Outline

1. Modular representation theory
 - Modules and vertices
 - Blocks and defect groups
 - Representation types of block algebras

2. Fusion systems—from ‘local’ to ‘global’
 - Fusion systems of finite groups
 - Saturated fusion systems
 - p-local finite groups and characteristic idempotents

3. My work
 - Alperin’s weight conjecture
 - Control of fusion and transfer
 - Relations between characteristic idempotents
 - Realization and the exoticity index
Modular representation theory

G finite group, k algebraically closed field

Theorem (Maschke)

kG is semisimple iff \(\text{char } k \nmid |G| \).

Modular rep theory = study of \(\text{mod}(kG) \) when \(\text{char } k = p \mid |G| \).

Not all kG-modules are projective \Rightarrow measure the failure by vertices.

Definition

Let M be an indecomposable kG-module; $Q \leq G$.

1. M is relatively Q-projective if $M \mid \text{Ind}_Q^G(N)$ for some kQ-module N.
2. A vertex of M is a minimal subgroup Q of G such that M is relatively Q-projective.

- Vertices are p-subgroups of G, unique up to G-conjugacy.
- M is projective iff M has vertex 1.
Indecomposable factors of the algebra kG are called the blocks of kG:

$$kG = B_1 \times \cdots \times B_r$$

$$1 = e_1 + \cdots + e_r$$

If M is a kG-module, then

$$M = e_1 M \oplus \cdots \oplus e_r M$$

In particular, if M is indecomposable, then $M = e_i M$ for some (unique) i and $e_j M = 0$ for all $j \neq i$. In this case, we say B_i contains M. The unique block of kG containing k is called the principal block.

Definition

A defect group of a block B is a minimal $P \leq G$ such that every indecomposable B-module is relatively P-projective.
Indecomposable factors of the algebra kG are called the blocks of kG:

$$kG = B_1 \times \cdots \times B_r$$

$$1 = e_1 + \cdots + e_r$$

If M is a kG-module, then

$$M = e_1M \oplus \cdots \oplus e_rM$$

In particular, if M is indecomposable, then $M = e_iM$ for some (unique) i and $e_jM = 0$ for all $j \neq i$. In this case, we say M belongs to B_i. The unique block of kG containing k is called the principal block.

Definition

A defect group of a block B is a minimal $P \leq G$ such that every indecomposable B-module is relatively P-projective. [Or, minimal $P \leq G$ s.t. res: $D^b(modB) \to D^b(modkP)$ is faithful.]

- Defect groups are p-subgroups of G, unique up to G-conjugacy.
- $B \cong M_n(k)$ for some n iff B has defect group 1.
- For the principal block: Defect groups \equiv Sylow p-subgroups
Theorem (Bondarenko-Drozd)

Let B be a block of kG with defect group P.

1. B has finite representation type iff P is cyclic.
2. B has tame representation type iff $p = 2$ and P is dihedral, semidihedral, or generalized quaternion.
3. B has wild representation type in all other cases.

How to study block algebras

“Local-Global Principle”

1. From ‘local’: information of p-subgroups of G and conjugation maps between them
2. To ‘global’: information of the whole group G

Local structure of block algebras can be described using fusion systems.
Fusion systems of finite groups

Let p be a fixed prime, G a finite group, $P \in \text{Syl}_p(G)$.

Definition

The **fusion system** of G on P is the category $\mathcal{F} = \mathcal{F}_P(G)$:

- objects: $Q \leq P$
- morphisms: $\text{Hom}_\mathcal{F}(Q, R) = \text{Hom}_G(Q, R)$

Theorem (Frobenius)

G is p-nilpotent, i.e. $G = K \rtimes P$ for some K iff $\mathcal{F}_P(G) = \mathcal{F}_P(P)$.

Theorem (Cartan-Eilenberg)

$$H^*(BG, \mathbb{F}_p) \cong \varprojlim \mathcal{F}_P(G) H^*(-, \mathbb{F}_p)$$
Saturated fusion systems

Definition (Puig)

A saturated fusion system on a finite p-group P is a category \mathcal{F}:

- objects: $Q \leq P$
- morphisms: $\text{Hom}_P(Q, R) \subseteq \text{Hom}_\mathcal{F}(Q, R) \subseteq \text{Inj}(Q, R)$

such that “morphisms behave as if they were G-conjugation maps for some G with $P \in \text{Syl}_p(G)$”.

