Difference sets and Hadamard matrices

Padraig Ó Catháin

National University of Ireland, Galway
6 February 2012

Outline

(1) 2-designs and Hadamard matrices
(2) Difference sets
(3) Hadamard difference sets
(4) Cocyclic development
(5) Doubly transitive group actions on Hadamard matrices

Incidence Structures

Definition

An incidence structure Δ is a pair (V, B) where V is a finite set and $B \subseteq \mathcal{P}(V)$.

Definition

Define a function $\phi: V \times B \rightarrow\{0,1\}$ given by $\phi(v, b)=1$ if and only if $v \in b$. An incidence matrix for Δ is a matrix

$$
M=[\phi(v, b)]_{v \in V, b \in B} .
$$

Designs

Definition

Let (V, B) be an incidence structure in which $|V|=v$ and $|b|=k$ for all $b \in B$. Then $\Delta=(V, B)$ is a $t-(v, k, \lambda)$ design if and only if any t-subset of V occurs in exactly λ blocks.

Definition
The design Δ is symmetric if $|V|=|B|$.

Lemma

The $v \times v(0,1)$-matrix M is the incidence matrix of a $2-(v, k, \lambda)$ symmetric design if and only if

$$
M M^{\top}=(k-\lambda) I+\lambda J
$$

Hadamard matrices

Definition

Let H be a matrix of order n, with all entries in $\{1,-1\}$. Then H is a Hadamard matrix if and only if $H H^{\top}=n I_{n}$.

$$
(1)\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

Hadamard matrices

- Sylvester constructed Hadamard matrices of order 2^{n}.
- Hadamard showed that the determinant of a Hadamard matrix $H=\left[h_{i, j}\right]$ of order n is maximal among all matrices of order n over \mathbb{C} whose entries satisfy $\left\|h_{i, j}\right\| \leq 1$ for all $1 \leq i, j \leq n$.
- Hadamard also showed that the order of a Hadamard matrix is necessarily 1,2 or $4 t$ for some $t \in \mathbb{N}$. He also constructed Hadamard matrices of orders 12 and 20.
- Paley constructed Hadamard matrices of order $n=p^{t}+1$ for primes p, and conjectured that a Hadamard matrix of order n exists whenever $4 \mid n$.
- This is the Hadamard conjecture, and has been verified for all $n \leq 667$. Asymptotic results.

2-designs and Hadamard matrices

Lemma

There exists a Hadamard matrix H of order $4 n$ if and only there exists a $2-(4 n-1,2 n-1, n-1)$ design \mathcal{D}.

Proof.

Let M be an incidence matrix for \mathcal{D}. Then M satisfies
$M M^{\top}=n I+(n-1) J$. So $(2 M-J)(2 M-J)^{\top}=4 n I-J$. Adding a row and column of 1 s gives a Hadamard matrix, H.

For this reason, a symmetric $2-(4 t-1,2 t-1, t-1)$ design is called a Hadamard design.

Automorphisms of 2-designs

Definition

An automorphism of a symmetric 2-design Δ is a permutation $\sigma \in \operatorname{Sym}(V)$ which preserves B setwise.

The automorphisms of Δ form a group, $\operatorname{Aut}(\Delta)$. Difference sets correspond to regular subgroups of $\operatorname{Aut}(\Delta)$.

Difference sets

- Suppose that G acts regularly on V.
- Labelling one point with 1_{G} induces a labelling of the remaining points in V with elements of G.
- So blocks of Δ are subsets of G.
- G also acts regularly on the blocks.
- So all the blocks are translates of one another, and the elements of any block form a difference set.

Difference sets

- Let G be a group of order v, and \mathcal{D} a k-subset of G.
- Suppose that every non-identity element of G has λ representations of the form $d_{i} d_{j}^{-1}$ where $d_{i}, d_{j} \in \mathcal{D}$.
- Then \mathcal{D} is a (v, k, λ)-difference set in G.

