- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \lor c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \lor c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \lor c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \lor c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
F	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
F	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
F	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
F	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	F
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	F
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \vee c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \lor c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \lor c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \lor c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

- Q1. (a) What is a "half adder"? Show how to express it
 - (i) using logic tables;
 - (ii) using the operators $\{\land,\lor,\neg\}$.

- Q2. (a) State de Morgan's laws, and prove either of them. Establish that the following distributive law is correct: $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$. Is it true that $(a \to b) \land c$ is equivalent to $(a \land c) \to (b \land c)$? Explain your answer.
 - (b) Consider the logic table for the ternary operator (sometimes called "*if-then-else*" or "*ifte*") shown below.
 - (i) Show that $ifte(a, b, c) \equiv (a \rightarrow b) \land (\neg a \rightarrow c)$.
 - (ii) Write ifte(a, b, c) in Disjunctive Normal Form, and sketch a Venn diagram for the operator.

a	b	с	ifte(a, b, c)
F	F	F	F
\mathbf{F}	F	Т	Т
F	Т	F	\mathbf{F}
F	Т	Т	Т
Т	F	F	\mathbf{F}
Т	\mathbf{F}	Т	F
Т	Т	F	Т
Т	Т	Т	Т

- Q3. (a) Show that $\{A_1, A_2, \ldots, A_n\} \models C$ if and only if the set $\{A_1, A_2, \ldots, A_n, \neg C\}$ is inconsistent as a collection.
 - (b) For each of the following sets, use the tableau method to either find a model, or to show that the set is inconsistent.
 - $({\rm i}) \ \{a \mathop{\rightarrow} b, \quad \neg(b \vee c), \quad a \vee d, \quad d \mathop{\rightarrow} a\}.$
 - $(\mathrm{ii}) \ \{\neg(a \mathop{\rightarrow} b), \quad b \lor c, \quad a \mathop{\rightarrow} c\}.$
 - (c) For each of the following, use the tableau method to establish if it is a correct logical consequence.
 - (i) $\{a \lor \neg b, \neg a \to b\} \models b.$
 - (ii) $\{a \oplus b, b \uparrow c\} \models (c \rightarrow a).$

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.

 $(a \downarrow b) \lor \neg (a \rightarrow c).$

Furthermore, show how to write it in Clause Form.

(b) Recall that, for sets of clauses U and V, when we write

 $U \approx V.$

we mean that U is satisfiable if and only if V is satisfiable. Suppose that U contains the unit clause $\{a\}$. Furthermore, suppose that V is formed by deleting every clause containing a in U, and deleting $\neg a$ from every remaining clause in U. Explain why $U \approx V$.

- Q5. (a) For each of the following pairs of expressions, determine if A is equivalent to B. Explain your answer.

 - (i) $A = \forall x P(x) \lor \forall x Q(x)$, and $B = \forall x (P(x) \lor Q(x))$. (ii) $A = \forall x P(x) \land \forall x Q(x)$, and $B = \forall x (P(x) \land Q(x))$.
 - (b) Use a semantic tableau to show that $\forall x \forall y P(x, y) \rightarrow P(a, a)$ is valid.
 - (c) For each of the following, determine if it is a valid argument.
 - (i) All roses have thorns. This flower has thorns. Therefore this flower is a rose.
 - (ii) No student is lazy. Anyone who is not lazy and is intelligent will pass this exam. I am an intelligent student. Therefore I will pass this exam.