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Abstract. /Résumé.Cette thèse décrit des travaux qui incorporent une tech-

nique appelée la réduction des sous-complexes de torsion (RST), et qui a été

développée par l’auteur pour calculer la torsion dans la cohomologie de groupes

discrets agissant sur des complexes cellulaires convenables. La RST permet de

s’épargner des calculs sur la machine sur les complexes cellulaires, et d’accéder

directement aux sous-complexes de torsion réduits, ce qui produit des résultats

sur la cohomologie de groupes de matrices en termes de formules. La RST a

déjà donné des formules générales pour la cohomologie des groupes de Coxeter

tétraédraux, et, pour torsion impaire, de groupes SL2 sur des entiers dans des

corps de nombres arbitraires (en collaboration avec M. Wendt). Ces dernières

formules ont permis à Wendt et l’auteur de raffiner la conjecture de Quillen.

D’ailleurs, des progrès ont été faits pour adapter la RST aux calculs de

l’homologie de Bredon. En particulier pour les groupes de Bianchi, donnant

toute leur K-homologie équivariante et, par le morphisme d’assemblage de

Baum–Connes, la K-théorie de leur C∗-algèbres reduites, qui serait très dure

à calculer directement.

En tant qu’une application collatérale, la RST a permis à l’auteur de four-

nir des formules de dimension pour la cohomologie orbi-espace de Chen–Ruan

pour les orbi-espaces de Bianchi complexifiés, et de démontrer (en collabora-

tion avec F. Perroni) la conjecture de Ruan sur la résolution crépante pour

tous les orbi-espaces de Bianchi complexifiés.

Abstract. This thesis describes works involving a technique called Tor-

sion Subcomplex Reduction (TSR), which was developed by the author for

computing torsion in the cohomology of discrete groups acting on suitable cell

complexes. TSR enables one to skip machine computations on cell complexes,

and to access directly the reduced torsion subcomplexes, which yields results

on the cohomology of matrix groups in terms of formulas. TSR has already

yielded general formulas for the cohomology of the tetrahedral Coxeter groups

as well as, at odd torsion, of SL2 groups over arbitrary number rings (in joint

work of M. Wendt and the author). The latter formulas have allowed Wendt

and the author to refine the Quillen conjecture.

Furthermore, progress has been made to adapt TSR to Bredon homology

computations. In particular for the Bianchi groups, yielding their equivariant

K-homology, and, by the Baum–Connes assembly map, the K-theory of their

reduced C∗-algebras, which would be very hard to compute directly.

As a side application, TSR has allowed the author to provide dimension

formulas for the Chen–Ruan orbifold cohomology of the complexified Bianchi

orbifolds, and to prove (jointly with F. Perroni) Ruan’s crepant resolution

conjecture for all complexified Bianchi orbifolds.



Table des matières

1. Introduction en français 4
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1. Introduction en français

Mon projet de recherche envisage de faire des progrès systématiques dans le

calcul de certains invariants de groupes discrets. Le progrès que j’ai déjà fait

s’appuie sur la technique de la réduction des sous-complexes de torsion pour

l’étude de groupes discrets, que j’ai d’abord mise en oeuvre dans [46] pour une

classe spécifique de groupes discrets : les groupes de Bianchi, pour lesquels la

méthode a fourni toute l’homologie au dessus de la dimension cohomologique

virtuelle. Des éléments de cette technique avaient déjà été utilisés avant par Soulé

pour un groupe modulaire [64] ; et des versions ad hoc de la méthode avaient

été mis en oeuvre par Mislin et puis par Henn [23]. Ayant réussi à mettre la

technique dans un cadre assez général [45], j’ai pour projet de l’appliquer à un

ensemble de classes de groupes aussi large que possible.

Il convient de donner quelques exemples où la méthode a déjà donné de bons

résultats :

• Les groupes de Bianchi,

• Les groupes de Coxeter,

• Les groupes SL2 sur des anneaux de nombres arbitraires.

Les groupes de Bianchi. Dans le cas des groupes de Bianchi (groupes

PSL2 sur les anneaux quadratiques imaginaires), la technique de réduction des

sous-complexes de torsion m’a permis de trouver une description de l’anneau de

cohomologie de ces groupes en termes de quantités élémentaires de la théorie des

nombres [45]. L’étape décisive a été d’extraire, à l’aide de la réduction des sous-

complexes de torsion, les informations essentielles des modèles géométriques, et

puis de les détacher complètement du modèle. J’ai donc pu démontrer que toutes

ces informations sont contenues dans les graphes des classes de conjugaison, que

je construis à cette fin pour un groupe arbitraire en partant de son système de

sous-groupes finis modulo l’opération de conjugaison. Un des aspects que je me

propose ainsi d’étudier dans ce projet concerne le comportement des graphes des

classes de conjugaison pour les autres classes de groupes arithmétiques étudiés.

Les groupes de Coxeter. Rappelons que les groupes de Coxeter sont

engendrés par des réflections ; et leur homologie consiste uniquement en de la

torsion. La technique de réduction des sous-complexes de torsion permet ainsi

d’emblée d’obtenir toute la torsion homologique de tous les groupes de Coxeter

tétraédraux pour tous les nombres premiers impairs, dans une formule générale

et aussi en termes de tableaux explicites [45].
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Les groupes SL2 sur des anneaux de nombres arbitraires. En colla-

boration avec Matthias Wendt, j’ai établi des formules pour la cohomologie de

Farrell-Tate à coefficients de torsion impaire de tous les groupes SL2(A), où A

est un anneau de S-entiers dans un corps de nombres arbitraire [54]. Wendt a

aussi étendu ceci aux cas où A est un anneau de fonctions sur une courbe affine

lisse sur un corps algébriquement clos. Ces deux résultats ensemble ont permis

à Wendt de trouver une version raffinée de la conjecture de Quillen, qui tient

compte de tous les types de contre-exemples connus [55]. Donc s’il n’existe pas

de contre-exemple de type complètement nouveau à la conjecture de Quillen, la

conjecture de Quillen–Wendt doit être vraie.

Prochaine étape : Les groupes modulaires. Les groupes modulaires

SLn(Z) sont assez proches des groupes de Bianchi et présentent un grand intérêt,

car ils apparaissent dans de nombreuses disciplines mathématiques. Considérant

de futurs développements de la technique de réduction des sous-complexes de

torsion, il semble donc important de les traiter. Par contre, il y a un manque

de modèles calculatoires préservant la torsion pour cette classe de groupes : on

ne dispose de tels modèles que pour SL2(Z), où la torsion admet une structure

très simple, et pour SL3(Z), où un modèle cellulaire célèbre a été élaboré par

Soulé [64]. Ce dernier modèle admet uniquement des stabilisateurs de cellules

qui fixent ces dernières point par point. Cette propriété n’a pu être atteinte ni

par le modèle de Ash [3–7], ni par le modèle des polytopes de Voronöı [21] pour

SLn(Z). Le modèle de Soulé a été étudié et généralisé par Hans-Werner Henn [25],

mais n’a été mis en pratique que jusqu’à SL3(Z[
1
2
]). Récemment, ce problème a

été résolu par un algorithme développé par Tuan Anh Bui et moi-même, qui

permet de transformer les complexes cellulaires donnés d’une manière efficace

en des complexes cellulaires avec la propriété désirée. Ensuite, ma technique de

réduction des sous-complexes de torsion s’applique.

Application à la conjecture de Baum/Connes. En se servant de com-

plexes cellulaires avec une action des stabilisateurs sans inversions de cellules, on

peut calculer l’homologie de Bredon des groupes arithmétiques en question, pour

en déduire leur K-homologie équivariante. Ceci a été fait par Sanchez-Garcia

pour SL3(Z) [58] et des groupes de Coxeter [59], et je l’ai effectué pour des

groupes de Bianchi [42]. La K-homologie équivariante est le côté géométrique-

topologique de la conjecture de Baum/Connes : Baum et Connes construisent
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un homomorphisme de la K-homologie équivariante à la K-théorie des C∗-

algèbres réduites d’un groupe donné. Leur conjecture dit que cet homomor-

phisme, appelé le morphisme d’assemblage, est un isomorphisme. La conjec-

ture de Baum/Connes implique plusieurs conjectures importantes en topolo-

gie, en géométrie, en algèbre et en analyse fonctionnelle : quand le morphisme

d’assemblage est surjectif, le groupe vérifie la conjecture de Kaplansky/Kadison

sur les idempotents ; quand le morphisme d’assemblage est injectif, le groupe

vérifie la conjecture forte de Novikov et une partie de la conjecture de Gro-

mov/Lawson/Rosenberg. Il est donc intéressant d’obtenir la K-homologie équi-

variante des groupes SLn(Z), n ≥ 4, pour lequels la conjecture de Baum/Connes

est ouverte.
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2. Achievements concerning torsion subcomplex reduction

2.1. Organisation of the thesis. This thesis is a survey paper on a se-

lection of works of the author. Therefore, it contains no new result itself, but

attempts to quote correctly the relevant original results. The focus of this selec-

tion are the techniques presented in Section 3.

The motivation for those techniques are the results described in Sections 2.3

and 2.4, as well as the computations for algebraic K-theory via Farrell cohomo-

logy begun by Schwermer and Vogtmann [61]. Future work involving planned

improvements of the techniques is sketched in Section 5. Published work of the

author not involving the techniques is only summarized Section 4.

