, and H is equivalent to a Sylvester matrix.

In particular, if H is a Hadamard matrix with non-affine doubly transitive auto-

morphism group (recall: we mean here that A(H) is non-affine doubly transitive),

then Ker(ν) = 〈ζ〉.
Suppose that H is a Hadamard matrix developed from a symmetric design S.

Then Aut(S) ∼= PermAut(H) by Lemma 2.59. We show that A(H) contains a

subgroup isomorphic to Aut(S).

Lemma 4.3. Let H be a Hadamard matrix. Then PermAut(H) ∼= ν(PermAut(H)).

Proof. By Lemma 4.1, Ker(ν) ∩ PermAut(H) = (I, I): a diagonal permutation

matrix is necessarily the identity.

By Lemma 2.59, PermAut(H) ∼= Aut(S) where S is the underlying 2-design of H.

We denote ν(PermAut(H)) by A(S) and bound the index of A(S) in A(H).

Lemma 4.4. Let H be a normalised Hadamard matrix of order 4t developed from

the symmetric design S. Then |A(H) : A(S)| ≤ 16t2.

Proof. Note that A(S) ≤ A(H)1, so

|A(H) : A(S)| = |A(H) : A(H)1| · |A(H)1 : A(S)| .

By the Orbit-Stabiliser theorem |A(H) : A(H)1| ≤ 4t.

Consider the group G = {Q | ν(P,Q) ∈ A(H)1}. If Q ∈ G then either Q or −Q is

a permutation matrix. Denote by G+ the subgroup of permutation matrices in G.

We observe that |G| = 2 |A(H)1|, hence |G+| = |A(H)1|.
Suppose that Q ∈ G+ fixes the first column of H. Then (P,Q) ∈ PermAut(H)

and so induces an automorphism of S. Thus G+
1 is isomorphic to a subgroup of

PermAut(H). But it is easily seen that PermAut(H) ≤ G+
1 , hence PermAut(H) ∼=

G+
1 .

So |A(S)| =
∣∣G+

1

∣∣, from which it follows that |A(H)1 : A(S)| =
∣∣G+ : G+

1

∣∣ ≤
4t.

Known restriction on the orders of automorphisms of both Hadamard matrices

and Paley-Hadamard designs could be used to improve the bound of Lemma 4.4.

We do not explore this topic; instead, we impose some further conditions on A(H)

and Aut(S).
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Lemma 4.5. Let H be a normalised Hadamard matrix of order 4t developed from

the symmetric design S. Suppose that Aut(S) is transitive on the points of S. Then

|A(H) : A(S)| ∈
{

1, 4t, 16t2
}

.

Proof. By Theorem 2.41, Aut(S) is transitive on the blocks of S. Then, using the

notation in the proof of Lemma 4.4, we observe that |A(H) : A(H)1| and
∣∣G+ : G+

1

∣∣
are each 4t or 1 depending on whether A(H) and G+ are transitive or intransitive.

Since |A(H)1 : A(S)| =
∣∣G+ : G+

1

∣∣, the lemma follows.

Clearly, if |A(H) : A(S)| = 1, then A(H) is isomorphic to Aut(S), in which case

we do not gain any further information on either S or H. The situation is quite

different in the other two cases of Lemma 4.5. We begin with a technical lemma,

and a statement of a theorem of Ito.

Lemma 4.6. Let G be an affine doubly transitive permutation group of degree n = 2k

with character χ1 + χρ, where χ1 is the trivial character, ρ is irreducible of degree

n − 1. Consider the natural permutation representation of G in GLn(C) whose

ordinary character is χ1 + χρ.

Suppose further that ρ is monomial, so ρ(g) = DgEg for diagonal and permutation

matrices Dg and Eg respectively. Then the permutation representation π : ρ(g) 7→ Eg

is not faithful.

Proof. First: G is of affine type, so G = V H where V is an elementary abelian

normal subgroup, and H is a point stabiliser. Let ρ(G) act on the n−1-dimensional

C-vector space W . Since ρ is monomial by hypothesis, W decomposes as a direct

sum of 1-dimensional subspaces, which are permuted by ρ under ordinary matrix

multiplication.

We observe that χρ(v) = −1 for any v ∈ V . But V is the socle of G, so ρ is faithful.

Now, ρ(u) = ρ(v) = −1 for arbitrary u, v ∈ V . So there exist subspaces Wu and

Wv of W such that xuu = −xu and xvv = −xv for xu ∈ Wu and xv ∈ Wv. These

subspaces may be chosen to be distinct: otherwise xuvu = xu, but ρ(uv) = −1, so

there is a third subspace negated by exactly one of u and v.

Suppose that W v
u = X 6= Wu. Then W uv

u = W vu
u , which implies that Xu = −X.

But v was arbitrary, so we see that u fixes every 1-dimensional subspace of W . And

v is conjugate to u in G: so it must also fix every 1-dimensional subspace.

Diagonal matrices commute, so because V is self-centralising in G, we have that

Ker(ρ) = V , and the projection π(ρ(G)) is isomorphic to H.

The next theorem is truly fundamental for our purposes in this chapter.
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Theorem 4.7 (Ito, [37]). Let H be a Hadamard matrix such that A(H) is non-affine

and doubly transitive. Then the action of A(H) is one of the following.

• A(H) ∼= M12 in its natural action on 12 points.

• PSL2(pk) E A(H) acting naturally on pk + 1 points, for pk ≡ 3 mod 4,

pk 6= 3, 11.

• A(H) ∼= Sp6(2) acting on 36 points.

Theorem 4.8. Let H be a normalised Hadamard matrix of order 4t developed from

the symmetric design S. Suppose that Aut(S) is transitive and |A(H) : A(S)| ≥ 4t.

Then A(H) is doubly transitive. If |A(H) : A(S)| = 16t2 then H is a Sylvester

matrix, or H is of order 12.

Proof. First, A(H)1 is transitive on the remaining rows of H, and G+
1 is transitive on

the remaining columns of H. If |A(H) : A(S)| ≥ 4t, then either A(H) is transitive

on the rows of H, in which case A(H) is doubly transitive by Lemma 2.10; or else

G+ is doubly transitive on the columns of H, in which case we replace H by H>

without loss of generality.

Continuing with the notation of Lemma 4.4, we see that |A(H) : A(S)| = 16t2

precisely when G+ is a doubly transitive permutation group on the columns of H.

Now, observe that G+ is the projection of a subgroup of Aut(H) onto one of its

components. So G+ is isomorphic to a section of Aut(H).

Consider the group K = 〈P | (P,Q) ∈ Aut(H) for some Q ∈ G+〉. Since Q =

H−1PH, we have that K and G+ are similar as matrix groups, though K is not a

permutation group. Note that every element of K fixes the first row of H, so that

each element decomposes as a direct sum of the trivial representation of G+ and

a faithful monomial representation ρ of G+ of degree 4t − 1. Note that ρ is not a

permutation matrix representation: G contains a fixed-point-free element, so some

element ρ(g) has trace −1.

Now, consider the projection π : P 7→ EP , restricted to ρ. In the case that G+ is

of affine type, the kernel of π is non-trivial by Lemma 4.6. Since every element of

Ker(π) lifts to an element of Ker(ν), we have that Ker(ν) is larger than 〈(−I,−I)〉.
By Theorem 4.2, H is a Sylvester Hadamard matrix.

In the case that G+ is almost simple, we have the following.

• A(H) is 2-transitive on 4t points.

• G+ is a subgroup of index 4t of A(H), and is 2-transitive on 4t points.

57
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• Ker(π) is trivial, and so G+ also has a transitive permutation representation

on 4t− 1 points.

It is possible to determine the non-affine doubly transitive groups satisfying these

conditions. We use Theorem 4.7 and the classification of doubly transitive permu-

tation groups to conclude the proof.

Suppose that K is almost simple. But then K ≤ A(H>) is doubly transitive on

the rows of a Hadamard matrix and Theorem 4.7 applies. We consider each case in

turn. The point stabiliser of PΣL2(q) is a subgroup of AΓL1(q), which cannot have

a transitive action on q+1 points. So this case does not yield an example. The point

stabiliser of Sp6(2) is S8, but S8 has no doubly transitive permutation representation

on 36 points. Finally, the stabiliser of a point in M12 is M11, which has an induced

3-transitive action on 12 points. It can be verified that this is indeed the action of

K on the columns of the Hadamard matrix of order 12. Hence Aut(S) ∼= PSL2(11)

in this case, which is of index 144 in M12.

Corollary 4.9. Let H be a Hadamard matrix developed from a symmetric design S
with A(H) non-affine doubly transitive and Aut(S) transitive. Then H is of order

12, or Aut(S) ∼= A(H)1.

Proof. If H is not of order 12, then by Theorem 4.8 and hypothesis, |A(H) : A(S)| =
4t. By transitivity of A(H), |A(H) : A(H)1| = 4t. Since A(S) ≤ A(H)1, the result

follows.

4.2 Cocyclic Hadamard matrices from difference sets

Suppose that H is a cocyclic Hadamard matrix which is also developed from a

difference set. In this section we show that A(H) is necessarily a doubly transitive

permutation group.

Lemma 4.10. Let H be a (normalised) Hadamard matrix developed from a differ-

ence set D. Then A(H)1 is transitive on the non-initial rows of H.

Proof. Let S be the symmetric design underlying D. Then Aut(S) is transitive on

the points of S by Theorem 2.47. By Theorem 2.57, Lemma 2.59 and Lemma 4.3,

the action of A(S) on the non-initial rows of H is permutation isomorphic to the

action of Aut(S) on the points of S. Thus A(H)1 is transitive on the non-initial

rows of H.
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Lemma 4.11 (Cf. Lemma 6, [60]). Let H be a cocyclic Hadamard matrix. Then

A(H) is transitive.

Proof. Let H be a cocyclic Hadamard matrix, with cocycle ψ : G×G→ 〈−1〉. The

cocycle equation can be written as

ψ(g, hk) = ψ(g, h)ψ(gh, k)ψ(h, k). (4.1)

Now define δxay = 1 if y = xa, and 0 otherwise. Define the following monomial

matrices for all a ∈ G:

Pa = [ψ(x, a)δxay ]x,y∈G, Q>a = [ψ(a, a−1y)δxa−1y]x,y∈G.

Then (Pa, Qa) is an automorphism of H for all a ∈ G; the proof is as in Lemma

2.81.

Now, ν((Pa, Qa)) =
[
δxay
]
x,y∈G, and so we see that A(H) contains the subgroup{[

δxay
]
x,y∈G | a ∈ G

}
∼= G acting regularly on the rows ofH. ThusA(H) is transitive

on the rows of H.

Theorem 4.12 (Cf. Lemma 11, [60]). If H is a cocyclic Hadamard matrix developed

from a (4n − 1, 2n − 1, n − 1)-difference set as in Lemma 2.57 and Theorem 2.47,

then A(H) is doubly transitive.

