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The permutation group of a matrix

Automorphisms of a matrix

Let M be an n × n matrix with entries in a commutative ring R.
Then a pair (P,Q) of U(R)-monomial matrices is an
automorphism of M if and only if

PMQ−1 = M.

The set of all automorphisms of M forms a group under
composition, denoted Aut(M).

But this is not a permutation group...
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The permutation group of a matrix

Definition
Denote by A the set of all entries in M together with 1R. Then the
expanded matrix of M is

EM =
[
aiajM

]
ai ,aj∈A .

Lemma
There exists a homomorphism α : Aut(M)→ Aut(EM), such that the
image of (P,Q) ∈ Aut(M) is a pair of permutation matrices.
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The permutation group of a matrix

A permutation quotient

Suppose that M is invertible (possibly over some extension of R).
Then P uniquely determines Q:

PMQ−1 = M ⇐⇒ P = MQM−1

So the map β : (P,Q) 7→ P is an isomorphism of groups.
Thus we can consider βα(Aut(M)) as a permutation group on the
n |A| rows of EM .
Linearity of the Aut(M) action gives an obvious system of
imprimitivity: blocks are {ari | a ∈ A} .
Consider the induced action on this block system.
A monomial matrix P can be written in the form XY where X is
diagonal and Y is a permutation matrix. The map ρ : P 7→ Y is a
homomorphism on any monomial group.
This permutation group of degree n is A(M) = ρβ(Aut(M)).
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The permutation group of a matrix

Cocyclic development

Definition
Let G be a finite group and C an abelian group. Then ψ : G×G→ C is
a (2-)cocycle if it obeys the identity

ψ(g,h)ψ(gh, k) = ψ(g,hk)ψ(h, k)

for all g,h, k ∈ G.

Definition
Let R be a commutative ring, M an n × n matrix R-matrix. Suppose
there exist a cocycle ψ : G×G→ U(R) and a set map φ : G→ R such
that

M ∼= [ψ(g,h)φ(gh)]g,h∈G .

Then M is cocyclic over G.
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The permutation group of a matrix

Which matrices are cocyclic?

Theorem (de Launey & Flannery)

The matrix M is cocyclic over G if and only if Aut(M) contains a
subgroup Γ such that

Γ contains a central subgroup Θ isomorphic to a finite subgroup of
U(R).
Γ/Θ ∼= G.
α(Γ) has induced regular actions on the rows and columns of EM .

Padraig Ó Catháin Doubly transitive groups and Hadamard matrices 4 November 2011



The permutation group of a matrix

Cocyclic development and A(M)

Suppose that M is cocyclic over G.
Then Aut(M) contains a subgroup Γ as in the Theorem.
The image of Γ in A(M) is a regular subgroup.
So cocyclic development⇒ existence of a regular subgroup in
A(M).
Unfortunately the converse is not so straightforward: we require a
regular subgroup of A(M) to satisfy some additional conditions.
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2-Designs, Difference sets, Hadamard matrices

Designs

Definition
Let V be a set of order v (whose elements are called points), and let B
be a set of k -subsets of V (whose elements are called blocks). Then
∆ = (V ,B) is a t-(v , k , λ) design if and only if any t-subset of V occurs
in exactly λ blocks.

Definition
The design ∆ is symmetric if |V | = |B|.
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2-Designs, Difference sets, Hadamard matrices

Definition
Define a function φ : V × B → {0,1} given by φ(v ,b) = 1 if and only if
v ∈ b. An incidence matrix for ∆ is a matrix

M = [φ(v ,b)]v∈V ,b∈B .

Definition
The automorphism group of M consists of all pairs of {1}-monomial
(i.e. permutation) matrices such that

PMQ> = M.
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2-Designs, Difference sets, Hadamard matrices

Definition
An automorphism of the design ∆ is a permutation σ ∈ Sym(V )
which preserves B setwise.

An automorphism σ of ∆ induces a permutation of the rows of M.
In fact, Aut(∆) = A(M).
It is known that for symmetric 2-designs

Aut(∆) ∼= Aut(M) ∼= A(M).
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2-Designs, Difference sets, Hadamard matrices

Difference sets

Let G be a group of order v , and D a k -subset of G.
Suppose that every non-identity element of G has λ
representations of the form did−1

j where di ,dj ∈ D.
Then D is a (v , k , λ)-difference set in G.
e.g. {1,2,4} in Z7.