2.2. Background. Our objects of study are discrete groups Γ such that Γ

admits a torsion-free subgroup of finite index. By a theorem of Serre [62], all the

torsion-free subgroups of finite index in Γ have the same cohomological dimen-

sion; this dimension is called the virtual cohomological dimension (abbreviated

vcd) of Γ. Above the vcd, the (co)homology of a discrete group is determined by

its system of finite subgroups. We are going to discuss it in terms of Farrell–Tate

cohomology (which we will by now just call Farrell cohomology). The Farrell

cohomology Ĥ
q
is identical to group cohomology Hq in all degrees q above the

vcd, and extends in lower degrees to a cohomology theory of the system of finite

subgroups. Details are elaborated in [11, chapter X]. So for instance considering

the Coxeter groups, the virtual cohomological dimension of all of which vanishes,

their Farrell cohomology is identical to all of their group cohomology. In Sec-

tion 3.1, we will introduce a method of how to explicitly determine the Farrell

cohomology : By reducing torsion sub-complexes.

2.3. Statement of the results. Let me start with results related to the

novel technique of torsion subcomplex reduction, which I have developed. It

is a technique for the study of discrete groups Γ, giving easier access to the

cohomology of the latter at a fixed prime ℓ and above the virtual cohomological

dimension, by extracting the relevant portion of the equivariant spectral sequence

and then simplifying it. Instead of having to work with a full cellular complex

X with a nice Γ-action, the technique inputs only an often lower-dimensional

subcomplex of X , and reduces it to a small number of cells.

I first used torsion subcomplex reduction in [46] for a specific class of arith-

metic groups, the Bianchi groups, for which my method yielded all of the homo-

logy above the virtual cohomological dimension. Some elements of this technique

had already been used by Soulé for a modular group [64]; and were used by Mis-

lin and Henn as a set of ad hoc tricks. After rediscovering these ad hoc tricks,

7



I had success in putting them into a general framework [45]. The advantage of

using a systematic technique rather than a set of ad-hoc tricks is that instead of

merely allowing for isolated ad-hoc example calculations, it becomes possible to

find general formulas, as I did for instance for the entire family of the Bianchi

groups.

It is convenient to give some examples of where the technique of torsion

subcomplex reduction has already produced good results:

• The Bianchi groups,

• The Coxeter groups,

• The SL2 groups over arbitrary number rings.

In this section, I would like to outline the results. Then in Section 3, I will

provide a more detailed look at these methods.

2.3.1. The Bianchi groups. In the case of the PSL2 groups over rings of ima-

ginary quadratic integers (known as the Bianchi groups), the torsion subcomplex

reduction technique has permitted me to find a description of the cohomology

ring of these groups in terms of elementary number-theoretic quantities [45]. The

key step has been to extract, using torsion subcomplex reduction, the essential

information about the geometric models, and then to detach the cohomological

information completely from the model. I was hence able to show that this in-

formation is contained in objects which I call “conjugacy classes graphs”, which

I construct for an arbitrary group from its system of conjugacy classes of finite

subgroups.

2.3.2. The Coxeter groups. Recall that the Coxeter groups are generated by

reflections, and their homology consists solely of torsion. Thus, torsion subcom-

plex reduction allows one to obtain all homology groups for all of the tetrahedral

Coxeter groups at all odd prime numbers, in terms of a general formula [45].

2.4. State of the art on the future objectives. In the following, Section

2.4.m, withm running from 1 to 5, describes the state of the art on Objective 5.m

defined below.

2.4.1. The SL2 groups over arbitrary number rings. In joint work [54], Mat-

thias Wendt and I have established a complete description of the Farrell–Tate

cohomology with odd torsion coefficients for all groups SL2(OK,S), where OK,S is

the ring of S-integers in an arbitrary number field K at an arbitrary non-empty

finite set S of places of K containing the infinite places, based on an explicit

description of conjugacy classes of finite cyclic subgroups and their normalizers

in SL2(OK,S).

8



Our statement uses the following notation. Let ℓ be an odd prime number

different from the characteristic of K. In the situation where, for ζℓ some prim-

itive ℓ-th root of unity, ζℓ + ζ−1
ℓ ∈ K, we will abuse notation and write OK,S[ζℓ]

to mean the ring OK,S[T ]/(T
2− (ζℓ+ ζ−1

ℓ )T +1). Moreover, we denote the norm

maps for class groups and units by

Nm0 : K̃0(OK,S[ζℓ]) → K̃0(OK,S) and Nm1 : OK,S[ζℓ]
× → O×

K,S.

Denote by M(ℓ) the ℓ-primary part of a module M ; by NG(Γ) the normalizer of

Γ in G; and by Ĥ
•
Farrell cohomology (cf. Section 2.2).

Theorem 1 ([54]).

(1) Ĥ
•
(SL2(OK,S),Fℓ) 6= 0 if and only if

ζℓ+ ζ−1
ℓ ∈ K and the Steinitz class detOK,S

(OK,S[ζℓ]) is contained in the

image of the norm map Nm0.

(2) Assume the condition in (1) is satisfied. The set Cℓ of conjugacy classes

of order ℓ elements in SL2(OK,S) sits in an extension

1 → coker Nm1 → Cℓ → kerNm0 → 0.

The set Kℓ of conjugacy classes of order ℓ subgroups of SL2(OK,S) can

be identified with the quotient Kℓ = Cℓ/Gal(K(ζℓ)/K). There is a direct

sum decomposition

Ĥ
•
(SL2(OK,S),Fℓ) ∼=

⊕

[Γ]∈Kℓ

Ĥ
•
(NSL2(OK,S )(Γ),Fℓ)

which is compatible with the ring structure, i.e., the Farrell-Tate co-

homology ring of SL2(OK,S) is a direct sum of the sub-rings for the

normalizers NSL2(OK,S)(Γ).

(3) If the class of Γ is not Gal(K(ζℓ)/K)-invariant, then

NSL2(OK,S)(Γ)
∼= ker Nm1 .

There is a degree 2 cohomology class a2 and a ring isomorphism

Ĥ
•
(ker Nm1,Z)(ℓ) ∼= Fℓ[a2, a

−1
2 ]⊗Fℓ

∧
(ker Nm1) .

In particular, this is a free module over the subring Fℓ[a
2
2, a

−2
2 ].

(4) If the class of Γ is Gal(K(ζℓ)/K)-invariant, then there is an extension

0 → ker Nm1 → NSL2(OK,S)(Γ) → Z/2 → 1.

There is a ring isomorphism

Ĥ
•
(NSL2(OK,S)(Γ),Z)(ℓ)

∼=
(
Fℓ[a2, a

−1
2 ]⊗Fℓ

∧
(ker Nm1)

)Z/2

,
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with the Z/2-action given by multiplication with −1 on a2 and ker Nm1.

In particular, this is a free module over the subring

Fℓ[a
2
2, a

−2
2 ] ∼= Ĥ

•
(D2ℓ,Z)(ℓ).

(5) The restriction map induced from the inclusion SL2(OK,S) → SL2(C)

maps the second Chern class c2 to the sum of the elements a22 in all the

components.

Wendt has furthermore extended this investigation to the cases of SL2 over the

ring of functions on a smooth affine curve over an algebraically closed field [68].

2.4.2. Investigation of the refined Quillen conjecture. The Quillen conjecture

on the cohomology of arithmetic groups has spurred a great deal of mathematics

(see the pertinent monograph [28]). Using our Farrell–Tate cohomology com-

putations, Matthias Wendt and I have established further positive cases for the

Quillen conjecture for SL2. In detail, the original conjecture of 1971 [40] is as

follows for GLn.

Conjecture 2 (Quillen). Let ℓ be a prime number. Let K be a number field

with ζℓ ∈ K, and S a finite set of places containing the infinite places and the

places over ℓ. Then the natural inclusion OK,S →֒ C makes H•(GLn(OK,S),Fℓ)

a free module over the cohomology ring H•
cts(GLn(C),Fℓ).

While there are counterexamples to the original version of the conjecture,

it holds true in many other cases. From the first counterexamples through the

present, the conjecture has kept researchers interested in determining its range

of validity [2].

Positive cases in which the conjecture has been established are n = ℓ = 2 by

Mitchell [37], n = 3, ℓ = 2 by Henn [25], and n = 2, ℓ = 3 by Anton [1].

On the other hand, cases where the Quillen conjecture is known to be false

can all be traced to [26, remark on p. 51], which shows that Quillen’s conjecture

for GLn(Z[1/2]) implies that the restriction map

H•(GLn(Z[1/2]),F2) → H•(Tn(Z[1/2]),F2)

from GLn(Z[1/2]) to the subgroup Tn(Z[1/2]) of diagonal matrices is injective.

Non-injectivity of the restriction map has been shown by Dwyer [20] for n ≥ 32

and ℓ = 2. Dwyer’s bound was subsequently improved by Henn and Lannes to

n ≥ 14. At the prime ℓ = 3, Anton proved non-injectivity for n ≥ 27, cf. [1].

Matthias Wendt’s and my contribution is that we can determine precisely the

module structure above the virtual cohomological dimension; this has allowed us

to relate the Quillen conjecture for SL2 to statements about Steinberg homology.
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This, together with the results of [68], has allowed us to find a refined version

of the Quillen conjecture, which keeps track of all the types of known counter-

examples to the original Quillen conjecture:

Conjecture 3 (Refined Quillen conjecture [55]). Let K be a number field.