Proof. This follows directly from Lemmas 2.10, 4.11 and 4.10.

In the remainder of this Chapter, we classify the Hadamard matrices with non-

affine doubly transitive permutation groups. We also classify extension groups and

difference sets (if any) for each matrix.

4.3 Hadamard matrices with doubly transitive

automorphism groups

As evidenced by Theorem 4.2 and Corollary 4.9, Hadamard matrices H with A(H)

non-affine doubly transitive are well behaved, in some sense. We begin this section

with two examples of families of Hadamard matrices with A(H) doubly transitive.

In both cases, we define these matrices in terms of difference sets. These families of

difference sets, along with others, will be discussed more fully in Section 5.1.
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4 Cocyclic Hadamard matrices from difference sets

4.3.1 Paley matrices

Definition 4.13. Let q ≡ 3 mod 4 be a prime power. As we noted in Remark 2.46

the quadratic residues of Fq form a difference set in the additive group of Fq. Such

a difference set is known as a Paley difference set . A Paley design is the underlying

symmetric 2-design of a Paley difference set, and a Paley matrix is a Hadamard

matrix developed from a Paley difference set (these are generally known as Type I

Paley matrices.)

Remark 4.14. We caution the read that a Paley difference set belongs to the fam-

ily described in Definition 4.13, while Paley-Hadamard is a generic term for any

difference set with parameters (4t− 1, 2t− 1, t− 1).

The Paley matrices are well studied. In [27], Hall demonstrates that PSL2(q) is a

subgroup of the automorphism group of the Paley matrix of order q+ 1. This result

was later extended by Kantor, who determined the full automorphism group.

Theorem 4.15 ([46], [18]). Let H be a Paley matrix of order pn + 1 > 12. Then

Aut(H) is an extension of C2 by PΣL2(pn) (that is, PSL2(pn) extended by field

automorphisms).

Thus for a Paley matrix H of order > 12, we have that A(H) ∼= PΣL2(pn) in its

natural action. We begin with an investigation of the natural action of PSL2(q) on

the projective line. We restrict attention to the case q > 11, q ≡ 3 mod 4 to avoid

the consideration of some exceptional small cases. (for example the exceptional

action of PSL2(11) on 11 points, the isomorphism PSL2(4) ∼= PSL2(5), etc.)

We recall that the affine plane over Fq is simply a two dimensional vector space

V over Fq. Now, observe that the points (0, 0) and (x, 1) determine a unique line in

V ; hence the lines passing through the origin in V are in bijection with the non-zero

elements of Fq. Henceforth, we identify the line through (0, 0) and (x, 1) with x. We

label the line 〈(1, 0)〉 by ∞, and denote by X = Fq ∪ {∞} this set of lines in V .

Lemma 4.16. The set X is closed under the induced action of GL2(q). The kernel

of this action consists of scalar matrices, and the image is PGL2(q).

Proof. First, GL2(q) fixes (0, 0), and by definition its action is linear, and so maps

lines to lines. It is easily verified that Fq ∪ {∞} is a complete and irredundant list

of the lines through the origin. A scalar matrix is easily seen to lie in the kernel.

Conversely, if M is in the kernel then M fixes every line setwise, and thus is seen to

be a scalar matrix.

60
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We describe the action of PGL2(q) on X. Consider the following matrix multi-

plication: (
a b

c d

)(
x

1

)
=

(
ax+ b

cx+ d

)
.

But the point (ax + b, cx + d) lies on a unique line in X, given by (ax+b
cx+d , 1), when

cx + d 6= 0. If cx + d = 0, then the image of x is ∞. Thus the action of PGL2(X)

is given by (
a b

c d

)
· x =

ax+ b

cx+ d

for any x ∈ X. The rules for the manipulation of ∞ are easily obtained by referring

to the action of GL2(q) on V . We observe that the action of PGL2(q) on X is

transitive.

Lemma 4.17. The stabiliser of a point in the action of PGL2(q) on X is isomorphic

to AGL1(q).

Proof. The stabiliser of ∞ has order q(q − 1). Observe that the matrices(
a b

0 1

)

with a 6= 0 stabilise ∞, are q(q− 1) in number, and are closed under multiplication.

Hence, they form the full stabiliser of a point. Observe that this is precisely the

group of affine transformations of a 1-dimensional vector space over Fq.

Since the action of AGL1(q) on Fq is sharply 2-transitive, we have shown that

PGL2(q) is in fact sharply triply transitive. We now consider PSL2(q).

Lemma 4.18. Up to isomorphism the group PSL2(q) is a (simple) subgroup of

PGL2(q) of index 2. Its action on X is 2-transitive, and the stabiliser of 2 points

has 2 orbits on the remaining points of X, consisting of quadratic residues and

quadratic non-residues respectively.

Proof. First, we observe that the determinant of a scalar matrix aI2 is necessarily a

quadratic residue. Now construct a homomorphism π : PGL2(q)→ 〈−1〉 such that

π(g) = 1 if and only if the determinant of a preimage of g in GL2(q) is a quadratic

residue. Then ker(π) = PSL2(q).
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Now, the action of PSL2(q) on X is transitive, and the stabiliser of a point is a

subgroup of index 2 in AGL1(q) (it is not ASL1(q)!), given by matrices of the form(
a2 b

0 1

)
.

This group remains transitive on X−{∞}. Now observe that the pointwise stabiliser

of {∞, 0} consists of matrices of the form(
a2 0

0 1

)
.

It is clear that this group has two orbits on the remaining points of X, consisting of

quadratic residues and non-residues respectively.

We observe that the action of PSL2(q) on the Paley matrix of order q+ 1 induces

a labelling of the rows of H with the elements of X. Without loss of generality, we

may label the initial row of H with ∞, in which case we see that the core of the

matrix is labelled by the elements of Fq, and that the stabiliser of two points has

two orbits on the remaining rows.

Finally, we observe that the Paley matrices of orders 4 and 8 are equivalent to the

Sylvester matrices at those orders. While they are developed from Paley difference

sets, their automorphism groups are of the type specified for the Sylvester matrices.

The Paley matrix of order 12 has additional automorphisms besides those given

by Kantor. Indeed in [27], Hall observes that all Hadamard matrices of order 12

are equivalent and demonstrates that a Hadamard matrix of order 12 has A(H)

isomorphic to the Mathieu group M12.

4.3.2 Sylvester Hadamard matrices

We have already encountered the Sylvester matrices in the proof of Theorem 4.2.

These matrices are named after Sylvester, who constructed them as the Kronecker

powers of the matrix (
1 1

1 −1

)
.

He also observed that the rows of such a matrix are orthogonal [73]. Indeed,

Sylvester’s construction seems to have been one of the motivations for Hadamard’s

work.
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Like the Paley matrices, the Sylvester matrices have a natural construction from

difference sets constructed from projective geometries. In this case, however, we fix

the field to be F2, and allow the dimension of the projective space to vary. We begin

with a well known theorem of Singer.

Theorem 4.19 (Singer, Theorem III.6.2, [5]). The group PGLn(q) contains a cyclic

subgroup of order qn−1
q−1 acting regularly on the points and hyperplanes of the projective

geometry PGn(q).

Now, we specialise to the case q = 2. Then the groups GLn(q), SLn(q), PΓLn(q)

and PSLn(q) etc. all coincide. The point-hyperplane geometry over PGn(2) has

parameters 2-(2n − 1, 2n−1 − 1, 2n−2 − 1). Combining Theorem 4.19 with Theorem

2.47, we see that the cyclic group of order 2n − 1 contains a (4t − 1, 2t − 1, t − 1)-

difference set. In fact we can describe this difference set explicitly.

Definition 4.20. Let Fq be a finite field, q = 2n. We define the trace function on

Fq to be the map x 7→
∑n−1

i=0 x
2i . The elements of F∗q of trace zero form a difference

set in F∗q . (See Theorem 2.1.1 of [64] for a proof.) Such a difference set is known

as a Singer difference set. A Singer design is the underlying symmetric 2-design

of a Singer difference set, and a Sylvester Hadamard matrix is a Hadamard matrix

developed from a Singer difference set.

We recall the following result.

Theorem 4.21 (Fundamental Theorem of Projective Geometry, Theorem 2.26 [2]).

Let F be any field, and n ≥ 3 a natural number. Then PΓLn(q) is the full automor-

phism group of the projective geometry PGn(q).

Now, from the description of a Singer design S on 2n − 1 points as a point-

hyperplane design, it is clear from Theorem 4.21 that Aut(S) = PSLn(2).

Observe that a line over F2 consists of 2 points. Hence in this special case, it

is possible to construct the affine geometry AGn(2) directly from PGn(2). To do

this, we add a new point, 0, which is incident with all (projective) hyperplanes,

and adjoin the translates of all of these hyperplanes. Notice that the hyperplanes

occur in complementary pairs Hi and H∗i , where every point of AGn(2) is incident

to exactly one of Hi and H∗i . Now, the ith column of the Sylvester matrix of order

2n has jth entry +1 if point j is incident with Hi, and −1 otherwise. Thus we

see that AGLn(2) has an induced action on the set of rows of H. In fact, this

action is faithful, and since AGLn(2) is maximal in S2n (see [54]), it follows that
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A(H) ∼= AGLn(2). By the proof of Theorem 4.2, the kernel of ν is a group acting

regularly on the hyperplanes of AGn(2), of order 2n+1. Thus we have the following

theorem.

Theorem 4.22 (p.258, [16]). Let H be a Sylvester Hadamard matrix of order 2n.

Then the full automorphism group of H is Z(Aut(H))× Cn2 oAΓLn(2).

In fact, it can be shown that a Hadamard matrix with 3-transitive automorphism

group is either a Sylvester matrix, or is of order 12. The proof is achieved by

constructing a rudimentary geometry from the blocks of a nontrivial 2-(v, k, λ) design

∆.

Definition 4.23. Let u and v be two points of ∆. Then the line through u and v

is the intersection of all blocks containing both u and v.

Trivially the cardinality of a line is bounded below by 2. An easy counting argu-

ment gives an upper bound on the cardinality of a line.

Lemma 4.24 (Lemma 2.23, [35]). The cardinality of a line of ∆ is bounded above

by b−λ
r−λ where b is the number of blocks in ∆ and r is the number of blocks incident

with a single point. This bound is achieved for a line l if and only if l meets every

block.

For a Hadamard 2-design, the upper bound of Lemma 4.24 is 3.

Definition 4.25. Three non-collinear points form a triangle. A plane is the inter-

section of all blocks containing a triangle.

The following theorem of Dembowski-Wagner characterises the designs that come

from projective planes.

