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Introduction
•A ±1 matrix of order n which satisfies the equation HHT = nIn is

called a Hadamard matrix.
•Hadamard matrices are used in coding theory, statistics, combinatorial

design theory, and many other fields of mathematics.
•Cocyclic Hadamard matrices are Hadamard matrices whose automor-

phism groups have a subgroup with an almost-regular action.
•Most known infinite families of Hadamard matrices come from differ-

ence sets.
•We use results on 2-transitive groups to describe the automorphism

groups of these matrices, showing in particular that the matrices aris-
ing from twin prime power difference sets are not cocyclic.

Difference sets
Let G be a group of order v, and let D be a subset of G of cardinality k.
We say that D is a (v, k, λ)-difference set if every non-identity element
of G may be expressed in exactly λ ways as a quotient of elements of D.
Let χD denote the characteristic function of D. Then the development of
D is the matrix

Dev(D) = [χD(gh)]g,h∈G.

We call a difference set with parameters (4n − 1, 2n − 1, n − 1) a
Hadamard difference set as it gives rise to a Hadamard matrix in a natu-
ral way.
Lemma 1. Let D be a (4n− 1, 2n− 1, n− 1)-difference set. Define D to
be 2 Dev (D)− J , and 1 to be the all 1s vector of length 4n− 1. Then

H =

 1 1

1
>
D


is Hadamard. Furthermore, PermAut(H) is isomorphic to Aut(D).
Note that the automorphism group of a cocyclic Hadamard matrix, H ,
acts transitively on the rows of H , and that the automorphism group of
D acts transitively on the rows of D.

Two-transitive groups
Let G be a group acting on a set X . We say that the action of G is
2-transitive if for any four distinct elements w, x, y, z ∈ X there exists
g ∈ G such that

wg = y, xg = z.

Lemma 2. If H is a Hadamard matrix arising from a difference set, then
Aut(H) is transitive if and only if it is 2-transitive.
Now, deep results in group theory yield a complete classification of the
finite 2-transitive groups. Furthermore a result of Ito states the following:
Theorem 3 (Ito). Let Γ ≤ Aut(H) be a doubly transitive permutation
group acting on the set of rows of a Hadamard matrix, H . Then one of
the following holds:
•Γ ∼= M12 and H is the unique Hadamard matrix of order 12.
•PSL2(p

k) E Γ, acting naturally on pk + 1 points, for pk ≡ 3 mod 4,
pk 6= 3, 11.
•Γ ∼= Sp6(2), and H is of order 36.
•Γ contains a regular elementary abelian subgroup, and H is of order

2n.

A little elementary number theory
By twin prime powers we mean a pair of integers, q and q + 2, both of
which are prime powers. In this section, we prove the following:
Theorem 4. The number 22n − 1 is a product of twin primes if and only
if n ∈ {2, 3}.
To this end, we will make use of a well known theorem of Zsigmondy.
Theorem 5 (Zsigmondy). Let a, b and n be positive integers such that
(a, b) = 1. Then there exists a prime p with the following properties:
•p | an − bn

•p - ak − bk for all k < n.
with the following exceptions: a = 2, b = 1, n = 6 and a+b = 2k, n = 2.
Proof of Theorem 4: Assume 22n − 1 is a product of twin prime powers.

22n − 1 = (2n + 1)(2n − 1) = ps1p
r
2

Without loss of generality, ps1 = 2n− 1. There are two cases to consider:
either 2n ≡ 1 mod 3, or 2n ≡ 2 mod 3.
In the first case, p1 = 3. Then we apply Zsigmondy’s theorem to the
equation 2n − 1 = 3s, to obtain n = 2 and s = 1.
In the second case, p2 = 3, and we have 3r − 1 = 2n. Zsigmondy’s theo-
rem gives us that r = 1 or r = 2. The first of these is a vacuous solution
however, as it gives p1 = 1.

Twin prime power difference sets
Finally, we define the twin prime power difference sets and state our
main theorem. Let q and q+2 be twin prime powers, let 4n−1 = q(q+2).
Denote by Fq the Galois field of size q, and by χ the standard quadratic
residue function. Then

{(g, 0) | g ∈ Fq}
⋃
{(g, h) | g ∈ Fq, h ∈ Fq+2, χ (g)χ (h) = 1}

is a (4n−1, 2n−1, n−1)-difference set in (Fq,+)× (Fq+2,+). We refer
to such a difference set as a TPP-difference set.
Theorem 6. Let H be a TPP-Hadamard matrix. Then H is cocyclic if
and only if it is of order 16.
Proof. Let H be a cocyclic TPP-Hadamard matrix of order 4n. Then by
Lemma 2, the automorphism group of H acts 2-transitively on the rows
of H . Then by Ito’s Theorem, we know that either 4n − 1 = pm or
n = 2m. We consider first the non affine case.
Ito’s two sporadic 2-transitive actions are easily discarded: 11 is not a
product of twin prime powers, and by construction the TPP-matrix of
order 36 is not cocyclic, as it has an intransitive automorphism group.
This leaves only the infinite family of matrices acted upon by PSL2(p

k).
Recall that PSL2(p

k) has a unique 2-transitive action on pk + 1 points.
These are ruled out by the following observation: suppose H is a TPP-
Hadamard matrix, of order q(q + 2) + 1. Then

pk = q(q + 2).

The only solution to this equation in positive integers has p = q = 2,
which is not a valid solution since 8 6= 3 mod 4.
In the affine case, via Theorem 4, we have that the order of H is either
16 or 64. Construction of the matrices of these orders then shows that
the one of order 16 is cocyclic, and is equivalent to the Sylvester matrix
of that order, and that the one of order 64 is not. The required result
follows.
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