Cryptography problem sheet

1. You are going to send a message to Bob via classical Diffie-Hellmann key exchange.
(a) Fix $g=35$ as a generator of $(\mathbb{Z} / 3593 \mathbb{Z})^{*}$. Choose your private secret key to be $s k_{A}=16$.
Compute your public key, $g^{s k_{A}} \bmod 3593$.
(b) You receive the public key 639 from Bob. Compute your and Bob's common secret key.
(c) Use the common secret key to encrypt the secret message
"Where_are_you?"
Use the following alphabet to pad the individual letters:

-	A	B	C	D	E	F	G	H	I	J	K	L	M	N
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
O	P	Q	R	S	T	U	V	W	X	Y	Z		?	,
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
@	a	b	c	d	e	f	g	h	i	j	k	1	m	n
30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
O	p	q	r	S	t	u	v	w	x	y	z	!	/	
45	46	47	48	49	50	51	52	53	54	55	56	57	58	

(d) Cut the message into blocks of two letters and make use of the following padding scheme:
1st letter goes to: (number of 1st letter in alphabet)*59,
2 nd letter goes to: (number of 2 nd letter in alphabet), then sum up these two numbers.
Example: "HI" goes to $8 * 59+9=481$.
(e) Use the common secret key to encrypt the secret message, by multiplying it to every message unit. The modulus to 3593 then gets
converted into a block over the alphabet, by writing the modulus as $x * 59^{2}+y * 59+z$. Then the ciphertext for the message unit is (Alphabet entry of x)(Alphabet entry of y)(Alphabet entry of z). Example: Padding 3600.
$z:=3600 \bmod 59 \equiv 1 \bmod 59$
$y:=(3600-z) / 59=3599 / 59=61 \equiv 2 \bmod 59$
$x:=(61-y) / 59=59 / 59 \equiv 1 \bmod 59$.
So, $3600=x * 59^{2}+y * 59+z=1 * 59^{2}+2 * 59+1$.
The ciphertext for the encoded message unit 3600 is hence "ABA".
(f) Generate your decryption key, the multiplicative inverse of the common secret key, and decipher Bob's answer, _XK_FM_Ra_M/_WW_?._EM_'C_Ey_gv_d/_go_CL_vc_uk_gv_Sl_UQ _wp_XT_D@_eL_BN__-