Theorem 4.26 (Dembowski-Wagner, Theorem 2.24, [35]). Suppose that ∆ is sym-

metric. Then the following are equivalent:

• ∆ ∼= Pn(q) for some n ≥ 2 and prime power q, or ∆ is a projective plane.

• every line meets every block.

• every line contains v−λ
k−λ points.

• every plane is contained in the same number of blocks.
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We can now classify the Hadamard matrices with A(H) triply transitive. This

proof may be compared to Proposition 2 of [39], which arrives at the same conclusion

via arguments about primitive prime divisors of |A(H)|.

Theorem 4.27. Suppose that H is a Hadamard matrix such that A(H) is triply

transitive. Then either H is a Sylvester matrix or H is of order 12.

Proof. Let H be a Hadamard matrix with A(H) non-affine. Then by Theorem 4.7,

H is of order 12. (Neither PSL2(q), q > 11, or Sp6(2) on 36 points are triply

transitive.)

Suppose now that A(H) is affine. Thus H has order 2n for some n. Then the

underlying symmetric design S has the parameters of a projective space. Now if

ν : Aut(H)→ A(H) is not faithful, H is already a Sylvester matrix by Theorem 4.2.

So we assume that ν is faithful. In this case, Aut(S) is 2-transitive on the points of

S.

A line in S is uniquely determined by a pair of points: so Aut(S) has a single orbit

on lines. By Lemma 4.24 and Theorem 4.26, it suffices to show that some line in S
has length 3. This can be shown by elementary, but involved, counting arguments

on the number of blocks meeting a distinguished line in a single point. We refer to

the Theorem 12.2 of [45] for the full argument. Hence S is a projective space. By

Remark 2.58, the Hadamard matrix constructed from a symmetric design is unique

up to equivalence. So a Hadamard matrix with 3-transitive automorphism group is

either of order 12 or arises from a projective space. The latter case is a Sylvester

matrix by definition.

4.3.3 A classification of Hadamard matrices with A(H) doubly transitive

We give a detailed classification of the Hadamard matrices with A(H) non-affine

doubly transitive. Our main tool is Theorem 4.7, due to Ito.

We recall Burnside’s Theorem on the socle of a doubly transitive group (Theorem

2.11): a doubly transitive group is either of affine type and contains an elementary

abelian normal subgroup acting regularly, or it is almost simple. We consider only

the non-affine case. The affine case requires methods different to those developed

here and falls outside of the scope of this thesis. In light of Theorem 4.7, it is not

difficult to list all Hadamard matrices H with A(H) non-affine doubly transitive.

We consider each of the cases listed by Ito in turn: M12, Sp6(2) and PSL2(q). The

first case was considered by Marshall Hall.
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Lemma 4.28 (M. Hall, [27]). All Hadamard matrices of order 12 are (Hadamard)

equivalent, and for any such matrix H, A(H) ∼= M12 acting sharply 5-transitively.

The action of Sp6(2) in Theorem 4.7 is not its natural action on a 6 dimensional

F2-vector space; rather the stabiliser of a point is a maximal subgroup of index

36 isomorphic to S8. This is the only action of Sp6(2) that we will consider. In

this action, S8 acts primitively on the 35 remaining points. In [28], Marshall Hall

discusses (among other topics) the construction of Menon-Hadamard designs from

strongly regular graphs. One example given is the construction of a (36, 15, 6) design

having U4(2) as its automorphism group. Hall observes that the corresponding

Hadamard matrix has full automorphism group isomorphic to Sp6(2) in the action

described above. Then in [40], Ito and Leon construct a Hadamard matrix H of

order 36 with A(H) ∼= Sp6(2) as follows. Let ψ be a symplectic form on F6
2. Then

the set of vectors satisfying ψ(v, v) = 1 has cardinality 35 (see pp. 245-247 of [21]).

The stabiliser of a point in the action of O+
6 (2) on these vectors has three orbits.

Translates of the union of two of these orbits provide the blocks of a 2-(35, 17, 8)

design, from which a Hadamard matrix H with A(H) ∼= Sp6(2) is constructed. Ito

and Leon (wrongly) state that this matrix has not previously been considered in

the literature. They conjecture that up to equivalence, H is the unique Hadamard

matrix of order 36 with A(H) doubly transitive. We now observe that this is the

case.

Theorem 4.29. Suppose that H is a Hadamard matrix with A(H) ∼= Sp6(2) in its

doubly transitive action on 36 points. Then H is unique (up to Hadamard equiva-

lence).

Proof. By Theorem 4.2, Ker(ν) has order 2. Thus |Aut(H)| = 2 · |Sp6(2)| =

2, 903, 040. Now see Tables 8 and 9 of [8], where an exhaustive computer search

shows that there is a unique Hadamard matrix of order 36 with automorphism

group of order 2, 903, 040.

Remark 4.30. One may also prove uniqueness of the Hadamard matrix upon which

Sp6(2) acts as follows. By Theorem 4.8, |A(H) : A(S)| = 36. But Sp6(2) has a

unique conjugacy class of subgroups of index 36. So Aut(S) ∼= Sym(8).

Theorem 2 of [13] states that there are four symmetric 2-(35, 17, 8) designs with

automorphisms of order 7. One of these has S8 as its automorphism group; the

others have automorphism groups of order at most 420. By Remark 2.58, this gives

another proof of the uniqueness of H.
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This resolves the two sporadic cases of Ito. We consider now the case that

PSL2(pk) acts on the rows of H. (We refer the reader to Section 4.3.1 for a discus-

sion of this action. Also note that the proof below contains some forward references

to Chapter 5.)

Theorem 4.31. Let H be a normalised Hadamard matrix of order q+1, for a prime

power q ≡ 3 mod 4, q > 11. Then PSL2(q) in its natural doubly transitive action

is a normal subgroup of A(H) if and only if H is equivalent to a Paley matrix.

Proof. Suppose that PSL2(q) is a normal subgroup of A(H). Then the stabiliser

of a point in A(H) contains a subgroup of index 2 in AGL1(q). This contains a

normal elementary abelian subgroup R of order q acting regularly on the remaining

points. It is clear that R fixes a point in its action on columns. Hence, R is a regular

subgroup of Aut(S), where S is a symmetric design corresponding to H. Thus by

Theorem 2.47, H is developed from a difference set D in R. We show that D is

necessarily of Paley type: this guarantees that H is equivalent to a Paley matrix by

Remarks 2.58 and 2.48.

Consider A(H)1,2, the stabiliser of a point in A(H)1. This has two orbits on

the remaining rows, one labeled by quadratic residues and one by non-residues. By

Bruck’s characterisation of the multipliers of a difference set (Theorem 5.8), we have

that the quadratic residues are multipliers of D. Now, by Theorem 5.10, there exists

a translate of D fixed by every multiplier. This translate either consists entirely of

quadratic residues or of quadratic non-residues. In either case D is equivalent to a

Paley difference set.

Conversely, if H is of order q + 1 > 12 and H is equivalent to a Paley matrix, it

is clear by Theorem 4.15 that PSL2(q) EA(H).

The previous results yield the following classification.

Corollary 4.32. H is a Hadamard matrix such that A(H) is non-affine doubly

transitive if and only if one of the following holds.

• H is of order 12.

• H is in the unique equivalence class of Hadamard matrices of order 36 on

which Sp6(2) acts.

• H has order greater than 12 and is equivalent to a Paley matrix.
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Remark 4.33. The Hadamard matrices of order less than 12 are excluded from the

list of Corollary 4.32 because their automorphism groups are affine doubly transitive

rather than non-affine. Indeed, the Hadamard matrices of orders 4 and 8 are the

only Hadamard matrices which are simultaneously of Paley and Sylvester type.

We note that an unpublished paper [55] of Moorhouse classifies all of the complex

Hadamard matrices with doubly transitive automorphism groups. Our classification

agrees with his in the special case considered here.

4.4 Cocyclic development

We know from Theorem 4.12 that a cocyclic Hadamard matrix H developed from

a Paley-Hadamard difference set has A(H) doubly transitive. In this short section,

we describe all the groups over which the Hadamard matrices of Corollary 4.32 are

cocyclic. Recall that this can be achieved for any Hadamard matrix by using the

techniques discussed in Chapter 3. We consider the sporadic cases first. The next

two results were obtained using the computational techniques developed in [58] from

ideas due to de Launey (as per Chapter 3).

Lemma 4.34 ([58], Section 5.3). A Hadamard matrix of order 12 is cocyclic over

the alternating group A4, the dihedral group of order 12 and C2×C6, with extension

groups SL2(3), C3 oQ8 and C3 ×Q8 respectively.

The cocyclic Hadamard matrices of order 36 are classified in Chapter 3. The

Hadamard matrix of Ito and Leon is not contained in the classification. In fact the

Paley Type II matrix is the only cocyclic Hadamard matrix at this order with a

non-solvable automorphism group.

Lemma 4.35. Let H be in the unique equivalence class of Hadamard matrices of

order 36 with A(H) ∼= Sp6(2). Then H is not cocyclic over any group.

This leaves only the Paley matrices to consider. The groups over which a Paley

matrix is cocyclic have been described by de Launey and Stafford. This result is

deep, and relies on detailed knowledge about the finite near-fields, amongst other

things.

Theorem 4.36 ([18], Section 5). Let H be a Paley matrix of order q + 1. Then

H is cocyclic over the dihedral group of order q + 1, with dicyclic extension group.

There are additional extension groups only for q ∈ {3, 7, 11, 23, 59}.
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The additional extensions in Theorem 4.36 are described in Section 5 of [18]. The

matrices of orders 4, 8, 12 and 24 are also discussed in Chapter 5 of [58]. There is

just one additional extension group for the Paley matrix of order 60, namely SL2(5).

Corollary 4.37. Let H be a Hadamard matrix with A(H) non-affine doubly tran-

sitive. Then H is cocyclic if and only if H is of order 12 or H is equivalent to a

Paley matrix. In both cases all groups over which H is cocyclic and all extension

groups for H are known.

4.5 A classification of (4n− 1, 2n− 1, n− 1)-difference sets

with ‘transitive extensions’

In this section, we classify up to equivalence (in the sense of Definition 2.44) the

(4n− 1, 2n− 1, n− 1)-difference sets which correspond to the Hadamard matrices of

Corollary 4.32.

Suppose that H is a Hadamard matrix such that A(H) is non-affine doubly tran-

sitive. Let S be a symmetric 2-(4n − 1, 2n − 1, n − 1) design underlying H. By

Corollary 4.9, either H is of order 12 or Aut(S) ∼= A(H)1. In particular Aut(S)

is transitive on the points of S. Then by Theorem 2.47, the difference sets corre-

sponding to H are in bijection with the regular subgroups of A(H)1. Note that we

do not describe all difference sets in these groups (a listing of all difference sets in

elementary abelian groups is well beyond the bounds of existing techniques!), but

only those for which the corresponding Hadamard matrix H has A(H) non-affine

doubly transitive.