Fix a prime ℓ such that ζℓ ∈ K, and an integer n < ℓ. Assume that S is

a set of places containing the infinite places and the places lying over ℓ. If

each cohomology class of GLn(OK,S) is detected on some finite subgroup, then

H•(GLn(OK,S),Fℓ) is a free module over the image of the restriction map

H•
cts(GLn(C),Fℓ) → H•(GLn(OK,S),Fℓ).

For SL2, we have made the following use of our description of the Farrell–Tate

cohomology of SL2 over rings of S-integers.

Corollary 4 (Corollary to Theorem 1). Let K be a number field, let S be a

finite set of places containing the infinite ones, and let ℓ be an odd prime.

(1) The original Quillen conjecture holds for group cohomology

H•(SL2(OK,S),Fℓ) above the virtual cohomological dimension.

(2) The refined Quillen conjecture holds for Farrell–Tate cohomology

Ĥ
•
(SL2(OK,S),Fℓ).

2.4.3. Adaptation of the technique to groups with non-trivial centre. Ethan

Berkove and I have extended my technique of torsion subcomplex reduction,

which originally was designed for groups with trivial centre (e.g., PSL2), to groups

with non-trivial centre (e.g., SL2). This way, in [8], we have determined the 2-

torsion in the cohomology of the SL2 groups over imaginary quadratic number

rings O−m in Q(
√−m), based on their action on hyperbolic 3-space H3.

For instance, we get the following result in the case where the quotient of

the 2–torsion subcomplex has the shape b b , which is equivalent to the following

three conditions (cf. [45]): m ≡ 3 mod 8, the field Q(
√−m) has precisely one

finite ramification place over Q, and the ideal class number of the totally real

number field Q(
√
m) is 1. Under these assumptions, our cohomology ring has

the following dimensions:

dimF2 H
q(SL2 (O−m) ; F2) =





β1 + β2, q = 4k + 5,

β1 + β2 + 2, q = 4k + 4,

β1 + β2 + 3, q = 4k + 3,

β1 + β2 + 1, q = 4k + 2,

β1, q = 1,
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where βq := dimF2 H
q(SL2(O−m)\H3; F2). Let β1 := dimQ H1(SL2(O−m)\H3; Q). For

all absolute values of the discriminant less than 296, numerical calculations yield

β2 + 1 = β1 = β1. In this range, the numbers m subject to the above dimension

formula and β1 are given as follows (the Betti numbers are taken from [49]).

m 11 19 43 59 67 83 107 131 139 163 179 211 227 251 283

β1 1 1 2 4 3 5 6 8 7 7 10 10 12 14 13

This result is a consequence of Theorem 26, combined with Lemma 27 below.

2.4.4. Application to equivariant K-homology. In a recent paper [47], I have,

for the Bianchi groups, adapted the torsion subcomplex reduction technique from

group homology to Bredon homology with coefficients in the complex representa-

tion rings, and with respect to the family of finite subgroups. This has led me to

the following formulas for this Bredon homology, and by the Atiyah–Hirzebruch

spectral sequence, to the formulas below for equivariant K-homology of the Bi-

anchi groups acting on their classifying space for proper actions.

Theorem 5. Let Γ be a Bianchi group or any one of its subgroups. Then the

Bredon homology HFin
n (Γ; RC) splits as a direct sum over

(1) the orbit space homology Hn(BΓ; Z),

(2) a submodule Hn(Ψ
(2)
• ) determined by the reduced 2-torsion subcomplex of

(EΓ,Γ)

(3) and a submodule Hn(Ψ
(3)
• ) determined by the reduced 3-torsion subcom-

plex of (EΓ,Γ).

These submodules are given as follows.

Except for the Gaussian and Eisenstein integers, which can easily be treated

ad hoc [42], all the rings of integers of imaginary quadratic number fields admit

as only units {±1}. In the latter case, we call PSL2(O−m) a Bianchi group with

units {±1}.

Theorem 6. The 2-torsion part of the Bredon complex of a Bianchi group Γ

with units {±1} has homology

Hn(Ψ
(2)
• ) ∼=





Zz2 ⊕ (Z/2)
d2
2 , n = 0,

Zo2 , n = 1,

0, otherwise,

where z2 counts the number of conjugacy classes of subgroups of type Z/2 in Γ,

o2 counts the conjugacy classes of type Z/2 in Γ which are not contained in any

2-dihedral subgroup, and d2 counts the number of 2-dihedral subgroups, whether

or not they are contained in a tetrahedral subgroup of Γ.
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Theorem 7. The 3-torsion part of the Bredon complex of a Bianchi group Γ

with units {±1} has homology

Hn(Ψ
(3)
• ) ∼=




Z2o3+ι3 , n = 0 or 1,

0, otherwise,

where amongst the subgroups of type Z/3 in Γ, o3 counts the number of conjugacy

classes of those of them which are not contained in any 3-dihedral subgroup, and

ι3 counts the conjugacy classes of those of them which are contained in some

3-dihedral subgroup in Γ.

There are formulas for o2, z2, d2, o3 and ι3 in terms of elementary number-

theoretic quantities [29], which are readily computable by machine [45, ap-

pendix]. See Table 2 for how they relate to the types of connected components

of torsion subcomplexes.

We deduce the following formulas for the equivariant K-homology of the

Bianchi groups. Note for this purpose that for a Bianchi group Γ, there is a

model for EΓ of dimension 2, so H2(BΓ; Z) ∼= Zβ2 is torsion-free. Note also that

the naive Euler characteristic of the Bianchi groups vanishes (again excluding

the two special cases of Gaussian and Eisensteinian integers), that is, for βi =

dimHi(BΓ; Q) we have β0 − β1 + β2 = 0 and β0 = 1.

Corollary 8. For any Bianchi group Γ with units {±1}, the short exact

sequence linking Bredon homology and equivariant K-homology splits into

KΓ
0 (EΓ)

∼= Z⊕ Zβ2 ⊕ Zz2 ⊕ (Z/2)
d2
2 ⊕ Z2o3+ι3 .

Furthermore, KΓ
1 (EΓ)

∼= H1(BΓ; Z)⊕ Zo2 ⊕ Z2o3+ι3.

2.4.5. Chen–Ruan orbifold cohomology of the complexified orbifolds. Jointly

with Fabio Perroni, I have studied orbifolds X given by the induced action of

the Bianchi groups on a complexification of SL2(C)/SU2. For these orbifolds, I

have computed the Chen–Ruan Orbifold Cohomology as follows.

Theorem 9 ([38]). Let Γ be a finite index subgroup in a Bianchi group

(except over the Gaussian or Eisensteinian integers). Denote by λ2n the number

of conjugacy classes of cyclic subgroups of order n in Γ. Denote by λ∗
2n the

cardinality of the subset of conjugacy classes which are contained in a dihedral

subgroup of order 2n in Γ. Then,

Hd
orb ([(SL2(C)/SU2)C/Γ]) ∼= Hd ((SL2(C)/SU2)/Γ; Q)⊕





Qλ4+2λ6−λ∗

6 , d = 2,

Qλ4−λ∗

4+2λ6−λ∗

6 , d = 3,

0, otherwise.
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The (co)homology of the quotient space (SL2(C)/SU2)/Γ has been computed

numerically for a large range of Bianchi groups [66], [60], [49]; and bounds for

its Betti numbers have been given in [30]. Krämer [29] has determined number-

theoretic formulas for the numbers λ2n and λ∗
2n of conjugacy classes of finite

subgroups in the Bianchi groups.

Building on this, Perroni and I have established the following result (not yet

published [38]).

Theorem 10.

Let (SL2(C)/SU2)C/Γ be the coarse moduli space of [(SL2(C)/SU2)C/Γ]; and let

Y → (SL2(C)/SU2)C/Γ be a crepant resolution of (SL2(C)/SU2)C/Γ.

Then there is an isomorphism as graded C-algebras between the Chen-Ruan co-

homology ring of [(SL2(C)/SU2)C/Γ] and the singular cohomology ring of Y :

(H∗
CR([(SL2(C)/SU2)C/Γ]),∪CR) ∼= (H∗(Y ),∪) .

The Chen–Ruan orbifold cohomology is conjectured by Ruan to match the

quantum corrected classical cohomology ring of a crepant resolution for the orbi-

fold. We have proved furthermore that the Gromov-Witten invariants involved

in the definition of the quantum corrected cohomology ring of

Y → (SL2(C)/SU2)C/Γ vanish. Hence, Perroni and I have deduced the following.

Corollary 11. Ruan’s crepant resolution conjecture holds true for the com-

plexified Bianchi orbifolds [(SL2(C)/SU2)C/Γ].

2.5. Publications concerning torsion subcomplex reduction.

• Alexander D. Rahm, The homological torsion of PSL2 of the imaginary

quadratic integers, Transactions of the AMS, volume 365 (2013), pp.

1603–1635.

We reveal a correspondence between the homological torsion of the

Bianchi groups and new geometric invariants, which are effectively com-

putable thanks to their action on hyperbolic space. We develop the

basics of torsion subcomplex reduction in order to obtain these invari-

ants. We use it to explicitly compute the integral group homology of the

Bianchi groups. Furthermore, this correspondence facilitates the com-

putation of the equivariant K-homology of the Bianchi groups. By the

Baum–Connes conjecture, which is satisfied by the Bianchi groups, we

obtain the K-theory of their reduced C∗-algebras in terms of isomorphic

images of their equivariant K-homology.
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• Alexander D. Rahm, Homology and K-theory of the Bianchi groups

— Homologie et K-théorie des groupes de Bianchi, Comptes Rendus

Mathématique de l’Académie des Sciences - Paris, volume 349 (2011).

pp. 615–619.