Theorem
If G contains a (v , k , λ)-difference set then there exists a symmetric
2-(v , k , λ) design on which G acts regularly. Conversely, a 2-(v , k , λ)
design on which G acts regularly corresponds to a (v , k , λ)-difference
set in G.
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2-Designs, Difference sets, Hadamard matrices

Hadamard matrices, automorphisms

Definition
An automorphism of a Hadamard matrix H is a pair of {±1}-monomial
matrices such that

PHQ> = H.

The set of all automorphisms form a group, Aut(H).

A(H) is a permutation group on the rows of H.
The kernel of the map Aut(H)→ A(H) consists of automorphisms
whose first component is diagonal.
(−I,−I) is always an automorphism of H, so that this kernel if
always non-trivial.
If H is cocyclic, then A(H) contains a regular subgroup.
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2-Designs, Difference sets, Hadamard matrices

Hadamard matrices, 2-designs and difference sets

Lemma
There exists a Hadamard matrix H of order 4t if and only if there exists
a 2-(4t − 1,2t − 1, t − 1) design D. Furthermore Aut(D) embeds into
the stabiliser of a point in A(H).

Corollary

Suppose that H is developed from a (4t − 1,2t − 1, t − 1)-difference
set. Then the stabiliser of the first row of H in A(H), is transitive on the
remaining rows of H.
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2-Designs, Difference sets, Hadamard matrices

Example: the Paley construction

The existence of a (4t − 1,2t − 1, t − 1)-difference set implies the
existence of a Hadamard matrix H of order 4t .

Let Fq be the finite field of size q, q = 4t − 1.
The quadratic residues in Fq form a difference set in (Fq,+) with
parameters (4t − 1,2t − 1, t − 1), (Paley).

Let χ be the quadratic character of of F∗q, given by χ : x 7→ x
q−1

2 ,
and let Q = [χ(x − y)]x ,y∈Fq

.
Then

H =

(
1 1

1
>

Q − I

)
is a Hadamard matrix.
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Doubly transitive group actions on Hadamard matrices

Doubly transitive group actions on Hadamard matrices

Two constructions of Hadamard matrices: from (4t − 1,2t − 1, t − 1)
difference sets, and from (orthogonal) cocycles.

Problem
How do these constructions interact?
Can a Hadamard matrix support both structures?
If so, can we classify such matrices?
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Doubly transitive group actions on Hadamard matrices

Motivation

Horadam: Are the Hadamard matrices developed from twin prime
power difference sets cocyclic? (Problem 39 of Hadamard
matrices and their applications)
Jungnickel: Classify the skew Hadamard difference sets. (Open
Problem 13 of the survey Difference sets).
Ito and Leon: There exists a Hadamard matrix of order 36 on
which Sp6(2) acts. Are there others?

Padraig Ó Catháin Doubly transitive groups and Hadamard matrices 4 November 2011



Doubly transitive group actions on Hadamard matrices

Doubly transitive group actions on Hadamard matrices

Lemma
Let H be a Hadamard matrix developed from a
(4t − 1,2t − 1, t − 1)-difference set, D in the group G. Then the
stabiliser of the first row of H in A(H) contains a regular subgroup
isomorphic to G.

Lemma
Suppose that H is a cocyclic Hadamard matrix with cocycle
ψ : G×G→ 〈−1〉. Then A(H) contains a regular subgroup isomorphic
to G.

Corollary
If H is a cocyclic Hadamard matrix which is also developed from a
difference set, then A(H) is a doubly transitive permutation group.

Padraig Ó Catháin Doubly transitive groups and Hadamard matrices 4 November 2011



Doubly transitive group actions on Hadamard matrices

The groups

Theorem (Ito, 1979)

Let Γ ≤ A(H) be a non-affine doubly transitive permutation group
acting on the set of rows of a Hadamard matrix H. Then the action of Γ
is one of the following.

Γ ∼= M12 acting on 12 points.
PSL2(pk ) E Γ acting naturally on pk + 1 points, for pk ≡ 3 mod 4,
pk 6= 3,11.
Γ ∼= Sp6(2), and H is of order 36.
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Doubly transitive group actions on Hadamard matrices

The matrices

Theorem
Each of Ito’s doubly transitive groups is the automorphism group of
exactly one equivalence class of Hadamard matrices.