To summarise: for each of the doubly transitive groups identified by Ito, we clas-

sify the regular subgroups of a point stabiliser on the remaining points. We choose a

representative from each conjugacy class of regular subgroups and describe the dif-

ference sets in these groups which correspond to the Hadamard matrices of Corollary

4.32.

Lemma 4.38. Suppose that H is a Hadamard matrix of order 12. Let S be a

symmetric design corresponding to H. Then Aut(S) has precisely one conjugacy

class of regular subgroups, each of which contains the Paley difference set of that

order.

Proof. The stabiliser of a point in M12 is the simple group M11, but the automor-

phism group of S is PSL2(11). This group has a unique conjugacy class of regular
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subgroups. The First Multiplier Theorem (see Section 5.2, or Theorems VI.2.6

and VI.2.11 of [5]) allows us to settle this case by hand. We are searching for an

(11, 5, 2)-difference set in Z11, so 3 is a multiplier. That is, any difference set in

Z11 has a translate which is fixed by the automorphism x 7→ 3x. The orbits of this

automorphism are {1, 3, 4, 5, 9}, {2, 6, 7, 8, 10} and {0}. But the first orbit consists

precisely of the quadratic residues of F11, so is a Paley difference set. The second

orbit also forms a difference set, which is equivalent to the first under the inversion

automorphism.

It is easy to show that S8 does not contain a subgroup of order 35 (no element

of order 5 commutes with an element of order 7 in S8). Hence in its action on 35

points, S8 does not contain a regular subgroup.

Lemma 4.39. Suppose that H is a Hadamard matrix of order 36, and A(H) ∼=
Sp6(2) acting doubly transitively. Then H is not developed from any difference set.

Remark 4.40. Lemmas 4.35 and 4.39 may be compared to [60, Theorem 10].

By Corollary 4.32, all that remains to be considered are the Paley matrices. Let

H be the Paley matrix of order q + 1. Then A(H) ∼= PΣL2(q), by Theorem 4.15.

Then by Corollary 4.9, we see that a symmetric 2-design corresponding to the Paley

matrix of order q + 1 has a subgroup of index 2 in AΓL1(q) as its automorphism

group. Thus, our first task is to classify the regular subgroups of this automorphism

group. For convenience, we now state the main results of our investigations.

Theorem 4.41. Let H be the Paley matrix of order q + 1. Express q as pnp
e

for

a prime p, and n coprime to p. Then A(H)1 has e+ 1 conjugacy classes of regular

subgroups. One is normal and elementary abelian, the remainder are non-normal,

non-abelian of exponents p2pt for 0 ≤ t ≤ e− 1.

The difference sets in the abelian regular subgroups are equivalent to the Paley

difference sets. A description of the non-abelian difference sets corresponding to

the Paley matrices is given in the proof of Theorem 6.6. This will complete the

description of all difference sets for which the corresponding Hadamard matrix H

has A(H) non-affine doubly transitive.

Corollary 4.42. There exists a difference set corresponding to a Hadamard matrix

H with A(H) non-affine doubly transitive if and only if H is a Paley matrix. All

such difference sets are known.

The rest of this section is devoted to a proof of Theorem 4.41.
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4 Cocyclic Hadamard matrices from difference sets

4.5.1 The regular subgroups of AΓL1(q)

Let K/L be a Galois field extension of degree n, with Galois group G. Then the

Normal Basis Theorem states that there exists an element of ω of K such that ωG is

a basis for K as an L-vector space. Recall that extensions of finite fields are always

Galois, with cyclic Galois group.

We will consider Fq as a field extension of Fp for the moment. Extensions of

intermediate fields are obtained by replacing the Frobenius automorphism σ by a

suitable power, and will be considered later. We now determine the regular sub-

groups of AΓL1(q) in its natural action.

Lemma 4.43. Suppose that q = pn and p does not divide n. Then the only regular

subgroup of AΓL1(q) is elementary abelian and normal.

Proof. The subgroup T consisting of the maps x 7→ x + a for a ∈ Fq is a regular

normal subgroup of AΓL1(q) and is easily seen to be elementary abelian. But a

Sylow p-subgroup of AΓL1(q) is of order q; hence T is the unique subgroup of order

q in AΓL1(q).

We consider now the case that q = pp. (The argument for the general case is

almost identical, and is given later.) In this case, a Sylow p-subgroup of AΓL1(q)

has order pp+1, and a regular subgroup has order pp. By the Normal Basis Theorem,

we may consider Fq as an Fp-vector space V of dimension p, on which the Frobenius

automorphism σ acts by cyclic permutation of co-ordinates. We fix some notation:

{v1, v2, . . . , vp} is a basis for V , AΓL1(q) = 〈a1, a2, . . . , ap, β, σ〉 where the action of

each of the generators is given by

vai = v + vi, vβ = bv, vσi = vi+1,

with subscripts interpreted modulo p, b is a primitive element of F∗q and the action

of σ is extended linearly to all of V = Fq. The subgroup G = 〈a1, . . . , ap, σ〉 is a

Sylow p-subgroup of AΓL1(q). We can determine a presentation of G with relative

ease:

G = 〈a1, . . . , ap, σ | api = σp = 1, [ai, aj ] = 1, aσi = ai+1, 1 ≤ i, j ≤ p〉 .

Remark 4.44. We observe that the prime subfield of Fq is fixed by σ; it is the

subspace spanned by v1 + v2 + · · ·+ vp.
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Lemma 4.45. A non-trivial element of G is either fixed-point-free, or is conjugate

to an element of 〈σ〉 and fixes p points.

Proof. The element σ centralises p2 elements of G (those of the form ax1 · · · axpσt), so

|NG(〈σ〉)| = p2 and the number of distinct conjugates of 〈σ〉 in G is pp+1/p2 = pp−1.

Now σ fixes the prime subfield, so a non-trivial element in the union U of these

conjugates fixes at least p points in V . Note that |U | = pp−1(p − 1) + 1. Since

G is transitive on V , it then follows from the Cauchy-Frobenius formula that each

non-trivial element of U fixes precisely p points, and that G \ U is the set of fixed-

point-free elements of G.

Definition 4.46. Let E be a multiplicatively written elementary abelian group of

order pk, with fixed minimal generating set {e1, . . . , ek}. Then the weight of an

element of E is given by

w(ex11 · · · e
xk
k ) =

k∑
i=1

xi mod p (0 ≤ xi ≤ p− 1).

Definition 4.47. Each element g of G may be expressed uniquely in the form aσt

for some a ∈ 〈a1, . . . , ap〉 and 0 ≤ t ≤ p− 1. Define the weight w(g) of g to be w(a).

Also define the class of g to be t.

Lemma 4.48. The weight and class of an element of G are invariant under conju-

gation by G.

Proof. Each quantity is preserved under conjugation by the generators of G.

Lemma 4.49. All conjugates of σ have weight 0. Furthermore, an element of G of

weight zero is conjugate to σt if and only if it has class t.

Proof. The first part is immediate from Lemma 4.48. For the second, it suffices to

show that an element of weight zero and class t is conjugate to σt.

By Lemma 4.45, σt has pp−1 conjugates. Each of these is an element of weight

zero and class t. But there are precisely pp−1 elements in G with this property. The

result follows.

By definition 〈a1, . . . , ap〉 acts transitively on V ; hence it is a regular subgroup of

G. As the next theorem shows, this is the only abelian regular subgroup.

Theorem 4.50. Let q = pp. Then AΓL1(q) has two conjugacy classes of regular

subgroups. In particular, all non-abelian regular subgroups are AΓL1(q)-conjugate.
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Proof. Consider the subgroup

Tk = 〈aiσk, 1 ≤ i ≤ p〉

of G. Note that Tk is abelian if and only if k = 0. We claim that Tk = {aσk·w(a) |
a ∈ T0}. To see this, let g = aσkt and h = bσks for a, b ∈ T0 have weights t, s

respectively; then

gh = aσktbσks = abσ
−kt
σk(t+s)

has weight w(a) + w(bσ
−kt

) = t + s and class k(t + s). Since Tk is generated by

elements of weight 1 and class k, this implies by induction that the class of g ∈ Tk
is k · w(g), as required.

We show that each Tk is a regular subgroup of G. Let g ∈ Tk, g 6= 1. If w(g) 6= 0

then g is fixed-point-free by Lemmas 31 and 34. Suppose that w(g) = 0. Then the

class of g is zero by the previous paragraph. By Lemmas 31 and 35, we see once

again that g is fixed-point-free. But Tk has order pp and acts on a set of this size:

it is regular.

In the next part of the proof we establish that the Tk are the only regular subgroups

of G. Since a regular subgroup R has index p in G, R must contain the normal

subgroup

K = 〈a1a
−1
2 , a2a

−1
3 , . . . , ap−1a

−1
p 〉

of G that lies in every Tk. Note that |K| = pp−1, K consists of all elements of weight

0 in T0, and T0 = ∪p−1
i=0 a

i
1K. If R 6= T0 then R = 〈as1σt,K〉 for some 1 ≤ s, t ≤ p− 1.

But as1σ
t = as1σ

rs where r ≡ ts−1 mod p, so that R = Tr.

Now choose any r, 1 < r ≤ p− 1. Let c ≡ r−1 mod p. Then there exists γ ∈ 〈β〉
such that vγ = cv for all v ∈ V . The equalities

vγσi = (cvi)
σ = cvσi = c(vσi ) = vσγi

and

vγ
−1aiγ = (c−1v + vi)

γ = v + cvi = va
c
i

imply that σγ = σ and aγi = aci . Therefore T γ1 = 〈aciσ, 1 ≤ i ≤ p〉 = Tr.

Finally, since a regular subgroup ofAΓL1(q) is contained in some Sylow p-subgroup,

and (as we just showed) all non-abelian regular subgroups of the Sylow p-subgroup

G are conjugate, all non-abelian regular subgroups of AΓL1(q) are conjugate.

Corollary 4.51. Suppose that F is a finite field of characteristic p and that K is
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an extension of F of finite index. Then AΓLF (K), the group of semilinear transfor-

mations of K fixing F , contains one conjugacy class of regular subgroups for each

power of p dividing the degree of the extension (including p0).

Proof. In the case that K is an extension of degree mp where p - m, it suffices

to consider K as an extension of degree p over a suitable intermediate field. The

argument in the proof of the previous theorem holds with minor modifications.

Now we consider field extensions of degree pa. Here we construct a tower of

extensions, each of degree p. It is then seen that one additional conjugacy class of

regular subgroups is obtained at each level of the tower.

We recall that the automorphism group of a symmetric Paley 2-design S is of

index 2 in AΓL(1, q). So its Sylow p-subgroups are the same as those of AΓL(1, q).