Announcement note of the above paper. Provides a French version.

• Alexander D. Rahm, Accessing the cohomology of discrete groups above

their virtual cohomological dimension, Journal of Algebra, Volume 404,

15 February 2014, pp. 152–175.

We introduce a method to explicitly determine the Farrell–Tate co-

homology of discrete groups. We apply this method to the Coxeter

triangle and tetrahedral groups as well as to the Bianchi groups, i.e.

PSL2(O) for O the ring of integers in an imaginary quadratic number

field, and to their finite index subgroups. We show that the Farrell–

Tate cohomology of the Bianchi groups is completely determined by the

numbers of conjugacy classes of finite subgroups. In fact, our access to

Farrell–Tate cohomology allows us to detach the information about it

from geometric models for the Bianchi groups and to express it only in

terms of the group structure. Formulae for the numbers of conjugacy

classes of finite subgroups have been determined in a thesis of Krämer, in

terms of elementary number-theoretic information on O. An evaluation

of these formulas for a large number of Bianchi groups is provided nu-

merically in the electronically released appendix to this paper. Our new

insights about their homological torsion allow us to give a conceptual

description of the cohomology ring structure of the Bianchi groups.

• Ethan Berkove and Alexander D. Rahm, The mod 2 cohomology rings

of SL2 of the imaginary quadratic integers. With an appendix by Aurel

Page. Journal of Pure and Applied Algebra, Volume 220 (2016), no. 3,

pp. 944–975.

We establish general dimension formulas for the second page of the

equivariant spectral sequence of the action of the SL2 groups over ima-

ginary quadratic integers on their associated symmetric space. On the

way, we extend the torsion subcomplex reduction technique to cases

where the kernel of the group action is non-trivial. Using the equivari-

ant and Lyndon–Hochschild–Serre spectral sequences, we investigate the

second page differentials and show how to obtain the mod 2 cohomology

rings of our groups from this information.
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• Alexander D. Rahm and Matthias Wendt, A refinement of a conjecture

of Quillen, Comptes Rendus Mathématique de l’Académie des Sciences,

Volume 353, Issue 9, September 2015, pp. 779–784.

We present some new results on the cohomology of a large range

of SL2-groups in degrees above the virtual cohomological dimension;

yielding some partial positive results for the Quillen conjecture in rank

one. We combine these results with the known partial positive results

and the known types of counterexamples to the Quillen conjecture, in

order to formulate a refined variant of the conjecture.

• Alexander D. Rahm, On the equivariant K-homology of PSL2 of the

imaginary quadratic integers, Annales de l’Institut Fourier, 66 no. 4

(2016), pp. 1667–1689.

We establish formulas for the part due to torsion of the equivariant

K-homology of all the Bianchi groups (PSL2 of the imaginary quad-

ratic integers), in terms of elementary number-theoretic quantities. To

achieve this, we introduce a novel technique in the computation of

Bredon homology: representation ring splitting, which allows us to ad-

apt the recent technique of torsion subcomplex reduction from group

homology to Bredon homology.

Preprint versions of the above papers, the latest ones incorporating the ref-

erees’ suggestions, are linked from the author’s homepage:

http://www.maths.nuigalway.ie/~rahm/

Also, this page contains links to the official electronic versions of the publishers,

in the cases where the author is aware of their availability.
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3. A closer glance at the techniques

We only provide the core of the technique, Section 3.1, with its proofs, and

refer to the published papers for the proofs in the subsequent subsections.

3.1. Reduction of torsion subcomplexes. In this section we present the

ℓ-torsion subcomplexes theory of [45]. Let ℓ be a prime number. We require

any discrete group Γ under our study to be provided with what we will call

a polytopal Γ-cell complex, that is, a finite-dimensional simplicial complex X

with cellular Γ-action such that each cell stabiliser fixes its cell point-wise. In

practice, we relax the simplicial condition to a polyhedral one, merging finitely

many simplices to a suitable polytope. We could obtain the simplicial complex

back as a triangulation. We further require that the fixed point set XG be acyclic

for every non-trivial finite ℓ-subgroup G of Γ.

Then, the Γ-equivariant Farrell cohomology Ĥ
∗

Γ(X ; M) of X , for any trivial

Γ-moduleM of coefficients, gives us the ℓ-primary part Ĥ
∗
(Γ; M)(ℓ) of the Farrell

cohomology of Γ, as follows.

Proposition 12 (Brown [11]). For a Γ-action on X as specified above, the

canonical map

Ĥ
∗
(Γ; M)(ℓ) → Ĥ

∗

Γ(X ; M)(ℓ)

is an isomorphism.

The classical choice [11] is to take for X the geometric realization of the par-

tially ordered set of non-trivial finite subgroups (respectively, non-trivial element-

ary Abelian ℓ-subgroups) of Γ, the latter acting by conjugation. The stabilisers

are then the normalizers, which in many discrete groups are infinite. In addition,

there are often great computational challenges to determine a group presentation

for the normalizers. When we want to compute the module Ĥ
∗

Γ(X ; M)(ℓ) subject

to Proposition 12, at least we must know the (ℓ-primary part of the) Farrell

cohomology of these normalizers. The Bianchi groups are an instance where dif-

ferent isomorphism types can occur for this cohomology at different conjugacy

classes of elementary Abelian ℓ-subgroups, both for ℓ = 2 and ℓ = 3. As the

only non-trivial elementary Abelian 3-subgroups in the Bianchi groups are of

rank 1, the orbit space Γ\X consists only of one point for each conjugacy class

of type Z/3 and a corollary [11] from Proposition 12 decomposes the 3-primary

part of the Farrell cohomology of the Bianchi groups into the direct product over

their normalizers. However, due to the different possible homological types of

the normalizers (in fact, two of them occur), the final result remains unclear and

subject to tedious case-by-case computations of the normalizers.
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In contrast, in the cell complex we are going to construct (specified in Defini-

tion 16 below), the connected components of the orbit space are for the 3-torsion

in the Bianchi groups not simple points, but have either the shape b b or b .

This dichotomy already contains the information about the occurring normalizer.

The starting point for our construction is the following definition.

Definition 13. Let ℓ be a prime number. The ℓ-torsion subcomplex of a

polytopal Γ-cell complex X consists of all the cells of X whose stabilisers in Γ

contain elements of order ℓ.

We are from now on going to require the cell complex X to admit only finite

stabilisers in Γ, and we require the action of Γ on the coefficient module M to

be trivial. Then obviously only cells from the ℓ-torsion subcomplex contribute to

Ĥ
∗

Γ(X ; M)(ℓ).

Corollary 14 (Corollary to Proposition 12). There is an isomorphism between

the ℓ-primary parts of the Farrell cohomology of Γ and the Γ-equivariant Farrell

cohomology of the ℓ-torsion subcomplex.

We are going to reduce the ℓ-torsion subcomplex to one which still carries

the Γ-equivariant Farrell cohomology of X , but which can also have considerably

fewer orbits of cells. This can be easier to handle in practice, and, for certain

classes of groups, leads us to an explicit structural description of the Farrell

cohomology of Γ. The pivotal property of this reduced ℓ-torsion subcomplex will

be given in Theorem 17. Our reduction process uses the following conditions,

which are imposed to a triple (σ, τ1, τ2) of cells in the ℓ-torsion subcomplex, where

σ is a cell of dimension n− 1, lying in the boundary of precisely the two n-cells

τ1 and τ2, the latter cells representing two different orbits.

Condition A. The triple (σ, τ1, τ2) is said to satisfy Condition A if no higher-

dimensional cells of the ℓ-torsion subcomplex touch σ; and if the n-cell stabilisers

admit an isomorphism Γτ1
∼= Γτ2 .

Where this condition is fulfilled in the ℓ-torsion subcomplex, we merge the

cells τ1 and τ2 along σ and do so for their entire orbits, if and only if they meet

the following additional condition, that we never merge two cells the interior of

which contains two points on the same orbit. We will refer by mod ℓ cohomology

to group cohomology with Z/ℓ-coefficients under the trivial action.

Condition B. With the notation above Condition A, the inclusion Γτ1 ⊂ Γσ

induces an isomorphism on mod ℓ cohomology.
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Lemma 15 ([45]). Let X̃(ℓ) be the Γ-complex obtained by orbit-wise merging

two n-cells of the ℓ-torsion subcomplex X(ℓ) which satisfy Conditions A and B.

Then,

Ĥ
∗

Γ(X̃(ℓ); M)(ℓ) ∼= Ĥ
∗

Γ(X(ℓ); M)(ℓ).