- $\mathcal{F}_P(G)$ for a finite group G with $P \in \text{Syl}_p(G)$.
- $\mathcal{F}_P(B)$ for a block B with defect group P. (Alperin-Broué-Puig)
- $\exists \mathcal{F} \neq \mathcal{F}_P(G)$ for any G with $P \in \text{Syl}_p(G)$ (exotic fusion systems)

Theorem (Puig)

Let B be a block of kG with defect group P. If B is nilpotent, i.e. $\mathcal{F}_P(B) = \mathcal{F}_P(P)$, then B is Morita equivalent to kP.
Conjecture

For every sfs \mathcal{F} on P, there is a finite category \mathcal{L} such that

$$H^*(|\mathcal{L}|_p^\wedge, \mathbb{F}_p) \cong \lim_{\mathcal{F}} H^*(-, \mathbb{F}_p)$$

$(P, \mathcal{F}, \mathcal{L})$ a p-local finite group with classifying space $|\mathcal{L}|_p^\wedge$

Theorem (Broto-Levi-Oliver)

When $\mathcal{F} = \mathcal{F}_P(G)$ where $P \in \text{Syl}_p(G)$, \mathcal{L} exists

Theorem (Broto-Levi-Oliver; Ragnarsson)

Every sfs \mathcal{F} on P uniquely determines an idempotent $\omega_\mathcal{F}$ in the double Burnside ring $A(P, P) \otimes_{\mathbb{Z}} \mathbb{Z}(p)$, which corresponds to a summand $B\mathcal{F}_+$ of $\Sigma^\infty BP_+$ such that $B\mathcal{F}_+ \simeq \Sigma^\infty |\mathcal{L}|_p^\wedge$ (if \mathcal{L} exists).

$\omega_\mathcal{F}$ characteristic idempotent of \mathcal{F} (e.g. $\mathcal{F} = \mathcal{F}_P(G) \rightsquigarrow \omega_\mathcal{F} \rightsquigarrow G$)
Alperin’s Weight Conjecture

Let B a block of kG, $P \neq 1$ defect group of B, $\mathcal{F} = \mathcal{F}_P(B)$. Then

$$\ell(B) = \sum_{[Q]_G} \# \text{ proj simples of } kN_G(Q)/Q \text{ assoc. with } B$$

$$= \sum_{[Q]_{\mathcal{F}^c}} z(k_{\alpha(Q)} \text{Out}_\mathcal{F}(Q))$$

where $\alpha(Q) \in H^2(\text{Out}_\mathcal{F}(Q), k^\times)$, $Q \in \text{Ob}(\mathcal{F}^c)$ (Külshammer-Puig class).

Gluing Problem (Linckelmann)

Is there $\alpha \in H^2(\mathcal{F}^c, k^\times)$ which restricts to KP classes for all $Q \in \text{Ob}(\mathcal{F}^c)$?

If so,

Theorem (Linckelmann)

$$AWC \iff \ell(B) = \ell(k_\alpha \mathcal{F}^c(B)) \text{ where } k_\alpha \mathcal{F}^c(B) = e_z(k_\alpha \mathcal{F}^c)e_z.$$
Theorem (Linckelmann-P, 2008)

Let B be a block with defect d for which GP has a solution α.

1. $k_\alpha \overline{F}^c(B)$ is a quasi-hereditary algebra.
2. Every standard module is projective.
3. $\text{gldim}(k_\alpha \overline{F}^c(B)) \leq 2(d - 1)$.

Theorem (P, 2008)

Let B be the principal 2-block of $GL_2(q)$, q odd prime power. Then

$$B \rightarrow S_2(q) \rightarrow k_0 \overline{F}^c(B) \quad \text{up to Morita equivalence},$$

which gives a 1-1 correspondence between simples and weights for B.

Theorem (P, 2009)

1. GP has a unique solution for tame blocks.
2. GP for the principal p-block of $\text{PSL}_3(p)$ (p odd) has a unique solution if $p \not\equiv 1 \mod 3$; three solutions if $p \equiv 1 \mod 3$.
Control of fusion and transfer

Theorem (Thompson; Díaz-Glesser-Mazza-P, 2009)

Let \mathcal{F} be a sfs on a finite p-group P. Suppose that p is odd or that \mathcal{F} is S_4-free. If $C_{\mathcal{F}}(Z(P)) = N_{\mathcal{F}}(J(P)) = \mathcal{F}_P(P)$, then $\mathcal{F} = \mathcal{F}_P(P)$.