Thus the conjugacy classes of regular subgroups of Aut(S) are in bijection with those

of AΓL(1, q). This completes the proof of Theorem 4.41.
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5 Non-cocyclic Hadamard matrices from

difference sets

In this chapter we apply the classification result Corollary 4.32. We decide when the

Hadamard matrices developed from twin prime power and sextic residue difference

sets are cocyclic. This occurs in precisely one case in each family. These results

are original; the result on twin prime power Hadamard matrices was obtained in

collaboration with Richard Stafford, and has appeared in print in [60]. Thus we

provide two presumably infinite families of non-cocyclic Hadamard matrices in this

chapter. (These constructions rely on the existence of infinitely many twin prime

powers and the existence of infinitely many prime solutions to the polynomial x2 +

27 over the integers respectively. Both of these are well known open problems in

number theory.) We begin with a brief review and further discussion of the theory

of (4t− 1, 2t− 1, t− 1)-difference sets.

5.1 Paley-Hadamard difference sets

In Lemma 2.57 and Remark 2.58 we described the relation between a symmetric

2-(4t − 1, 2t − 1, t − 1) design S and the corresponding Hadamard matrix. Since a

difference set corresponds to a regular subgroup of Aut(S), we have a relationship

between Paley-Hadamard difference sets (i.e. (4t − 1, 2t − 1, t − 1) difference sets)

and Hadamard matrices.

There are four classical families of Paley-Hadamard difference sets1; we describe

each family in turn.

Definition 5.1. We recall from Definition 4.20 that the elements of trace zero in

F∗2n form a Singer difference set.

The Singer difference sets correspond to Sylvester Hadamard matrices. We refer

the reader to Section 4.3.2 for a discussion of the full automorphism group of a

1By ‘classical’ we mean the families of difference sets known in the 1960s as discussed in [4] and
[29]. See also Remark VI.8.4 of [5].
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5 Non-cocyclic Hadamard matrices from difference sets

Sylvester matrix, and for the full automorphism group of its underlying 2-design.

We confine ourselves to observing that the cyclic regular subgroups of Aut(S) ∼=
PSLn(2) are called Singer cycles, and that they are all conjugate. Difference sets in

Singer cycles of arbitrary projective geometries are said to have classical parameters

(see Chapter 3 of [64] for example), and are among the best understood families of

difference sets.

The Paley difference sets (see Definition 4.13) correspond to the (Type I) Paley

matrices as defined in Section 4.3.1. The automorphism groups of the Paley matri-

ces and their underlying 2-designs are well known, and are given in Section 4.3.1.

In contrast, the following difference sets have received rather less attention in the

literature.

By twin prime powers, we mean a pair of odd positive integers, q and q + 2, each

of which is a prime power. We note that twin prime power difference sets are a

generalisation of twin prime difference sets, which were seemingly first discovered by

Gruner in 1939. As Baumert observes, these difference sets ‘seem to belong to that

special class of mathematical objects which are prone to independent rediscovery’.

They seem to be well understood, with Baumert giving a detailed description of

their properties and generalisations in [4, pp. 131-142].

Definition 5.2. Let q and q + 2 be twin prime powers, and let 4n − 1 = q(q + 2).

Denote by χ the standard quadratic residue function. Then

{(g, 0) | g ∈ Fq}
⋃
{(g, h) | g ∈ Fq, h ∈ Fq+2, χ (g)χ (h) = 1}

is a (4n − 1, 2n − 1, n − 1)-difference set in (Fq,+) × (Fq+2,+). We refer to such

a difference set as a TPP difference set. (Theorem VI.8.2 of [5] proves that this

construction yields a difference set.)

We now come to the last of our classical families of difference sets.

Definition 5.3. Let p be a prime of the form x2 + 27 for some integer x (there are

no non-trivial prime powers of this form for x 6= 0). Denote by C the multiplicative

group of Fp. Let U be the unique subgroup of index 6 in C and denote by µ a

preimage in Fp of a generator of C/U . Then U ∪ µU ∪ µ3U forms a difference set in

(Fp,+), generally known as a Hall sextic residue difference set or HSR difference set

for short. (Theorem 11.6.7 of [29] proves the existence of these difference sets, and

characterises them, together with the Paley difference sets, as the only ones having

the sextic residues as multipliers.)
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5 Non-cocyclic Hadamard matrices from difference sets

To our knowledge, the automorphism groups of the underlying symmetric 2-

designs have not been described for either the TPP difference sets or the HSR dif-

ference sets. Nor was it known if either family corresponded to cocyclic Hadamard

matrices. In fact, we quote a research problem of Horadam.

Problem 5.4 (Research Problem 39, [33]). Are the Hadamard matrices of order

≥ 36, constructed from twin prime power difference sets, cocyclic?

We resolve this problem in the remainder of this chapter. We also answer the

same question for the HSR difference sets, completing the analysis of the classical

families of Paley-Hadamard difference sets.

Remark 5.5. We note that all of these families give rise to Hadamard matrices of

order 4t where one of the following hold:

• t = 2n for some n. A difference set of this type has classical parameters.

• 4t− 1 is a prime power. A difference set of this type has prime power param-

eters.

• 4t− 1 = (k + 1)(k − 1) where k + 1 and k − 1 are prime powers. A difference

set of this type has TPP parameters.

Note that a HSR difference set has prime power parameters, and that prime power

and classical parameters coincide precisely at Mersenne primes. It is conjectured

that every Paley-Hadamard difference set has parameters of one of the listed types.

(See [24] for an overview of the cyclic case.) In each case, there can exist multiple

inequivalent difference sets of the same type. In some cases, infinite families of

inequivalent difference sets are known with the same parameters.

5.2 Multipliers and cyclotomy

We introduce some tools from the theory of difference sets which will be needed

later in this chapter. The material in this section is not new, but its presentation

is somewhat non-standard. The standard exposition of the theory of multipliers

is normally given in terms of abelian groups. Indeed many important results on

multipliers rely on the isomorphism between an abelian group and its character

group, and then use algebraic number theory to derive their conclusions. Such an

approach is not valid with non-abelian groups. We give our exposition in terms of
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certain automorphisms of the underlying symmetric design of a difference set. First

we fix some notation.

Let D be a difference set in a finite group G, and let S be its underlying symmetric

design, as in Theorem 2.47 and its proof. Then the rows of S are labelled by the

elements of G, and G acts regularly via x 7→ xg, and G acts regularly on the blocks

of S, which are of the form Dg for g ∈ G.

Definition 5.6. The (right) multiplier group of D, M(D), is the subgroup of Aut(G)

consisting of automorphisms φ such that Dφ = Dg for some g ∈ G. The elements of

M(D) are called multipliers of D.

Remark 5.7. We warn the reader that our definition of a multiplier is nonstandard!

In particular, it falls halfway between the standard definitions. Let G be a group

containing a difference set D, and let φ ∈ Aut(G). Hall ([29, Section 11.4]) defines

a multiplier for an abelian group as in Definition 5.6: an automorphism of the

group which induces an automorphism of the underlying symmetric design. By

Hall’s definition in the nonabelian case, φ is a multiplier of D if Dφ = gDh for some

g, h ∈ G. Our definition then coincides with his definition of a right multiplier. Hall’s

multipliers need not, in general, be automorphisms of the underlying symmetric

design. Since this is the primary case in which we are interested, we define our

multipliers in those terms.

Theorem 5.8 (Theorem VI.2.18, [5]). Let S be the underlying symmetric design

of a difference set D. Then, identifying G with its right regular representation in

Aut(S), we have that M(D) ∼= NAut(S)(G)/G.

The multiplier groups of certain well known families of difference sets have been

determined. We will need the following result in later sections.

Theorem 5.9 (Proposition 3.1.1, [64]). Let D be a Singer difference set. Then the

only multipliers of D are the powers of 2.

The following result is of fundamental importance in the theory of difference sets.

Note that we do not require that the group G is abelian.

Theorem 5.10 (Theorem VI.2.19, [5]). Let D be a difference set in G and let

H ≤M(D). Suppose that |H| is coprime to |G|. Then there exists a translate of D
which is fixed by every multiplier in H.

Theorem 5.10 states that, up to equivalence, D is the union of H-orbits of G.

This result often allows us to construct difference sets with relative ease, given some

suitable subgroup of H of M(D).
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Example 5.11. As a trivial example, we observe that the Paley difference sets

have the quadratic residues as multipliers. It is easily seen that they are the only

non-trivial difference sets in (Fq,+), q ≡ 3 mod 4, with this property. Suppose

that D is a non-trivial difference set in (Fq,+) (so 1 ≤ |D| ≤ q−1
2 ) for which H =〈

x2 | x ∈ F∗q
〉
≤ M(D). Observe that Theorem 5.10 applies, since |H| = 2t − 1 and

|G| = 4t−1 are coprime. Thus there exists a translate of D, D+k say, which is fixed

by H. Now, if D+ k contains a quadratic residue, it contains all quadratic residues,

and if it contains a quadratic non-residue, then it contains all the quadratic non-

residues. Thus D + k either consists entirely of quadratic residues, or of quadratic

non-residues. In either case D is equivalent to a Paley difference set.

The theory of cyclotomy is essentially a study of generalisations of the Paley

difference sets. The main question of the theory is the determination of necessary

and sufficient conditions on a prime power q for the eth powers in Fq to form a

difference set in (Fq,+). One may modify this problem to consider unions of cosets

of eth powers, or the eth powers with 0, etc. There is also a theory of generalised

cyclotomy, which considers more generally difference sets in direct sums of additive

groups of fields. The general reference for this material is the monograph of Storer

[72].

Definition 5.12. Let Fq be a finite field, q = ef + 1, and let α be a primitive

element of Fq. Then the (non-trivial) eth powers of Fq are precisely those elements

of Fq which lie in the unique subgroup U0 of index e and order f in F∗q .
We denote by (i, j)e the number of solutions in Fq to the equation

αs + 1 = αt

where s ≡ i mod e and t ≡ j mod e. Then {(i, j)e | 0 ≤ i, j ≤ e} is the set of

cyclotomic numbers of Fq of order e.

Necessary and sufficient conditions for cosets of the eth powers of Fq to form a

difference set can be described entirely in terms of the cyclotomic numbers of order e.

We restrict ourselves to listing some basic identities obeyed by cyclotomic numbers.

Proofs of these claims may be found on pages 177− 178 of [29].

Theorem 5.13. The eth cyclotomic numbers of Fq obey the following identities.

• (i, j)e = (i+ k, j + k)e

• (i, j)e = (−i, j − i)e

79



5 Non-cocyclic Hadamard matrices from difference sets

•
∑e−1

j=0(i, j) = f − ni where n0 = 1 if f is even, n e
2

= 1 if f is odd, and ni = 0

otherwise.