Proof. Consider the equivariant spectral sequence in Farrell cohomology

[11]. On the ℓ-torsion subcomplex, it includes a map

Ĥ
∗
(Γσ; M)(ℓ)

d
(n−1),∗
1 |

Ĥ
∗

(Γσ ;M)(ℓ)

x 7→(φ1(x), φ2(x))

// Ĥ
∗
(Γτ1 ; M)(ℓ) ⊕ Ĥ

∗
(Γτ2 ; M)(ℓ) ,

which is the diagonal map with blocks the isomorphisms

φi : Ĥ
∗
(Γσ; M)(ℓ)

∼=
// Ĥ

∗
(Γτi; M)(ℓ) ,

induced by the inclusions Γτi →֒ Γσ. The latter inclusions are required to induce

isomorphisms in Condition B. If for the orbit of τ1 or τ2 we have chosen a

representative which is not adjacent to σ, then this isomorphism is composed

with the isomorphism induced by conjugation with the element of Γ carrying the

cell to one adjacent to σ. Hence, the map d
(n−1),∗
1 |Ĥ∗

(Γσ ;M)(ℓ)
has vanishing kernel,

and dividing its image out of Ĥ
∗
(Γτ1 ; M)(ℓ)⊕Ĥ

∗
(Γτ2 ; M)(ℓ) gives us the ℓ-primary

part Ĥ
∗
(Γτ1∪τ2 ; M)(ℓ) of the Farrell cohomology of the union τ1 ∪ τ2 of the two

n-cells, once that we make use of the isomorphism Γτ1
∼= Γτ2 of Condition A.

As by Condition A no higher-dimensional cells are touching σ, higher degree

differentials do not affect the result. �

By a “terminal (n− 1)-cell”, we will denote an (n− 1)-cell σ with

• modulo Γ precisely one adjacent n-cell τ ,

• and such that τ has no further cells on the Γ-orbit of σ in its boundary;

• furthermore there shall be no higher-dimensional cells adjacent to σ.

And by “cutting off” the n-cell τ , we will mean that we remove τ together with σ

from our cell complex.

Definition 16. A reduced ℓ-torsion subcomplex associated to a polytopal Γ-

cell complex X is a cell complex obtained by recursively merging orbit-wise all

the pairs of cells satisfying conditions A and B, and cutting off n-cells that admit

a terminal (n− 1)-cell when condition B is satisfied.

A priori, this process yields a unique reduced ℓ-torsion subcomplex only up

to suitable isomorphisms, so we do not speak of “the” reduced ℓ-torsion subcom-

plex. The following theorem makes sure that the Γ-equivariant mod ℓ Farrell

cohomology is not affected by this issue.
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Theorem 17 ([45]). There is an isomorphism between the ℓ-primary part

of the Farrell cohomology of Γ and the Γ-equivariant Farrell cohomology of a

reduced ℓ-torsion subcomplex obtained from X as specified above.

Proof. We apply Proposition 12 to the cell complex X , and then we apply

Lemma 15 each time that we orbit-wise merge a pair of cells of the ℓ-torsion

subcomplex, or that we cut off an n-cell. �

In order to have a practical criterion for checking Condition B, we make use

of the following stronger condition.

Here, we write NΓσ
for taking the normalizer in Γσ and Sylowℓ for picking an

arbitrary Sylow ℓ-subgroup. This is well defined because all Sylow ℓ-subgroups

are conjugate. We use Zassenhaus’s notion for a finite group to be ℓ-normal, if

the center of one of its Sylow ℓ-subgroups is the center of every Sylow ℓ-subgroup

in which it is contained.

Condition B’. With the notation of Condition A, the group Γσ admits a

(possibly trivial) normal subgroup Tσ with trivial mod ℓ cohomology and with

quotient group Gσ; and the group Γτ1 admits a (possibly trivial) normal sub-

group Tτ with trivial mod ℓ cohomology and with quotient group Gτ making the

sequences

1 → Tσ → Γσ → Gσ → 1 and 1 → Tτ → Γτ1 → Gτ → 1

exact and satisfying one of the following.

(1) Either Gτ
∼= Gσ, or

(2) Gσ is ℓ-normal and Gτ
∼= NGσ

(center(Sylowℓ(Gσ))), or

(3) both Gσ and Gτ are ℓ-normal and there is a (possibly trivial) group T

with trivial mod ℓ cohomology making the sequence

1 → T → NGσ
(center(Sylowℓ(Gσ))) → NGτ

(center(Sylowℓ(Gτ ))) → 1

exact.

Lemma 18. Condition B’ implies Condition B.

For the proof of (B’(2) ⇒ B), we use Swan’s extension [65, final corollary] to

Farrell cohomology of the Second Theorem of Grün [24, Satz 5].

Theorem 19 (Swan). Let G be a ℓ-normal finite group, and let N be the

normalizer of the center of a Sylow ℓ-subgroup of G. Let M be any trivial G-

module. Then the inclusion and transfer maps both are isomorphisms between

the ℓ-primary components of Ĥ
∗
(G; M) and Ĥ

∗
(N ; M).
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For the proof of ( B’(3)⇒ B), we make use of the following direct consequence

of the Lyndon–Hochschild–Serre spectral sequence.

Lemma 20 ([45]). Let T be a group with trivial mod ℓ cohomology, and

consider any group extension

1 → T → E → Q → 1.

Then the map E → Q induces an isomorphism on mod ℓ cohomology.

This statement may look like a triviality, but it becomes wrong as soon as we

exchange the rôles of T and Q in the group extension. In degrees 1 and 2, our

claim follows from [11, VII.(6.4)]. In arbitrary degree, it is more or less known

and we can proceed through the following easy steps.

Proof. Consider the Lyndon–Hochschild–Serre spectral sequence associated

to the group extension, namely

E2
p,q = Hp(Q; Hq(T ; Z/ℓ)) converges to Hp+q(E; Z/ℓ).

By our assumption, Hq(T ; Z/ℓ) is trivial, so this spectral sequence concentrates

in the row q = 0, degenerates on the second page and yields isomorphisms

(1) Hp(Q; H0(T ; Z/ℓ)) ∼= Hp(E; Z/ℓ).

As for the modules of co-invariants, we have ((Z/ℓ)T )Q
∼= (Z/ℓ)E (see for in-

stance [34]), the trivial actions of E and T induce that also the action of Q

on the coefficients in H0(T ; Z/ℓ) is trivial. Thus, Isomorphism (1) becomes

Hp(Q; Z/ℓ) ∼= Hp(E; Z/ℓ). �

The above lemma directly implies that any extension of two groups both

having trivial mod ℓ cohomology, again has trivial mod ℓ cohomology.

Proof of Lemma 18. We combine Theorem 19 and Lemma 20 in the ob-

vious way. �

Remark 21. The computer implementation [44] checks Conditions B′(1)

and B′(2) for each pair of cell stabilisers, using a presentation of the latter in

terms of matrices, permutation cycles or generators and relators. In the below

examples however, we do avoid this case-by-case computation by a general de-

termination of the isomorphism types of pairs of cell stabilisers for which group

inclusion induces an isomorphism on mod ℓ cohomology. The latter method is

the procedure of preference, because it allows us to deduce statements that hold

for the entire class of groups in question.
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3.1.1. Example: A 2-torsion subcomplex for SL3(Z). The 2-torsion subcom-

plex of the cell complex described by Soulé [64], obtained from the action of

SL3(Z) on its symmetric space, has the following homeomorphic image.

stab(M) ∼= S4

stab(Q) ∼= D6
stab(O) ∼= S4 stab(N) ∼= D4

stab(P) ∼= S4

N’ M’

D2D3

D3

D2

Z/2

Z/2
Z/2

D4

Z/2

D4

D2

Z/2

Here, the three edges NM , NM ′ and N ′M ′ have to be identified as indicated

by the arrows. All of the seven triangles belong with their interior to the 2-

torsion subcomplex, each with stabiliser Z/2, except for the one which is marked

to have stabiliser D2. Using the methods described in Section 3.1, we reduce this

subcomplex to
b
S4

O
b

D2 D6

Q

Z/2 S4

M
b

D4 S4

P
b

D4 D4

N ′

b

and then to
S4b

Z/2 S4b
D4 S4b

which is the geometric realization of Soulé’s diagram of cell stabilisers. This

yields the mod 2 Farrell cohomology as specified in [64].
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3.1.2. Example: Farrell cohomology of the Bianchi modular groups. Consider

the SL2 matrix groups over the ring O−m of integers in the imaginary quadratic

number field Q(
√−m), with m a square-free positive integer. These groups,

as well as their central quotients PSL2 (O−m), are known as Bianchi (modular)

groups. We recall the following information from [45] on the ℓ-torsion subcomplex

of PSL2 (O−m). Let Γ be a finite index subgroup in PSL2(O−m). Then any

element of Γ fixing a point inside hyperbolic 3-space H acts as a rotation of finite

order. By Felix Klein’s work, we know conversely that any torsion element α is

elliptic and hence fixes some geodesic line. We call this line the rotation axis

of α. Every torsion element acts as the stabiliser of a line conjugate to one

passing through the Bianchi fundamental polyhedron. We obtain the refined

cellular complex from the action of Γ on H as described in [46], namely we

subdivide H until the stabiliser in Γ of any cell σ fixes σ point-wise. We achieve

this by computing Bianchi’s fundamental polyhedron for the action of Γ, taking

as a preliminary set of 2-cells its facets lying on the Euclidean hemispheres and

vertical planes of the upper-half space model for H, and then subdividing along

the rotation axes of the elements of Γ.

It is well-known [61] that if γ is an element of finite order n in a Bianchi

group, then n must be 1, 2, 3, 4 or 6, because γ has eigenvalues ρ and ρ, with

ρ a primitive n-th root of unity, and the trace of γ is ρ + ρ ∈ O−m ∩ R = Z.