Proof.
If H is of order 12 then A(H) ∼= M12. (Hall)
If PSL2(q) E A(H), then H is the Paley matrix of order q + 1.
Sp6(2) acts on a unique matrix of order 36. (Computation)

Corollary
Twin prime power Hadamard matrices are not cocyclic.

With Dick Stafford: On twin prime power Hadamard matrices,
Cryptography and Communications, 2011.
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Doubly transitive group actions on Hadamard matrices

Which of these matrices is cocyclic?

The two sporadic examples can be tested by hand.
Only the Paley type I matrices remain:
Classified by de Launey & Stafford.

Corollary

Let H be a Hadamard matrix with A(H) non-affine doubly transitive.
Then either H is cocyclic, or H a specific matrix of order 36.
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Doubly transitive group actions on Hadamard matrices

Which of these matrices is developed from a
difference set?

The two sporadic examples can be tested by hand.
The Paley type I matrices are defined in terms of difference sets.

Corollary
Let H be a Hadamard matrix developed from a difference set (with
A(H) non-affine). Then H is cocyclic if and only if H is a Paley matrix.
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Doubly transitive group actions on Hadamard matrices

Classifying these difference sets

Suppose that H is developed from a difference set D and that A(H) is
non-affine doubly transitive. Then H is a Paley matrix.

Theorem (Kantor)
Let H be the Paley Hadamard matrix of order q + 1, q > 11. Then
A(H) ∼= PΣL2(q).

A point stabiliser is of index 2 in AΓL1(q).
Difference sets correspond to regular subgroups of the stabiliser
of a point in A(H).

Lemma
Let D ⊆ G be a difference set such that the associated Hadamard
matrix H has A(H) non-affine doubly transitive. Then G is a regular
subgroup of AΓL1(q) in its natural action.
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Doubly transitive group actions on Hadamard matrices

Suppose that q = pkpα
. A Sylow p-subgroup of AΓL1(q) is

Gp,k ,α =
〈

a1, . . . ,an,b | ap
i = 1,

[
ai ,aj

]
= 1,bpα

= 1,ab
i = ai+k

〉
.

Lemma
There are α + 1 conjugacy classes of regular subgroups of AΓL1(q).
The subgroups

Re =
〈

a1bpe
,a2bpe

, . . . ,anbpe
〉

for 0 ≤ e ≤ α are a complete and irredundant list of representatives.
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Doubly transitive group actions on Hadamard matrices

Skew difference sets

Definition

Let D be a difference set in G. Then D is skew if G = D ∪D(−1) ∪{1G}.

The Paley difference sets are skew.
Conjecture (1930’s): D is skew if and only if D is a Paley
difference set.
Proved in the cyclic case (1950s - Kelly).
Exponent bounds obtained in the general abelian case.
Disproved using permutation polynomials, examples in F35 and
F37 (2005 - Ding, Yuan).
Infinite familes found in groups of order q3 and 3n. (2008-2011 -
Muzychuk, Weng, Qiu, Wang, Xiang, . . . ).
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Doubly transitive group actions on Hadamard matrices

Lemma
Let G be a group containing a difference set D, and let M be an
incidence matrix of the underlying 2-design. Set M∗ = 2M − J. That is,

M∗ = [χ(gig−1
j )]gi ,gj∈G

where the ordering of the elements of G used to index rows and
columns is the same, and where χ(g) = 1 if g ∈ D and −1 otherwise.
Then M∗ + I is skew-symmetric if and only if D is skew Hadamard.

The Paley difference sets are skew.
So the underlying 2-design D is skew.
So any difference set associated to D is skew.
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Doubly transitive group actions on Hadamard matrices

Theorem (Ó C., 2011)
Let p be a prime, and n = kpα ∈ N.

Define

Gp,k ,α =
〈

a1, . . . ,an,b | ap
i = 1,

[
ai ,aj

]
= 1,bpα

= 1,ab
i = ai+k

〉
.

The subgroups

Re =
〈

a1bpe
,a2bpe

, . . . ,anbpe
〉

for 0 ≤ e ≤ α contain skew Hadamard difference sets.
Each difference set gives rise to a Paley Hadamard matrix.
These are the only skew difference sets which give rise to
Hadamard matrices in which A(H) is transitive.
If A(H) is transitive and H is developed from a difference set D,
then D is one of the difference sets described above.
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