We note in particular that the Paley difference sets and HSR difference sets are

most easily constructed via cyclotomy, while the TPP difference sets are a result of

generalised cyclotomy.

Since both the Paley difference sets and HSR difference sets are formed from

cosets of the sextic residues, it is clear that both families have the sextic residues as

multipliers. The following result of Hall is far less trivial.

Theorem 5.14 (Theorem 11.6.7, [29]). Suppose that D is a difference set in an

elementary abelian group of order q ≡ 7 mod 12 which admits the sextic residues as

multipliers. Then either D is equivalent to a Paley difference set, or D is equivalent

to a HSR difference set.

In the following result, note that the assumption that there exists a HSR difference

set means that we may assume that both difference sets are contained in a cyclic

group of prime order p ≥ 31.

Lemma 5.15. Let D1 and D2 be Paley and HSR difference sets in (Fp,+) respec-

tively. Then D1 and D2 are inequivalent.

Proof. With the notation of Definition 5.3, we have D1 = U ∪ µ2U ∪ µ4U and

D2 = U ∪ µU ∪ µ3U .

We must show that there are no a, b ∈ Fp such that D2 = aD1− b, or equivalently

b−1D2 + 1 = ab−1D1. But observe that ab−1D1 = ±D1 depending on whether or

not ab−1 is a quadratic residue. Likewise, b−1D2 remains a union of cosets of U :

b−1D2 = µiU ∪ µi+1U + µi+3U say.

Suppose that ab−1 is a quadratic residue. Then, denoting the cyclotomic number

(i, j)6 by (i, j), we need only show that (i, 0) + (i, 2) + (i, 4) + (i+ 1, 0) + (i+ 1, 2) +

(i+ 1, 4) + (i+ 3, 0) + (i+ 3, 2) + (i+ 3, 4) 6= 0, p−1
2 . Now, applying the identities of

Theorem 5.13, we see that

(p− 1)

6
≤ (i, 1) + (i, 3) + (i, 5) +

5∑
j=0

(0, j) ≤ 2(p− 1)

6
.

If ab−1 is a non-residue, it suffices to replace i by i + 1 throughout. The argument

is then identical. Thus (p−1)
6 ≤ |D2 ∩ aD1 − b| ≤ 2(p−1)

6 for any a ∈ F∗p, b ∈ Fp. The

result follows.
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Lemma 5.15 is a special case of Theorem 5.21, which is given as a remark both

by Baumert ([4], p. 91), and by Beth, Jungnickel and Lenz ([5], Remark VI.8.4(a)).

We are not aware of a proof in the literature, so we conclude this section with our

own proof. We will require the following number theoretic results.

Theorem 5.16 (Zsigmondy). Let a, b and n be positive integers such that (a, b) = 1.

Then there exists a prime p with the following properties:

• p | an − bn,

• p - ak − bk for all k < n,

with the following exceptions: a = 2, b = 1, n = 6; and a+ b = 2k, n = 2.

Corollary 5.17. The number 22n− 1 is not a product of twin prime powers, unless

n = 2 or n = 3.

Proof. Assume 22n − 1 is a product of twin prime powers:

22n − 1 = (2n + 1)(2n − 1) = ps1p
r
2.

Without loss of generality, ps1 = 2n − 1. There are two cases to consider: either

2n ≡ 1 mod 3, or 2n ≡ 2 mod 3.

In the first case, p1 = 3. Then we apply Zsigmondy’s theorem to the equation

2n − 1 = 3s, to obtain n = 2 and s = 1.

In the second case, p2 = 3, and we have 3r − 1 = 2n. Zsigmondy’s theorem gives

us that r = 1 or r = 2. The first of these is a vacuous solution as it gives p1 = 1.

The second gives n = 3.

Theorem 5.18 (Mordell, [56]). The only solutions of the Diophantine equation

2n = x2 + 7 are n = 3, 4, 5, 7, 15.

Corollary 5.19. Suppose that p = 2n−1 is a Mersenne prime satisfying p = x2 +27

for some positive integer x. Then p ∈ {31, 127, 131071}.

Proof. By Theorem 5.18, the only solutions to the equation 2n = 4x2 + 28 occur

when n ∈ {5, 6, 7, 9, 17}. But of these, the only ones such that p = 2n − 1 is prime

are n ∈ {5, 7, 17}.

We use these number theoretic results to determine necessary and sufficient con-

ditions for the three parameter types described in Remark 5.5.
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Lemma 5.20. • The classical and prime power parameters coincide at Mersenne

primes.

• The classical and TPP parameters coincide only for 4t− 1 ∈ {15, 63}.

• The prime power and TPP parameters do not overlap.

Proof. • 2n− 1 is a prime power if and only if it is prime. For suppose n is odd:

then 3 | 2n − 1, so 3α = 2n − 1. An application of Theorem 5.16 forces n = 2.

Otherwise, n = 2m is even, in which case pα = (2m − 1)(2m + 1). Assuming

that this factorisation is non-trivial leads to a contradiction. Thus, classical

and prime power parameters overlap precisely at Mersenne primes.

• This follows immediately from Corollary 5.17.

• 4t − 1 cannot be simultaneously a prime power and a product of twin prime

powers.

We now give the main inequivalence result.

Theorem 5.21. The four classical families of difference sets are pairwise inequiv-

alent, with the following exceptions:

• The TPP and Singer families coincide for 4t− 1 = 15.

• The HSR and Singer families coincide for 4t− 1 = 31.

• The Paley and Singer families coincide for 4t− 1 ∈ {3, 7}.

Proof. It is clear that for each family of difference sets and for any choice of t, there

exists at most one equivalence class of (4t− 1, 2t− 1, t− 1)-difference sets.

We established when the parameters of the difference sets overlap in Lemma 5.20;

it is clear that such an overlap is necessary for difference sets from distinct families

to be isomorphic. We deal with each case in turn.

• The affine and TPP parameters overlap if and only if 4t−1 = 15 or 4t−1 = 63.

But the affine and TPP difference sets in groups of order 63 lie in C9×C7 and

C2
3 × C7 respectively, and as such are non-isomorphic.

• The prime power and TPP parameters never overlap.
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• Classical and prime power parameters: these overlap at a Mersenne prime,

and there exists a Paley difference set for every such prime. By Corollary

5.19, there exists a HSR difference set with affine parameters if and only if

4t− 1 ∈ {31, 127, 131071}.

Observe that if D1 and D2 are equivalent difference sets in G then by Theorem

5.8 M(D1) and M(D2) are conjugate in Aut(G). We consider the orders of

the multiplier groups of the Singer, Paley and HSR difference sets to establish

inequivalence results.

The multiplier group of the Singer difference set in F∗2n consists only of the

powers of 2 by Theorem 5.9, and so has order n. On the other hand, the

multiplier groups of the Paley and HSR difference sets contain the quadratic

and sextic residues respectively. Thus if they occur as difference sets in (Fp,+)

with p = 2n − 1, they have orders at least 2n−2
2 and 2n−2

6 respectively.

We solve 2n−2
2 ≤ n, to find that the Singer and Paley families can coincide

only if n ≤ 3. So the Singer and Paley families can coincide only for 2n ≤ 8.

Similarly, the Singer and HSR families can coincide only if 2n−1 ≤ 3n+1, which

implies that n ≤ 5. But since the smallest non-trivial HSR difference set occurs

in the cyclic group of order 25−1, this is the only possible equivalence between

HSR and Singer difference sets.

It may be verified computationally that the cases listed in the theorem are in fact

equivalent. This completes the proof.

5.3 Two families of non-cocyclic Hadamard matrices

We recall the following consequence of Lemmas 4.11 and 4.10.

Theorem 5.22. Let H be a cocyclic Hadamard matrix developed from a difference

set. Then A(H) is doubly transitive.

Remark 5.23. We have shown in Sections 4.3.1 and 4.3.2 that the Paley and Sylvester

matrices have 2-transitive automorphism groups. It is well known that both of these

families of Hadamard matrices are cocyclic; see Sections 17.3 and 21.1 of [16], for

example.

Having prepared the ground in Chapter 4 and Section 5.1, our results here are

pleasingly straightforward. Essentially, our proofs proceed as follows: A(H) is dou-

bly transitive by Theorem 5.22. We use the classification of Corollary 4.32 to show
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5 Non-cocyclic Hadamard matrices from difference sets

that A(H) can only be affine doubly transitive. Then we use number theoretic argu-

ments as in the proof of Theorem 5.21 to reduce the possibilities for the affine case

to a finite list, with which we deal by ad hoc methods.

Theorem 5.24. Let H be a TPP-Hadamard matrix of order 4t. Then H is cocyclic

if and only if t = 4.

Proof. Suppose that H is cocyclic. Then Theorem 5.22 applies.

The Hadamard matrices with A(H) non-affine are given in Corollary 4.32. But

by Lemma 4.39 and the the fact that the Paley and TPP parameters never overlap,

no matrix on the list of Corollary 4.32 is developed from a TPP difference set.

So A(H) is affine. Then by Corollary 5.17, 4t = 16, or 4t = 64. If 4t = 16,

then H is equivalent to a Sylvester matrix by Theorem 5.21. We computed the

automorphism group of the TPP-Hadamard matrix of order 64 in Magma, and

found that it is not cocyclic.

Theorem 5.24 provides a complete solution to Horadam’s Research Problem 39.

We now consider the HSR difference sets.

Theorem 5.25. Suppose that H is a HSR-matrix of order p+1. Then H is cocyclic

if p = 31, and possibly if p = 131071, but not otherwise.

Proof. Suppose that H is cocyclic. Then Theorem 5.22 applies.

In the non-affine case, by Corollary 4.32 and Lemma 4.39 again, and the fact

that 12 6= x2 + 27 for any integer x, H must be equivalent to a Paley matrix. By

Theorem 4.41, the automorphism group of the underlying symmetric 2-design of the

Paley matrix of order p+1 has a unique conjugacy class of regular subgroups. Then

Lemma 5.15 supplies a contradiction.

In the affine case, by Corollary 5.19, the order of H is 32, 128 or 131072. By

Theorem 5.21, the HSR-matrix of order 32 is equivalent to the Sylvester matrix of

that order, and so is cocyclic. By direct computation in Magma, the HSR-matrix of

order 128 does not have a transitive automorphism group, and so is not cocyclic.

We conclude with an application of the classification of doubly transitive permu-

tation groups to settle the remaining order 217 in Theorem 5.25.

Lemma 5.26. The HSR-matrix H of order 131072 is not cocyclic.

Proof. First, we prove that A(H) is non-solvable. The sextic residues in F217−1 are

multipliers of the difference set corresponding to H. By Theorem 5.8, and Lemmas

2.59 and 4.3, A(H) contains a subgroup of order 217−2
6 .
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5 Non-cocyclic Hadamard matrices from difference sets

By Theorem 2.20, a solvable doubly transitive group of degree 217 is a subgroup

of AΓL1(217). But this has order 17(217)(217 − 1), which is not divisible by 217−2
6 .