When ℓ is one of the two occurring prime numbers 2 and 3, the orbit space of

this subcomplex is a graph, because the cells of dimension greater than 1 are

trivially stabilized in the refined cellular complex. We can see that this graph is

finite either from the finiteness of the Bianchi fundamental polyhedron, or from

studying conjugacy classes of finite subgroups as in [29].

As in [53], we make use of a 2-dimensional deformation retract X of the

refined cellular complex, equivariant with respect to a Bianchi group Γ. This

retract has a cell structure in which each cell stabiliser fixes its cell pointwise.

Since X is a deformation retract of H and hence acyclic,

H∗
Γ(X) ∼= H∗

Γ(H) ∼= H∗(Γ).

In Theorem 22, proven in [45], we give a formula expressing precisely how

the Farrell cohomology of a Bianchi group with units {±1} (i.e., just exclud-

ing the Gaussian and the Eisentein integers as imaginary quadratic rings, see

Section 2.4.4) depends on the numbers of conjugacy classes of non-trivial finite

subgroups of the occurring five types specified in Table 1. The main step in

order to prove this, is to read off the Farrell cohomology from the quotient of the

reduced torsion sub-complexes.
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Subgroup type Z/2 Z/3 D2 D3 A4

Number of conjugacy classes λ4 λ6 µ2 µ3 µT

Table 1. The non-trivial finite subgroups of PSL2 (O−m) have

been classified by Klein [27]. Here, Z/n is the cyclic group of

order n, the dihedral groups are D2 with four elements and D3

with six elements, and the tetrahedral group is isomorphic to the

alternating group A4 on four letters. Formulas for the numbers of

conjugacy classes counted by the Greek symbols have been given

by Krämer [29].

Krämer’s formulas [29] express the numbers of conjugacy classes of the five

types of non-trivial finite subgroups given in Table 1. We are going to use the

symbols of that table also for the numbers of conjugacy classes in Γ, where Γ is

a finite index subgroup in a Bianchi group. Recall that for ℓ = 2 and ℓ = 3, we

can express the the dimensions of the homology of Γ with coefficients in the field

Fℓ with ℓ elements in degrees above the virtual cohomological dimension of the

Bianchi groups – which is 2 – by the Poincaré series

P ℓ
Γ(t) :=

∞∑

q > 2

dimFℓ
Hq (Γ; Fℓ) t

q,

which has been suggested by Grunewald. Further let P b (t) := −2t3

t−1
, which

equals the Poincaré series P 2
Γ(t) of the groups Γ the quotient of the reduced

2–torsion sub-complex of which is a circle. Denote by

• P ∗
D2
(t) := −t3(3t−5)

2(t−1)2
, the Poincaré series over

dimF2 Hq (D2; F2)−
3

2
dimF2 Hq (Z/2; F2)

• and by P ∗
A4
(t) := −t3(t3−2t2+2t−3)

2(t−1)2(t2+t+1)
, the Poincaré series over

dimF2 Hq (A4; F2)−
1

2
dimF2 Hq (Z/2; F2) .

In 3-torsion, let P
b b

(t) := −t3(t2−t+2)
(t−1)(t2+1)

, which equals the Poincaré series P 3
Γ(t)

for those Bianchi groups, the quotient of the reduced 3–torsion sub-complex of

which is a single edge without identifications.
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Theorem 22. For any finite index subgroup Γ in a Bianchi group with units

{±1}, the group homology in degrees above its virtual cohomological dimension

is given by the Poincaré series

P 2
Γ(t) =

(
λ4 −

3µ2 − 2µT

2

)
P b (t) + (µ2 − µT )P

∗
D2
(t) + µTP

∗
A4
(t)

and

P 3
Γ(t) =

(
λ6 −

µ3

2

)
P b (t) +

µ3

2
P

b b
(t).

More general results are stated in Section 2.4.1 above.

3.1.3. Example: Farrell cohomology of Coxeter (tetrahedral) groups. Recall

that a Coxeter group is a group admitting a presentation

〈g1, g2, ..., gn | (gigj)mi,j = 1〉,

where mi,i = 1; for i 6= j we have mi,j ≥ 2; and mi,j = ∞ is permitted, meaning

that (gigj) is not of finite order. As the Coxeter groups admit a contractible

classifying space for proper actions [15], their Farrell cohomology yields all of

their group cohomology. So in this section, we make use of this fact to determine

the latter. For facts about Coxeter groups, and especially for the Davis complex,

we refer to [15]. Recall that the simplest example of a Coxeter group, the dihedral

group Dn, is an extension

1 → Z/n → Dn → Z/2 → 1.

So we can make use of the original application [67] of Wall’s lemma to obtain

its mod ℓ homology for prime numbers ℓ > 2,

Hq(Dn; Z/ℓ) ∼=





Z/ℓ, q = 0,

Z/gcd(n, ℓ), q ≡ 3 or 4 mod 4,

0, otherwise.

Theorem 23 ([45]). Let ℓ > 2 be a prime number. Let Γ be a Coxeter group

admitting a Coxeter system with at most four generators, and relator orders

not divisible by ℓ2. Let Z(ℓ) be the ℓ–torsion sub-complex of the Davis complex

of Γ. If Z(ℓ) is at most one-dimensional and its orbit space contains no loop

or bifurcation, then the mod ℓ homology of Γ is isomorphic to (Hq(Dℓ; Z/ℓ))
m,

with m the number of connected components of the orbit space of Z(ℓ).

The conditions of this theorem are for instance fulfilled by the Coxeter tetra-

hedral groups; the exponent m has been specified for each of them in the tables
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in [45]. In the easier case of Coxeter triangle groups, we can sharpen the state-

ment as follows. The non-spherical and hence infinite Coxeter triangle groups

are given by the presentation

〈 a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ca)r = 1 〉 ,

where 2 ≤ p, q, r ∈ N and 1
p
+ 1

q
+ 1

r
≤ 1.

Proposition 24 ([45]). For any prime number ℓ > 2, the mod ℓ homology

of a Coxeter triangle group is given as the direct sum over the mod ℓ homology

of the dihedral groups Dp, Dq and Dr.

3.2. The non-central torsion subcomplex. In the case of a trivial kernel

of the action on the polytopal Γ-cell complex, torsion subcomplex reduction

allows one to establish general formulas for the Farrell cohomology of Γ [45]. In

contrast, for instance the action of SL2 (O−m) on hyperbolic 3-space has the 2-

torsion group {±1} in the kernel; since every cell stabiliser contains 2-torsion, the

2-torsion subcomplex does not ease our calculation in any way. We can remedy

this situation by considering the following object, on whose cells we impose a

supplementary property.

Definition 25. The non-central ℓ-torsion subcomplex of a polytopal Γ-cell

complex X consists of all the cells of X whose stabilisers in Γ contain elements

of order ℓ that are not in the center of Γ.

We note that this definition yields a correspondence between, on one side,

the non-central ℓ-torsion subcomplex for a group action with kernel the center

of the group, and on the other side, the ℓ-torsion subcomplex for its central

quotient group. In [8], this correspondence has been used in order to identify

the non-central ℓ-torsion subcomplex for the action of SL2 (O−m) on hyperbolic

3-space as the ℓ-torsion subcomplex of PSL2 (O−m). However, incorporating the

non-central condition for SL2 (O−m) introduces significant technical obstacles,

which were addressed in that paper, establishing the following theorem for any

finite index subgroup Γ in SL2 (O−m). Denote by X a Γ-equivariant retract

of SL2(C)/SU2, by Xs the 2-torsion subcomplex with respect to PΓ (the “non-

central” 2-torsion subcomplex for Γ), and by X ′
s the part of it with higher 2-rank.

Further, let v denote the number of conjugacy classes of subgroups of higher 2-

rank, and define sign(v) :=







0, v = 0,

1, v > 0.

For q ∈ {1, 2}, denote the dimension

dimF2 H
q(Γ\X ; F2) by βq.
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Theorem 26 ([8]). The E2 page of the equivariant spectral sequence with

F2-coefficients associated to the action of Γ on X is concentrated in the columns

n ∈ {0, 1, 2} and has the following form.

q = 4k + 3 E0,3
2 (Xs) E1,3

2 (Xs)⊕ (F2)
a1 (F2)

a2

q = 4k + 2 H2
Γ(X

′
s)⊕ (F2)

1−sign(v) (F2)
a3 H2(Γ\X)

q = 4k + 1 E0,1
2 (Xs) E1,1

2 (Xs)⊕ (F2)
a1 (F2)

a2

q = 4k F2 H1(Γ\X) H2(Γ\X)

k ∈ N ∪ {0} n = 0 n = 1 n = 2

where
a1 = χ(Γ\Xs)− 1 + β1(Γ\X) + c

a2 = β2(Γ\X) + c

a3 = β1(Γ\X) + v − sign(v).

In order to derive the example stated in Section 2.4.3 above, we combine

the latter theorem with the following determination (carried out in [8]) of the

d2-differentials on the four possible (cf. Table 2) connected component types b ,
b b , b b and b b of the reduced non-central 2-torsion subcomplex for the full

SL2 groups over the imaginary quadratic number rings.

Lemma 27 ([8]). The d2 differential in the equivariant spectral sequence

associated to the action of SL2(O−m) on hyperbolic space is trivial on components

of the non-central 2-torsion subcomplex quotient

• of type b in dimensions q ≡ 1 mod 4 if and only if it is trivial on these

components in dimensions q ≡ 3 mod 4.