Proof by reduction to group case

Theorem (Tate; Díaz-Glesser-P-Stancu, 2010)

Let \mathcal{F} be a sfs on a finite p-group P. Then

$$\text{res}: \lim_{\mathcal{F}} H^1(-, \mathbb{F}_p) \sim H^1(P, \mathbb{F}_p) \iff \mathcal{F} = \mathcal{F}_P(P).$$

Proof by using characteristic idempotents $\omega_{\mathcal{F}}$
Relations between characteristic idempotents

Let G be a finite group, $P, L \leq G$, $G = PL$, $N = P \cap L$. Then

$L/N \cong G/P$ \quad a bijection of coset spaces,

or equivalently

$P \times_N L \cong G$ \quad as (P, N)-bisets.

Theorem (P-Ragnarsson-Stancu)

Let $(\mathcal{F}, P) \geq (\mathcal{H}, P), (\mathcal{K}, N)$. Suppose $p_{\mathcal{F}N} = \mathcal{H}\mathcal{K}$ and \mathcal{K} is normal in \mathcal{F}. Then

$\omega_{\mathcal{H}} \times_N \omega_{\mathcal{K}} = \omega_{\mathcal{F}|N}$
The exoticity index of a fusion system

G finite group, P a p-subgroup of G
Can define $\mathcal{F}_P(G)$ even when P is not a Sylow p-subgroup of G.

Theorem (P, 2010)

Let P be a finite p-group. For any sfs \mathcal{F} on P, there is a finite group G with $P \leq G$ such that $\mathcal{F} = \mathcal{F}_P(G)$.

Proof by construction using characteristic idempotent $\omega_{\mathcal{F}}$.

Definition

Let \mathcal{F} be a sfs on a finite p-group P. Define the **exoticity index** $e(\mathcal{F})$ of \mathcal{F} to be

$$\min\{\log_p |P_0 : P| \mid P \leq P_0 \in \text{Syl}_p(G), \mathcal{F} = \mathcal{F}_P(G)\}$$

- $e(\mathcal{F}) \in \mathbb{Z}_{\geq 0}$
- \mathcal{F} exotic $\iff e(\mathcal{F}) > 0$
Theorem (Ruiz-Viruel)

Let p be odd and \mathcal{F} a sfs on $P \in \text{Syl}_p(\text{PSL}_3(p))$ s.t. all $V_i \leq P$ of index p are \mathcal{F}-radical. Then \mathcal{F} is one of the following:

| p | $\text{Out}_\mathcal{F}(P)$ | $|V_i^\mathcal{F}|$ | r_i | Group |
|-----|--------------------------|-------------------|-------|----------------|
| 3 | D_8 | 2, 2 | 2, 2 | $2F_4(2)'$ |
| 3 | SD_{16} | 4 | 2 | J_4 |
| 5 | $4S_4$ | 6 | 4 | Th |
| 7 | $D_{16} \times 3$ | 4, 4 | 2, 2 | |
| 7 | $6^2 : 2$ | 6, 2 | 2, 6 | |
| 7 | $SD_{32} \times 3$ | 8 | 2 | |

where $\text{Aut}_\mathcal{F}(V_i) \cong \text{SL}_2(p) \rtimes \mathbb{Z}/r_i$
Theorem (Ruiz-Viruel; P, 2010)

Let p be odd and \mathcal{F} a sfs on $P \in \text{Syl}_p(\text{PSL}_3(p))$ s.t. all $V_i \leq P$ of index p are \mathcal{F}-radical. Then \mathcal{F} is one of the following:

| p | $\text{Out}_\mathcal{F}(P)$ | $|V_i^\mathcal{F}|$ | r_i | Group |
|-----|-----------------|-----------------|-----|----------------|
| 3 | D_8 | 2, 2 | 2, 2| $2F_4(2)'$ |
| 3 | SD_{16} | 4 | 2 | J_4 |
| 5 | $4S_4$ | 6 | 4 | Th |
| 7 | $D_{16} \times 3$ | 4, 4 | 2, 2| ≤ 425744 |
| 7 | $6^2:2$ | 6, 2 | 2, 6| ≤ 638620 |
| 7 | $SD_{32} \times 3$ | 8 | 2 | ≤ 851496 |

where $\text{Aut}_\mathcal{F}(V_i) \cong \text{SL}_2(p) \rtimes \mathbb{Z}/r_i$.