So the automorphism group of H is non-solvable. By Theorem 2.21, there are only

three infinite families of doubly transitive affine groups, and two of these are easily

dispatched: both G2(q) and Sp2n(q) act on even dimensional vector spaces. Thus

if A(H) is doubly transitive then A(H)1 contains SL17(2) as a normal subgroup.

Recall that SLn(2) ∼= PGLn(2) is itself doubly transitive. Hence as a transitive

extension of A(H)1, A(H) is triply transitive. But by Theorem 4.27, a Hadamard

matrix with a triply transitive automorphism group of degree > 12 is equivalent to

a Sylvester Hadamard matrix. All Singer subgroups of PSL2(17) are conjugate; but

this yields a contradiction of Theorem 5.21.
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6 Skew Hadamard difference sets

We have described methods by which one may test if a given Hadamard matrix

H is cocyclic, and whether H is developed from a difference set. These methods

were used in Chapter 4 to derive a complete list of Hadamard matrices with A(H)

non-affine doubly transitive. With one exception these matrices are Paley matrices.

The exception is of order 36 and is neither cocyclic nor developed from a difference

set. In this chapter we show that a difference set corresponding to a Paley matrix

is necessarily equivalent to a skew Hadamard difference set. We then show that a

Hadamard matrix developed from a skew Hadamard difference set is cocyclic if and

only if it is equivalent to a Paley matrix. This results in a description of a new

3-parameter family of skew Hadamard difference sets. We conclude the thesis with

a number of open questions arising from our work.

6.1 Skew Hadamard difference sets

Definition 6.1. Let D be a (v, k, λ)-difference set in G. Then D−1 = {d−1 | d ∈ D}
is also a (v, k, λ)-difference set in G. We say that D is skew if

∣∣D ∩D−1
∣∣ = 0 and

G = D ∪D−1 ∪ {1}.

The following lemma is a trivial consequence of Definition 6.1.

Lemma 6.2. Let D be a skew difference set in G. Then D is a Paley-Hadamard

difference set.

Proof. Partition G as D ∪D−1 ∪ {1}, and set k = |D|. It is clear that |G| = 2k + 1.

Counting in two different ways the number of times each non-identity element of G

is represented in the form did
−1
j , we have

λ(2k) = k(k − 1).

So λ = k−1
2 . Observing that λ is a positive integer and making the substitution

t− 1 = k−1
2 , we have that D is a (4t− 1, 2t− 1, t− 1)-difference set, as required.
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6 Skew Hadamard difference sets

In light of Lemma 6.2, the terms ‘skew’ and ‘skew Hadamard’ are interchangeable

when referring to difference sets. Both are widespread in the literature. Skewness is

a strong condition to impose on a difference set and it implies several non-existence

results.

Theorem 6.3 ([4], Theorem 4.15). The only skew difference sets in cyclic groups

are the Paley difference sets in groups of prime order.

For many years the Paley difference sets were the only known examples of skew

difference sets, and it was conjectured that they were the only examples. Recently

Ding and Yuan [20] used Dickson polynomials to construct new skew difference sets

in the additive groups of F35 and F37 . They showed that these difference sets are

inequivalent to the Paley ones. They conjectured that their construction produces

inequivalent difference sets for all elementary abelian groups of order 32n+1. This

paper revitalised the study of skew Hadamard difference sets: recent results of Feng

[22] give a construction for such difference sets in non-abelian groups of order p3.

Muzychuk [57] goes even further: he shows that there are exponentially many equiv-

alence classes of skew Hadamard difference sets in elementary abelian groups of order

q3. In the next section we construct the first triply infinite family of skew differ-

ence sets inequivalent to the Paley family. These appear to be the first known skew

difference sets in non-abelian p-groups of unbounded exponent.

6.2 A new construction of skew Hadamard difference sets

We recall for the last time that a (v, k, λ)-difference set corresponds to a regular

subgroup of the automorphism group of a symmetric 2-(v, k, λ) design. One direction

of the following lemma is stated in Remark VI.8.24 of [5].

Lemma 6.4. Let G be a group containing a difference set D, and let M be an

incidence matrix of the underlying 2-design. Set M∗ = 2M − J = Dev(D). That is,

M∗ = [χ(gig
−1
j )]gi,gj∈G

where the ordering of the elements of G used to index rows and columns is the same,

and where χ(g) = 1 if g ∈ D and −1 otherwise. Then M∗ + I is skew-symmetric if

and only if D is skew Hadamard.

Proof. Suppose that (M∗ + I)> = −M∗ − I. The elements of D are precisely

the gi for which χ(gi) = 1. But by skew-symmetry of M∗ + I we obtain that
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6 Skew Hadamard difference sets

χ(1g−1
i ) = −χ(gi1

−1), so that gi ∈ D if and only if g−1
i /∈ D. Hence D is skew as

required.

In the other direction, observe that

(M∗)> =
[
χ(gig

−1
j )
]>
gi,gj∈G

=
[
χ(gjg

−1
i )
]
gi,gj∈G

=
[
χ((gig

−1
j )−1)

]
gi,gj∈G

.

So if D is skew Hadamard then (M∗ + I)> = −M∗ − I.

Corollary 6.5. Suppose that D is a skew difference set with underlying symmetric

design S. Then any other difference set arising from a regular subgroup of Aut(S)

is equivalent to a skew difference set.

Proof. Since D is skew, M∗ + I is a skew-symmetric matrix by Lemma 6.4. And

again by Lemma 6.4, any other difference set over S will be equivalent to a skew

difference set.

Now, in light of Corollary 6.5, we revisit the difference sets associated with the

Paley matrices which were constructed in Theorem 4.41. Let H be a Paley matrix

of order q + 1 = ptp
e

+ 1, and recall that we described a Sylow p-subgroup of A(H)

as a semidirect product T0 o
〈
σt
〉
, where T0 is an isomorphic copy of the additive

group of Fq, and σt is a suitable power of the Frobenius automorphism.

Since the group T1 (as defined in the proof of Theorem 4.50) acts regularly on the

Paley design, Theorem 2.47 guarantees the existence of a Paley-Hadamard difference

set in T1. In fact, we can describe this difference set in terms of the Paley difference

set in T0.

Theorem 6.6. The group T1 contains a difference set D1 =
{
σtw(a)a | a ∈ D

}
.

Furthermore
〈
σt
〉
≤M(D1), and D1 is skew.

Proof. We describe D1 explicitly. Recall that T1 = {σtw(a)a | a ∈ T0}. Let D0 be

the quadratic residues in T0, and define D1 = {σtw(a)a | a ∈ D0}.
We show that Dσt

1 = D1: observe that{
(σtw(a)a)σ

t | a ∈ D0

}
=
{
σtw(a)aσ

t | a ∈ D0

}
.

Thus it suffices to observe that the quadratic residues are preserved by σ (and hence

by σt). Let β be a primitive element of Fq. Then x = βk is a quadratic residue if

and only k ≡ 0 mod 2. Clearly xσ = xp = βkp is a quadratic residue if and only if

x is. Hence D1 is fixed by σt.
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6 Skew Hadamard difference sets

Define Xi = {a | a ∈ D0, w(a) = i}, and write Dt = ∪p−1
i=0 σ

tiXi. Then since σ is

weight preserving, each Xi is a union of orbits of σt. This implies that

XiX
−1
j = Xσtk

i (X−1
j )σ

tk
= (XiX

−1
j )σ

tk

for any k. Then the multiset of quotients

{σt(i−j)(ab−1)σ
−tj | σtia, σtjb ∈ D1}

represents each element of Tt equally often, because D0 is a difference set and each

of the multisets XiX
−1
j is invariant under σt. Thus Dt is a difference set in Tt. Since

the Paley matrices are skew, Dt is skew by Corollary 6.5.

Remark 6.7. Any group Tk, as a conjugate of T1, also contains a Paley-Hadamard

difference set.

Note that, for a Paley matrix H, A(H) has a unique conjugacy class of regular

subgroups of each isomorphism type. So Theorem 6.6 gives an explicit description

of all difference sets which give rise to a Paley matrix, up to equivalence.

Thus Theorem 6.6 furnishes a family of skew non-abelian difference sets in groups

of order pnp
e

for any prime p ≡ 3 mod 4, n odd and coprime to p, and e ≥ 1. These

difference sets have not previously appeared in the literature.

Note that by Corollary 4.42, there are no other difference sets which give rise to a

Hadamard matrix with non-affine doubly transitive automorphism group. Thus we

have the following theorem.

Theorem 6.8. Let D be a difference set which gives rise to a Hadamard matrix H

with A(H) non-affine doubly transitive. Then D is equivalent to a skew difference

set.

To conclude this section, we observe that there are no other skew Hadamard

difference sets for which the corresponding Hadamard matrix has a doubly transitive

automorphism group.

Theorem 6.9. Let H be a Hadamard matrix of order greater than 8 with affine dou-

bly transitive automorphism group. Then H is not developed from a skew Hadamard

difference set.

Proof. First, suppose that H is developed from a skew Hadamard difference set.

Then by Lemma 6.4, the incidence matrix for the underlying 2-design is skew; hence

any difference set corresponding to H will be equivalent to a skew difference set.
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6 Skew Hadamard difference sets

H has order 2n for some n, and by a result of Moorhouse [55] is equivalent to

the Sylvester matrix of that order. As we know from Subsection 4.3.2, if S is the

underlying design then Aut(S) contains a cyclic regular subgroup (a Singer cycle).

If H is developed from a cyclic skew difference set then H is equivalent to a Paley

matrix, by Theorem 6.3. But the Sylvester and Paley matrices coincide only at

orders 4 and 8 by Theorem 5.21.

Corollary 6.10. Let D be a skew difference set, and H the Hadamard matrix de-

veloped from D. Then A(H) is doubly transitive if and only if H is equivalent to a

Paley matrix.

6.2.1 Example

We work through an example in the field with 27 elements. The polynomial x3 +

2x + 1 is easily seen to be irreducible over F3. Hence F3 [x] /
(
x3 + 2x+ 1

)
is a

representation of F33 . We will need to use both multiplicative and additive forms

for the field elements. For the convenience of the reader, we give a conversion table.

We also require a normal basis for the field as a vector space over F3. By inspection,

a suitable choice is a1 = x4, a2 = x12, a3 = x10. Finally, we give a representation of

each field element in the (multiplicatively written) elementary abelian group G =

〈a1, a2, a3〉.
Now, we recall that the quadratic residues of F33 form the Paley difference set in

G. This is the set

P =
{
a1, a1a

2
2, a1a

2
2a

2
3, a

2
1a

2
2, a

2
1a3, a

2
1a

2
3, a

2
1a2a

2
3, a

2
1a

2
2a3, a

2
1a

2
2a

2
3, a2, a2a

2
3, a

2
2a

2
3, a3

}
.