• of type b b .

• of types b b and b b in dimensions q ≡ 3 mod 4.

3.3. Application to equivariant K -homology. In order to adapt torsion

subcomplex reduction to Bredon homology and prove Theorem 5, we need to

perform a “representation ring splitting”.

Representation ring splitting. The classification of Felix Klein [27] of the fi-

nite subgroups in PSL2(O) is recalled in Table 1. We further use the existence

of geometric models for the Bianchi groups in which all edge stabilisers are finite

cyclic and all cells of dimension 2 and higher are trivially stabilised. Therefore,

the system of finite subgroups of the Bianchi groups admits inclusions only em-

anating from cyclic groups. This makes the Bianchi groups and their subgroups

subject to the splitting of Bredon homology stated in Theorem 5.

The proof of Theorem 5 is based on the above particularities of the Bianchi

groups, and applies the following splitting lemma for the involved representation

rings to a Bredon complex for (EΓ,Γ).
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Table 2. Connected component types of reduced torsion subcom-

plex quotients for the PSL2 Bianchi groups. The exhaustiveness of

this table has been established using theorems of Krämer [8].

2–torsion

subcomplex

components

counted

by

3–torsion

subcomplex

components

counted

by

b Z/2 o2 = λ4 − λ∗
4

b Z/3 o3 = λ6 − λ∗
6

A4
b b A4 ι2 D3

b b D3 ι3 = λ∗
6

D2
b b D2 θ

D2
b b A4 ρ

Lemma 28 ([47]). Consider a group Γ such that every one of its finite

subgroups is either cyclic of order at most 3, or of one of the types D2,D3 or A4.

Then there exist bases of the complex representation rings of the finite subgroups

of Γ, such that simultaneously every morphism of representation rings induced

by inclusion of cyclic groups into finite subgroups of Γ, splits as a matrix into

the following diagonal blocks.

(1) A block of rank 1 induced by the trivial and regular representations,

(2) a block induced by the 2–torsion subgroups

(3) and a block induced by the 3–torsion subgroups.

As this splitting holds simultaneously for every morphism of representation

rings, we have such a splitting for every morphism of formal sums of represent-

ation rings, and hence for the differential maps of the Bredon complex for any

Bianchi group and any of their subgroups.

The bases that are mentioned in the above lemma, are obtained by elementary

base transformations from the canonical basis of the complex representation ring

of a finite group to a basis whose matrix form has

• its first row concentrated in its first entry, for a finite cyclic group (edge

stabiliser). The base transformation is carried out by summing over

all representations to replace the trivial representation by the regular

representation.
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• its first column concentrated in its first entry, for a finite non-cyclic

group (vertex stabiliser). The base transformation is carried out by

subtracting the trivial representation from each representation, except

from itself.

The details are provided in [47].

3.4. Chen–Ruan orbifold cohomology of the complexified orbifolds.

Let Γ be a discrete group acting properly, i.e. with finite stabilizers, by diffeo-

morphisms on a manifold Y . For any element g ∈ Γ, denote by CΓ(g) the

centralizer of g in Γ. Denote by Y g the subset of Y consisting of the fixed points

of g.

Definition 29. Let T ⊂ Γ be a set of representatives of the conjugacy classes

of elements of finite order in Γ. Then we set

H∗
orb([Y/Γ]) :=

⊕

g∈T

H∗ (Y g/CΓ(g); Q) .

It can be checked that this definition gives the vector space structure of the

orbifold cohomology defined by Chen and Ruan [14], if we forget the grading

of the latter. We can verify this fact using arguments analogous to those used

by Fantechi and Göttsche [18] in the case of a finite group Γ acting on Y . The

additional argument needed when considering some element g in Γ of infinite

order, is the following. As the action of Γ on Y is proper, g does not admit any

fixed point in Y . Thus, H∗ (Y g/CΓ(g); Q) = H∗ (∅; Q) = 0.

Our main results on the vector space structure of the Chen–Ruan orbifold

cohomology of Bianchi orbifolds are the below two theorems.

Theorem 30 ([47]). For any element γ of order 3 in a finite index subgroup Γ

in a Bianchi group with units {±1}, the quotient space Hγ/CΓ(γ) of the rotation

axis modulo the centralizer of γ is homeomorphic to a circle.

Theorem 31 ([47]). Let γ be an element of order 2 in a Bianchi group Γ

with units {±1}. Then, the homeomorphism type of the quotient space Hγ/CΓ(γ)

is

b b an edge without identifications, if 〈γ〉 is contained in a subgroup of type

D2 inside Γ and
b a circle, otherwise.

Denote by λ2ℓ the number of conjugacy classes of subgroups of type Z/ℓZ in

a finite index subgroup Γ in a Bianchi group with units {±1}. Denote by λ∗
2ℓ

the number of conjugacy classes of subgroups of type Z/ℓZ which are contained
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in a subgroup of type Dn in Γ. By [47], there are 2λ6 − λ∗
6 conjugacy classes

of elements of order 3. As a result of Theorems 30 and 31, the vector space

structure of the orbifold cohomology of [H3
R/Γ] is given as

H•
orb([H3

R/Γ])
∼=

H• (HR/Γ; Q)
⊕λ∗

4 H•
(

b b ; Q
)⊕(λ4−λ∗

4)H• ( b ; Q)
⊕(2λ6−λ∗

6)H• ( b ; Q) .

The (co)homology of the quotient space HR/Γ has been computed numerically

for a large range of Bianchi groups [66], [60], [49]; and bounds for its Betti

numbers have been given in [30]. Krämer [29] has determined number-theoretic

formulas for the numbers λ2ℓ and λ∗
2ℓ of conjugacy classes of finite subgroups in

the full Bianchi groups. Krämer’s formulas have been evaluated for hundreds of

thousands of Bianchi groups [45], and these values are matching with the ones

from the orbifold structure computations with [43] in the cases where the latter

are available.

When we pass to the complexified orbifold [H3
C/Γ], the real line that is the

rotation axis in HR of an element of finite order, becomes a complex line. How-

ever, the centralizer still acts in the same way by reflections and translations.

So, the interval b b as a quotient of the real line yields a stripe b b × R as a

quotient of the complex line. And the circle b as a quotient of the real line

yields a cylinder b × R as a quotient of the complex line. Therefore, using the

degree shifting numbers computed in [47], we obtain the result of Theorem 9,

Hd
orb

(
[H3

C/Γ]
) ∼= Hd (HC/Γ; Q)⊕





Qλ4+2λ6−λ∗

6 , d = 2,

Qλ4−λ∗

4+2λ6−λ∗

6 , d = 3,

0, otherwise.
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4. Other achievements

(1) Alexander D. Rahm, On a question of Serre, Comptes Rendus Mathé-

matique de l’Académie des Sciences - Paris (2012),

presented by Jean-Pierre Serre [41].

Consider an imaginary quadratic number field Q(
√−m), with m a

square-free positive integer, and its ring of integers O. The Bianchi

groups are the groups SL2(O). Further consider the Borel–Serre com-

pactification [63] of the quotient of hyperbolic 3–space H by a finite

index subgroup Γ in a Bianchi group, and in particular the following

question which Serre posed on page 514 of the quoted article. Consider

the map α induced on homology when attaching the boundary into the

Borel–Serre compactification.

How can one determine the kernel of α (in degree 1) ?

Serre used a global topological argument and obtained the rank of the

kernel of α. In the quoted article, Serre did add the question what sub-

module precisely this kernel is. Through a local topological study, we

can decompose the kernel of α into its parts associated to each cusp.

(2) Alexander D. Rahm and Mathias Fuchs, The integral homology of PSL2

of imaginary quadratic integers with non-trivial class group, Journal of

Pure and Applied Algebra (2011) [53].

We show that a cellular complex described by Flöge allows to de-

termine the integral homology of the Bianchi groups PSL2(O−m). We

use this to compute in the cases m = 5, 6, 10, 13 and 15 with non-trivial

class group the integral homology of PSL2(O−m). Previously, this was

only known in the cases m = 1, 2, 3, 7 and 11 with trivial class group.

(3) Alexander D. Rahm, Higher torsion in the Abelianization of the full

Bianchi groups, LMS J. of Computation and Mathematics (2013) [49].

Denote by Q(
√−m), with m a square-free positive integer, an ima-

ginary quadratic number field, and by O−m its ring of integers. The

Bianchi groups are the groups SL2(O−m). In the literature, there has

been so far no example of p-torsion in the integral homology of the full

Bianchi groups, for p a prime greater than the order of elements of finite

order in the Bianchi group, which is at most 6.

However, extending the scope of the computations, we can observe ex-

amples of torsion in the integral homology of the quotient space, at

prime numbers as high as for instance p = 80737 at the discriminant

−1747.
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(4) Alexander D. Rahm and Mehmet Haluk Şengün, On Level One Cuspidal

Bianchi Modular Forms, LMS Journal of Computation and Mathematics

(2013) [51].

In this paper, we present the outcome of extensive computer calcu-

lations, locating several of the very rare instances of level one cuspidal

Bianchi modular forms that are not lifts of elliptic modular forms.

(5) Alexander D. Rahm, The subgroup measuring the defect of the Abelianiz-

ation of SL2(Z[i]), Journal of Homotopy and Related Structures (2014)

[57].

There is a natural inclusion of SL2(Z) into SL2(Z[i]), but it does not

induce an injection of commutator factor groups (Abelianizations).

