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2 RAHM AND FUCHSFigure 1: Results in the group homology with simple integer oe�ients
Hq(PSL2(O−5); Z) ∼=






Z2 ⊕ Z/3⊕ (Z/2)2, q = 1,

Z⊕ Z/4⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ (Z/2)q, q > 3;

Hq(PSL2(O−10); Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ (Z/2)q, q > 3;

Hq(PSL2(O−15); Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ Z/2, q > 3;

Hq(PSL2(O−13); Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ (Z/3)2 ⊕ Z/2, q = 2,

(Z/2)q ⊕ (Z/3)2, q = 4k + 3, k > 0,

(Z/2)q, q = 4k + 4, k > 0,

(Z/2)q, q = 4k + 1, k > 1,

(Z/2)q ⊕ (Z/3)2, q = 4k + 2, k > 1;

Hq(PSL2(O−6); Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/4⊕ Z/3⊕ (Z/2)2, q = 2,

Z/3⊕ (Z/2)2k+2, q = 6k + 3,

Z/3⊕ (Z/2)2k+1, q = 6k + 4,

Z/3⊕ (Z/2)2k+4, q = 6k + 5,

Z/3⊕ (Z/2)2k+3, q = 6k + 6,

Z/3⊕ (Z/2)2k+2, q = 6k + 7,

Z/3⊕ (Z/2)2k+5, q = 6k + 8.spae, the hyperboli three-spae H. Interest in this ation �rst arose when Felix Klein and HenriPoinaré studied ertain groups of Möbius transformations with omplex oe�ients [14,18℄, laying thegroundwork for the study of Kleinian groups. The latter are nowadays de�ned as disrete subgroupsof PSL2(C). Eah non-oompat arithmeti Kleinian group is ommensurable with some Bianhigroup [15℄. Thus, the Bianhi groups play a key role in the study of arithmeti Kleinian groups. Awealth of information on the Bianhi groups an be found in the pertinent monographs [8, 9, 15℄.Poinaré gave an expliit formula for their ation on H. However, the virtual ohomologial dimensionof arithmeti groups whih are latties in SL2(C) is two, so it is desirable to restrit this proper ationon H to a ontratible ellular two-dimensional spae. Moreover, this spae should be o�nite. Inpriniple, this has been ahieved by Mendoza [16℄ and also by Flöge [10℄, using redution theory ofMinkowski, Humbert, Harder and others. Their two approahes have in ommon that they onsidertwo-dimensional Γ-equivariant retrats whih are oompat and are endowed with a natural CW-struture suh that the ation of Γ is ellular and the quotient is a �nite CW-omplex.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 3Using Mendoza's omplex, Shwermer and Vogtmann [20℄ alulated the integral group homology inthe ases of trivial lass group m = 1, 2, 3, 7, 11, and Vogtmann [24℄ omputed the rational homology asthe homology of the quotient spae in many ases of non-trivial lass group. The integral ohomologyin the ases m = 2, 3, 5, 6, 7, 10, 11 has been determined by Berkove [5℄, based on Flöge's presentationof the groups with generators and relations. A ompletely di�erent method to obtain group presenta-tions has been hosen by Yasaki [26℄, who has implemented an algorithm of Gunnells [12℄ to omputethe perfet forms modulo the ation of GL2(O−m) and obtain the faets of the Voronoï polyhedronarising from a onstrution of Ash [3℄.It is the purpose of the present paper to show how Flöge's omplex an be used to obtain the integralhomology of Bianhi groups also when the lass group is non-trivial. We obtain the results displayed in�gure 1. Thus for q > 2, the torsion in H∗(PSL2(O−5); Z) is the same as that in H∗(PSL2(O−10); Z),analogous to the ohomology results of Berkove [5℄. The free part of these homology groups is inaordane with the rational homology results of Vogtmann [24℄.In the ases of non-trivial ideal lass group, there is a di�erene between the approahes of Mendozaand Flöge. We use the upper-half-spae model of H and identify its boundary with C ∪∞ ∼= CP 1.The elements of the lass group of the number �eld are in bijetion with the Γ-orbits of the usps,where the usps are ∞ and the elements of the number �eld Q
[√
−d