It may be verified by hand that P is indeed a skew difference set.

Denote the Frobenius automorphism by σ, and form the group Γ = 〈a1, a2, a3, σ〉,
which has order 81, and is a Sylow 3-subgroup of AΓL1(33).

Define T1 = 〈a1σ, a2σ, a3σ〉. Then there is a bijection (not a homomorphism)

φ : G→ T1 given by φ : at11 a
t2
2 a

t3
3 7→ at11 a

t2
2 a

t3
3 σ

t1+t2+t3 .
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Multiplicative Additive Image in G

1 1 a2
1a

2
2a

2
3

x x a1a
2
3

x2 x2 a2
1a

2
3

x3 x+ 2 a2
1a2

x4 x2 + 2x a1

x5 2x2 + x+ 2 a2a3

x6 x2 + x+ 1 a2
1a

2
2

x7 x2 + 2x+ 2 a2
1a2a3

x8 2x2 + 2 a2
1a2a

2
3

x9 x+ 1 a2
2a3

x10 x2 + x a3

x11 x2 + x+ 2 a1a2a
2
3

x12 x2 + 2 a2

x13 2 a1a2a3

x14 2x a2
1a3

x15 2x2 a1a3

x16 2x+ 1 a1a
2
2

x17 2x2 + x a2
1

x18 x2 + 2x+ 1 a2
2a

2
3

x19 2x2 + 2x+ 2 a1a2

x20 2x2 + x+ 1 a1a
2
2a

2
3

x21 x2 + 1 a1a
2
2a3

x22 2x+ 2 a2a
2
3

x23 2x2 + 2x a2
3

x24 2x2 + 2x+ 1 a2
1a

2
2a3

x25 2x2 + 1 a2
2

(x26) 1 a2
1a

2
2a

2
3

Table 6.1: Multiplicative and additive representations of F33
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6 Skew Hadamard difference sets

We claim that D1 = φ(P ), whose elements are listed below, is a skew difference

set.

D1 = { a1a
2
2, a

2
1a3, a2a

2
3, a

2
1a

2
2a

2
3,

a1σ, a2σ, a3σ, a
2
1a

2
2σ, a

2
1a

2
3σ, a

2
2a

2
3σ,

a1a
2
2a

2
3σ

2, a2
1a2a

2
3σ

2, a2
1a

2
2a3σ

2
}

To verify that D1 is skew we observe that the inverse of an element of class t has

class 3 − t. No pair of elements of weight zero is of the form
{
g, g−1

}
since P is

skew. So it suffices to check that no element of class 2 in D1 has an inverse in D1.

But observe that every element of class 2 contains each ai with non-trivial exponent,

while there are no elements of class 1 with this property. Skewness follows.

It remains only to check that D1 is indeed a difference set. We leave this (rather

tedious) exercise to the reader. It may be accomplished by consideration of the five

orbits of σ on D1, as in Theorem 6.6.

6.3 Proposals for future work

In this final section, we gather some suggestions for future research.

6.3.1 Cocyclic development

Suppose that M is a cocyclic matrix with cocycle ψ : G × G → U . All accounts

of cocyclic development of which we are aware proceed by the construction of an

expanded matrix, on which the central extension of U by G given by ψ acts regularly.

An equivalence between such regular actions (in which the action of U is specified)

and cocycles of M is then established.

In our proof of Lemma 2.81 we showed that a cocyclic matrix M has a totally

regular subgroup G ≤ G(M) without the introduction of the expanded matrix of M .

We have not yet managed to obtain a proof of Lemma 2.85 without the introduction

of EM . Such a proof should certainly be possible.

Problem 6.11. Give an account of cocyclic development entirely in terms of G(M)

for a matrix M with entries in a commutative ring, R. Remove the restrictions that

M contain no zero entries, and that M be invertible.

We note that the general theory of [16] avoids the restrictions on M stated in

Problem 6.11. Currently, testing a matrix of order n over an alphabet of size k
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for cocyclic development involves computations in a permutation group of degree

nk. A solution of this problem would allow for the development of more effective

computational techniques for cocyclic matrices: such a test could be achieved via

computations in a permutation group of degree n. Projecting G(M) onto A(M),

one could search for regular subgroups, lift these to subgroups of Aut(M) and test

for total regularity. The additional test required involves only linear algebra, and so

could be achieved in reasonable time.

Furthermore, as we observed in Chapter 2, there are many special classes of ma-

trices M for which computation in A(M) is sufficient to determine whether or not

M is cocyclic. Thus we pose a second problem.

Problem 6.12. Find new classes of matrices for which it suffices to test for cocyclic

development in A(M). (For example, such that every regular subgroup of A(M) gives

rise to a cocycle of M .)

6.3.2 Hadamard matrices of small order

We begin with an obvious problem, leading directly from the results of Chapter 3.

It is probably reasonable to aim to classify all cocyclic Hadamard matrices of order

at most 100 in the near future. Special cases of the classification may be carried out

using currently available computation resources.

Problem 6.13. Classify the cocyclic Hadamard matrices of order at most 100.

Attacks on this problem could be motivated by a solution to Problem 6.11, as

well as the computational techniques developed by Alvarez et al. [1] for cocyclic

matrices. The approach of classifying Hadamard matrices via Hadamard 3-designs

has not yet been explored, to our knowledge. We note that interesting theoretical and

computational techniques for classifying block designs with prescribed automorphism

groups are under development by the Croatian school of design theory [13, 30].

We turn now to questions motivated by the data presented in Section 3.4.1. First,

we ask whether an extension of the circulant Hadamard conjecture is possible. Our

motivation is that there are 14 groups of order 36, of which 12 are indexing groups

for cocyclic Hadamard matrices. The two that are not both have exponent 36. (One

is cyclic, the other a split extension C9 o C4, with centre of order 2.)

Problem 6.14 (cf. Jedwab [42]). Does there exist a group G, which is the indexing

group for a cocyclic Hadamard matrix, and for which exp(G) = |G|? If G is cyclic,

it is known that |G| ≥ 1022, whereas the non-cyclic case does not appear to have been

studied.
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We state formally the problem suggested at the end of Chapter 3: that of con-

structing new families of Hadamard matrices.

Problem 6.15. Examine the Hadamard matrices produced in Chapter 3 and Prob-

lem 6.13 (and their automorphism groups) for new construction methods.

Finally, we have produced many examples of cocyclic Hadamard matrices H with

A(H) imprimitive. We have also studied the case that A(H) is doubly transitive

in some detail. We are not aware of a single Hadamard matrix for which A(H) is

simply primitive however.

Problem 6.16. Does there exist a cocyclic Hadamard matrix H such that A(H) is

a simply primitive permutation group?

One attack on this problem may be via the theory of B-groups (see p. 96 of [21]).

Definition 6.17. A group G is a B-group if a primitive permutation group contain-

ing a regular subgroup isomorphic to G is necessarily doubly transitive.

Typical examples of B-groups are cyclic groups of prime order. As we have seen,

Hadamard matrices H with doubly transitive automorphism groups appear to be

rare. Thus if many of the regular subgroups of A(H) are B-groups, we would expect

to see few Hadamard matrices with A(H) primitive.

6.3.3 Automorphism groups of Hadamard matrices

In the course of our treatment of twin prime power Hadamard matrices we con-

structed large subgroups of their automorphism groups. Finding the full automor-

phism group of a family of combinatorial structures is in general a difficult problem,

but we pose it here.

For a twin prime power difference set D, Dev (D) has automorphisms of the fol-

lowing types:

• ta,b : (x, y) 7→ (x+ a, y + b) for a ∈ Fq and b ∈ Fq+2,

• mc,d : (x, y) 7→ (cx, dy) for c ∈ F∗q , d ∈ Fq+2 and χ(c)χ(d) = 1

• σp : (x, y) 7→ (xp, y), σr : (x, y)→ (x, yr).

Problem 6.18 (Conjecture 1, [60]). Let χ denote the standard quadratic residue

function on a finite field. Show that

G =
〈
(−I,−I) , ta,b,mc,d, σp, σr : a ∈ Fq, b ∈ Fq+2, c ∈ F∗q , d ∈ F∗q+2, χ(c)χ(d) = 1

〉
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is the full automorphism group of the TPP-Hadamard matrix arising from q and

q + 2, of order mn(q + 2)(q + 1)(q)(q − 1). Determine its isomorphism type.

We observe that G has only two non-trivial systems of imprimitivity, and is maxi-

mal with this property: any overgroup of this group either preserves a single system

of imprimitivity or is primitive. It should be possible to use this information to derive

a contradiction, thus proving that we have indeed described the full automorphism

group.

Similarly, we can ask for the full automorphism group of a HSR-Hadamard matrix.

Problem 6.19. Determine the full automorphism group of a HSR-Hadamard ma-

trix.

6.3.4 Skew Hadamard difference sets

A research problem of Jungnickel [44] is to classify all skew Hadamard difference

sets. Note that every skew Hadamard difference set has a corresponding Hadamard

3-design.

Theorem 6.20 (Kimberley, Theorem 7, [50]). Let ∆ be the Hadamard 3-design of

the Hadamard matrix H. Then A(H) is doubly transitive on the rows of H if and

only if the induced action of A(H) on the blocks of ∆ is transitive.

Suppose that H is developed from a skew Hadamard difference set. We observe

thatA(H) has at most four orbits on the blocks of the associated Hadamard 3-design.

Our classification of skew Hadamard difference sets for which the automorphism

group of the corresponding Hadamard matrix is transitive gives a classification for

the case that A(H) is transitive on the blocks of the associated Hadamard 3-design.

Problem 6.21. Investigate the skew Hadamard difference sets for which A(H) has

precisely 2 or 3 or 4 orbits on the blocks of the associated 3-design.
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Singer, 62

skew, 86

TPP parameters, 77

twin prime power, 76

doubly transitive, 11

doubly transitive group

affine type, 11

almost simple type, 11

expanded matrix, 34

extension (of groups), 30

central, 30

general linear group, 11

general semilinear group, 12

group developed, 27

Hadamard matrix, 23

automorphism group, 24

equivalence, 23

normalised, 24

Paley type I, 59

permutation automorphism, 24

Sylvester, 62

incidence matrix, 17

perm automorphism group, 18

full automorphism group, 27

incidence structure, 17

automorphism, 17

equivalence, 17

reduced, 19

orbit, 9
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regular, 9

relative difference set, 38

equivalence, 41

forbidden subgroup, 38

socle, 10

special linear group, 12

stabiliser, 9

symplectic group, 13

totally regular, 33

transitive, 9

97



Bibliography
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