Theorem

If G contains a (v, k, λ)-difference set then there exists a symmetric 2-($v, k, \lambda)$ design on which G acts regularly. Conversely, a 2-($v, k, \lambda)$ design on which G acts regularly corresponds to a (v, k, λ)-difference set in G.

- From a (v, k, λ)-difference set, we can construct a symmetric 2-($v, k, \lambda)$ design.
- From a symmetric 2-($4 t-1,2 t-1, t-1)$ design, we can construct a Hadamard matrix.
- So from a ($4 t-1,2 t-1, t-1$) difference set, we can construct a Hadamard matrix.
- There are four classical families of difference sets with these parameters.

Families of Hadamard difference sets

Difference set	Matrix	Order
Singer	Sylvester	2^{n}
Paley	Paley Type I	$p^{\alpha}+1$
Stanton-Sprott	TPP	$p^{\alpha} q^{\beta}+1$
Sextic residue	HSR	$p+1=x^{2}+28$

- Other sporadic Hadamard difference sets are known at these parameters.
- But every known Hadamard difference set has the same parameters as one of those in the series above.
- The first two families are infinite, the other two presumably so.

Example: the Paley construction

- Let \mathbb{F}_{q} be the finite field of size $q, q=4 n-1$.
- The quadratic residues in \mathbb{F}_{q} form a difference set in $\left(\mathbb{F}_{q},+\right)$ with parameters $(4 n-1,2 n-1, n-1)$ (Paley).
- Let χ be the quadratic character of of \mathbb{F}_{q}^{*}, given by $\chi: x \mapsto x^{\frac{q-1}{2}}$, and let $Q=[\chi(x-y)]_{x, y \in \mathbb{F}_{q}}$.
- Then

$$
H=\left(\begin{array}{ll}
1 & \overline{1} \\
\overline{1}^{\top} & Q-I
\end{array}\right)
$$

is a Hadamard matrix.

Automorphisms of Hadamard matrices

- A pair of $\{ \pm 1\}$ monomial matrices (P, Q) is an automorphism of H if $P H Q^{\top}=H$.
- Aut (H) has an induced permutation action on the set $\{r\} \cup\{-r\}$.
- Quotient by diagonal matrices is a permutation group with an induced action on the set of pairs $\{r,-r\}$, which we identify with the rows of H, denoted \mathcal{A}_{H}.

Induced automorphisms

Let Δ be a symmetric $2-(4 t-1,2 t-1, t-1)$ design with incidence matrix M, and let σ be an automorphism of Δ. Then there exist permutation matrices P, Q such that

$$
M=P M Q^{\top}
$$

Lemma
Let Δ be a symmetric $2-(4 t-1,2 t-1, t-1)$ design with associated Hadamard matrix H. Then

$$
\left(\begin{array}{ll}
1 & \overline{0} \\
\overline{0}^{\top} & P
\end{array}\right)\left(\begin{array}{ll}
1 & \overline{1} \\
\overline{1}^{\top} & 2 M-J
\end{array}\right)\left(\begin{array}{ll}
1 & \overline{0} \\
\overline{0}^{\top} & Q
\end{array}\right)^{\top}=H
$$

So every automorphism of Δ induces an automorphism of H.

$$
\operatorname{Aut}(\Delta) \hookrightarrow \mathcal{A}_{H}
$$

Cocyclic development

Definition

Let G be a group and C an abelian group. We say that $\psi: G \times G \rightarrow C$ is a cocycle if for all $g, h, k \in G$

$$
\psi(g, h) \psi(g h, k)=\psi(h, k) \psi(g, h k)
$$

Definition (de Launey \& Horadam)
Let H be an $n \times n$ Hadamard matrix. Let G be a group of order n. We say that H is cocyclic if there exists a cocycle $\psi: G \times G \rightarrow\langle-1\rangle$ such that

$$
H \cong[\psi(g, h)]_{g, h \in G} .
$$

- Let $\langle-,-\rangle$ be the usual dot product on $k=\mathbb{F}_{2}^{n}$.
- This is a 2-cocycle.
- The matrix $H=\left[-1^{\langle u, v\rangle}\right]_{u, v \in k}$ is Hadamard and equivalent to the Sylvester matrix.
- So the Sylvester matrices are cocyclic.
- Likewise the Paley matrices are cocyclic, though this is not as easily seen.