In order to see where and how the 3-torsion of the Abelianization of

SL2(Z) disappears, we study a double cover of the amalgamated product

decomposition SL2(Z) ∼= (Z/4Z) ∗(Z/2Z) (Z/6Z) inside SL2(Z[i]);

and then compute the homology of the covering amalgam.

(6) Alexander D. Rahm, Complexifiable characteristic classes, Journal of

Homotopy & Related Structures (2015) [56].

We examine the topological characteristic cohomology classes of com-

plexified vector bundles. In particular, all the classes coming from the

real vector bundles underlying the complexification are determined.

Concerning Item 4 above, we shall now review some details.

Bianchi modular forms are automorphic forms over an imaginary quadratic

field Q(
√
−d), of cohomological type, associated to a Bianchi group. Even though

modern studies of Bianchi modular forms go back to the mid 1960’s, most of

the fundamental problems surrounding their theory are still wide open. In the

paper [51], we report on our extensive computations that show the paucity of

“genuine” level one cuspidal Bianchi modular forms.

Let Sk(1) denote the space of level one weight k+2 cuspidal Bianchi modular

forms over Q(
√
−d). In their 2010 paper [22], Finis, Grunewald and Tirao

computed the dimension of the subspace Lk(1) of Sk(1) which is formed by (twists

of) those forms which arise from elliptic cuspidal modular forms via base-change

or arise from a quadratic extension of Q(
√
−d) via automorphic induction (see

[22] for these notions). The orthogonal complement to Lk(1) in Sk(1) is called

the space of genuine modular forms, and is investigated numerically due to the

conjectural connections between the spaces S0(1) and Abelian varieties defined

over Q(
√
−d) of GL2-type. There have been previous reports, however of limited

size, in the 2009 paper [13] of Calegari and Mazur (the computations in this
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|D| 7 11 71 87 91 155 199 223 231 339 344

k 12 10 1 2 6 4 1 0 4 1 1

dim 2 2 2 2 2 2 4 2 2 2 2

|D| 407 415 455 483 571 571 643 760 1003 1003 1051

k 0 0 0 1 0 1 0 2 0 1 0

dim 2 2 2 2 2 2 2 2 2 2 2
Table 3. The cases where there are genuine classes

paper were carried out by Pollack and Stein) and in the 2010 paper [22] of Finis,

Grunewald and Tirao. While the computations in [13] were limited to the case

d = 2, the computations in [22] covered ten imaginary quadratic fields.

It was observed in [13] that for 2k ≤ 96, one has L2k(1) = S2k(1). The

computations of [22] extended those of [13]. An interesting outcome of the data

collected in [22] is that except in two of the 946 spaces they computed, one has

Lk(1) = Sk(1). The exceptional cases are (d, k) = (7, 12) and (d, k) = (11, 10).

In both cases, there is a two-dimensional complement to Lk(1) inside Sk(1).

Using a different and more efficient approach, we computed, over more than

800 processor-days, the dimension of 4986 different spaces Sk(1) over 186 different

imaginary quadratic fields. The precise scope of our computations is given in [51].

In only 22 of these spaces were we able to observe genuine forms. The precise

data about these exceptional cases is provided in Table 3. We note that in [51],

some further subspaces are tabulated, which are in fact populated by CM-forms

(arising through automorphic induction).

As usual, the starting point of our approach is the so called “Eichler-Shimura-

Harder” isomorphism which allows us to replace Sk(1) with the cohomology of

the relevant Bianchi group with special non-trivial coefficients. Then to compute

this cohomology space, we use the program Bianchi.gp [43], which analyzes the

structure of the Bianchi group via its action on hyperbolic 3-space (which is

isomorphic to the associated symmetric space SL2(C)/SU2). We then feed this

group-geometric information into an equivariant spectral sequence that gives us

an explicit description of the second cohomology of the Bianchi group, with the

relevant coefficients.

These investigations are currently being extended to higher levels, in joint

work with M. Haluk Şengün and Panagiotis Tsaknias.
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5. Future work on torsion in the homology of discrete groups

Objectives. For each of the following objectives, a state of the art descrip-

tion is provided above (Section 2.4.m for Objective 5.m, where m runs from 1

to 5).

5.1. Extension of the technique for higher rank matrix groups. The

results so far obtained for linear groups mainly concern rank 2 matrix groups.

Some technical difficulties await us in treating higher rank matrix groups with

my technique. I want to overcome these difficulties, and establish formulas for

the Farrell–Tate cohomology of PSLn and PGLn, n ≥ 3, over rings of integers in

number fields.

While I am going to focus on PSLn and PGLn, I am going to keep the more

general picture of reductive groups in mind, in the hope that along the way, I

can lay the foundations for adaptations of torsion subcomplex reduction in this

direction.

Cohomology of the Hilbert modular groups As a stepping-stone for reaching

Objective 5.1, the cohomology of a collection of Hilbert modular groups (SL2

over totally real quadratic integers) shall be computed explicitly, because Hilbert

modular groups occur as block subgroups in the higher rank matrix groups to

be studied.

5.2. Investigation of the refined Quillen conjecture. One of the ap-

plications of the rank filtration methods for higher rank arithmetic groups G is

checking the refined Quillen conjecture (stated as Conjecture 3 above) on SL3

over number fields, using the formulas to be established as part of Objective 5.1.

My goal is to pursue this towards a final refinement of the Quillen conjecture (in

joint work with Matthias Wendt).

I will also consider possible extensions of the Quillen conjecture in several

directions. It is possible to ask versions of Quillen’s conjecture for reductive

groups G other than GLn or SLn. In such a formulation, I want to know if the

cohomology ring H•(G(OK,S);Fℓ) is free over the topological cohomology ring

H•
cts(G(C);Fℓ).

5.3. Adaptation of the technique to groups with non-trivial centre.

My technique of torsion subcomplex reduction, which originally had been de-

signed for groups with trivial centre needs to be adapted to treat also groups

with non-trivial centre. This yields technical difficulties, because the torsion sub-

complexes are in the latter case no longer automatically proper subcomplexes.
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5.4. Application to equivariant K -homology. The technique of torsion

subcomplex reduction will be adapted from group homology to Bredon homology

with coefficients in the complex representation rings, and with respect to the fam-

ily of finite subgroups. This will be used to obtain formulas for this Bredon homo-

logy, and by the Atiyah–Hirzebruch spectral sequence, formulas for equivariant

K-homology of the investigated arithmetic groups. Equivariant K-homology

is the geometric-topological side of the Baum–Connes conjecture: Baum and

Connes constructed a homomorphism from the equivariant K-homology to the

K-theory of the reduced C∗-algebras of a given group called the assembly map.

The Baum–Connes conjecture states that the assembly map is an isomorphism

for all finitely presented groups; it implies several important conjectures in topo-

logy, geometry, algebra and functional analysis: Groups for which the assembly

map is surjective satisfy the Kaplansky–Kadison conjecture on the idempotents;

groups for which it is injective, satisfy the strong Novikov conjecture and the

direction of the Gromov–Lawson–Rosenberg conjecture predicting the vanishing

of the higher Â-genera.

5.5. Chen–Ruan orbifold cohomology of the complexified orbifolds.

I want to establish formulas for the twisted sector part of the Chen–Ruan orbi-

fold cohomology of complexifications of the orbifolds given by the action of the

arithmetic groups studied for Objective 5.1 on their symmetric space. Ruan’s

crepant resolution conjecture is still open on higher-dimensional orbifolds that

are not global quotients, and once that I know the Chen–Ruan orbifold cohomo-

logy of these complexified orbifolds explicitly, I will examine Ruan’s conjecture

on them together with my collaborator Fabio Perroni.
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PSL4(Z) and other arithmetic groups, J. Number Theory 131 (2011), no. 12, 2368–2375,

DOI 10.1016/j.jnt.2011.05.018. MR2832829
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[19] Mathieu Dutour Sikirič, Herbert Gangl, Paul E. Gunnells, Jonathan Hanke, Achill Schuer-

mann, and Dan Yasaki,On the cohomology of linear groups over imaginary quadratic fields,

Journal of Pure and Applied Algebra 220 (2016), pp. 2564-2589.

[20] W. G. Dwyer, Exotic cohomology for GLn(Z[1/2]), Proc. Amer. Math. Soc. 126 (1998),

no. 7, 2159–2167, DOI 10.1090/S0002-9939-98-04279-8. MR1443381 (2000a:57092)

[21] Philippe Elbaz-Vincent and Herbert Gangl and Christophe Soulé, Perfect forms, K-
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MR2027168 (2005d:19007), Zbl 1028.46001

[37] Stephen A. Mitchell, On the plus construction for BGLZ[ 12 ] at the prime 2, Math. Z. 209

(1992), no. 2, 205–222, DOI 10.1007/BF02570830. MR1147814 (93b:55021)

[38] Fabio Perroni and Alexander D. Rahm, The Chen–Ruan orbifold cohomology of complexi-

fied Bianchi orbifolds, in preparation – to be released soon, to replace the preprint [48].

[39] Alexander Prestel, Die elliptischen Fixpunkte der Hilbertschen Modulgruppen, Math. Ann.

177 (1968), 181–209 (German). MR0228439

[40] Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2)

94 (1971), 549–572; ibid. (2) 94 (1971), 573–602.

[41] Alexander D. Rahm, On a question of Serre, Comptes Rendus Mathématique de l’
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