Conjecture (Horadam): The TPP-Hadamard matrices are cocyclic. We answer this, and the corresponding question for HSR-matrices also.

Lemma

Suppose that H is a cocyclic Hadamard matrix with cocycle $\psi: G \times G \rightarrow\langle-1\rangle$. Then \mathcal{A}_{H} contains a regular subgroup isomorphic to G.

Lemma

Let H be a Hadamard matrix developed from a
($4 n-1,2 n-1, n-1$)-difference set, \mathcal{D} in the group G. Then the stabiliser of the first row of H in \mathcal{A}_{H} contains a regular subgroup isomorphic to G.

Corollary

If H is a cocyclic Hadamard matrix which is also developed from a difference set, then \mathcal{A}_{H} is a doubly transitive permutation group.

- Burnside: Either a doubly transitive group contains a regular elementary abelian subgroup (and so is of degree p^{k}), or is almost simple.
- Following the CFSG, all (finite) doubly transitive permutation groups have been classified.
- The classification provides detailed character theoretic information on the doubly transitive groups.
- This can be used to show that most doubly transitive groups do not act on Hadamard matrices. (Ito)
- Then the Hadamard matrices can be classified, and we can test whether the TPP and HSR-matrices are among them.

The groups

Theorem (Ito, 1979)

Let $\Gamma \leq \mathcal{A}_{H}$ be a non-affine doubly transitive permutation group acting on the set of rows of a Hadamard matrix H. Then the action of Γ is one of the following.

- $\Gamma \cong M_{12}$ acting on 12 points.
- $P S L_{2}\left(p^{k}\right) \unlhd \Gamma$ acting naturally on $p^{k}+1$ points, for $p^{k} \equiv 3 \bmod 4$, $p^{k} \neq 3,11$.
- $\Gamma \cong \operatorname{Sp}_{6}(2)$, and H is of order 36 .

The matrices

Theorem (Ó C.?)

Each of Ito's doubly transitive groups is the automorphism group of exactly one equivalence class of Hadamard matrices.

Proof.

- If H is of order 12 then $\mathcal{A}_{H} \cong M_{12}$. (Hall)
- If $P S L_{2}(q) \unlhd \mathcal{A}_{H}$, then H is the Paley matrix of order $q+1$.
- $\operatorname{Sp}_{6}(2)$ acts on a unique matrix of order 36. (Computation)

TPP matrices are not cocyclic

Corollary

Twin prime power Hadamard matrices are not cocyclic.
Proof.
A twin prime power matrix has order $p^{\alpha} q^{\beta}+1$. Non-affine: The only order of this form among those in Ito's list is 36 , but $S p_{6}(2)_{1}$ does not contain a regular subgroup. So no TPP-matrix has a non-affine doubly transitive permutation group.
Affine: The result follows from an application of Zsigmondy's theorem.

With Dick Stafford: On twin prime power Hadamard matrices, Cryptography and Communications, 2011.

HSR matrices are not cocyclic

Corollary

The sextic residue difference sets are not cocyclic.

Proof.

Non-affine: An argument using cyclotomy shows that the sextic residue difference sets and Paley difference sets never co-incide. Affine: An old result of Mordell shows that $2^{n}=x^{2}+7$ has a solution only for $n=3,4,5,7,15$. Now, $2^{n+2}=(2 x)^{2}+28$ is of the form $p+1$ only if $p \in\{31,127,131071\}$. We deal with these via ad hoc methods.

Ó C.: Difference sets and doubly transitive group actions on Hadamard matrices. (Also includes a new family of skew-Hadamard difference sets.) To appear (soon hopefully!).