], thought of as elements of theanonial boundary CP 1. The usps whih represent a non-trivial element of the lass group are om-monly alled singular points. Whilst Mendoza retrats away from all usps, Flöge retrats away onlyfrom the non-singular ones. Rather than the spae H itself, he onsiders the spae Ĥ obtained from
H by adjoining the Γ-orbits of the singular points. We onsider an analogous equivariant retrationof Ĥ suh that its retrat X ontains the singular points. Now it turns out that the quotient spaeof X by Γ is ompat, and X is a suitable ontratible 2-dimensional Γ-omplex also in the ase ofnon-trivial lass group.With an implementation in Pari/GP [2℄, due to the �rst named author, of Swan's algorithm [23℄ weobtain a fundamental polyhedron for Γ in H. In the ases onsidered, Bianhi has already omputedthis polyhedron, so we have a ontrol of the orretness of the implementation.In the ases m = 5, 6 and 10, Flöge has omputed the ell stabilizers and ell identi�ations; andwith our Pari/GP program, we redo Flöge's omputations and do the same omputation in the ases
m = 13 and 15. We use the equivariant Euler harateristi to hek our omputations. Then wefollow the lines of Shwermer and Vogtmann [20℄, enountering a spetral sequene whih degenerateson the E3-page, in ontrast to the ases of trivial lass group where it does so already on the E2-page.This is beause of the singular points in our ell omplex X, whih have in�nite stabilizers. So wehave some additional use of homologial algebra to obtain the homology of the Bianhi group. Wegive the full details for our homology omputation in the ase m = 13. We then give slightly fewerdetails in the ases m = 5, 6, 10 and 15.The authors would like to thank Philippe Elbaz-Vinent and Bill Allombert for many helpful disus-sions and hints on the tehniques and the referee for helpful omments.This artile is dediated to Fritz Grunewald (1949 - 2010).2. Flöge's omplex, ontratibility and a spetral sequeneDenote the hyperboli three-spae by H ∼= C × R∗

+. We will not use its smooth struture, only itsstruture as a homogeneous SL2(C)-spae. The ation is given by the formula
(

a b
c d

)
· (z, r) :=

(
(d− cz)(az − b)− r2ca

|cz − d|2 + r2 |c|2
,

r

|cz − d|2 + r2 |c|2
)

;where (
a b
c d

)
∈ SL2(C). As usual, we extend the ation of SL2(C) to the boundary CP 1 whih weidentify with {r = 0}∪∞ ∼= C∪∞. The ation passes ontinuously to the boundary, where it redues



4 RAHM AND FUCHSto the usual ation by Möbius transformations (
a b
c d

)
· z = az−b

−cz+d . As −1 ∈ SL2(C) ats trivially, theation passes to PSL2(C). Now, �x a square-free m ∈ N, let O−m be the ring of integers in Q[
√−m ],and de�ne Γ = PSL2(O−m). When the lass number of Q[

√−m ] is one, then lassial redutiontheory provides a natural equivariant deformation retrat of H whih is a CW-omplex. This omplexis de�ned as follows. One �rst onsiders the union of all hemispheres
Sµ,λ :=

{

(z, r) :

∣∣∣∣z −
λ

µ

∣∣∣∣
2

+ r2 =
1

|µ|2

}

⊂ H,for any two µ, λ with µO−m + λO−m = O−m. Then one onsiders the �spae above the hemispheres�
B :=

{
(z, r) : |cz − d|2 + r2 |c|2 > 1 for all c, d ∈ O−m, c 6= 0 suh that cO−m + dO−m = O−m

}and its boundary ∂B inside H. For nontrivial lass group, the following de�nition omes to work.De�nition 1. A point s ∈ CP 1 − {∞} is alled a singular point if for all c, d ∈ O−m, c 6= 0,
cO−m + dO−m = O−m we have |cs− d| > 1.The singular points modulo the ation of Γ on CP 1 are in bijetion with the nontrivial elements ofthe lass group [22℄. In [10℄, Flöge extends the hyperboli spae H to a larger spae Ĥ as follows.De�nition 2. As a set, Ĥ ⊂ C× R>0 is the losure under the Γ-ation of the union
B̂ := B ∪{singular points}. The topology is generated by the topology of H together with the followingneighborhoods of the translates s of singular points:

Ûǫ(s) := {s} ∪
(

s 0
−1 s−1

)
·
{
(z, r) ∈ H : r > ǫ−1

}
.Remark 3. The matrix (

s 0
−1 s−1

) maps the point at in�nity into s, thus giving the point s thetopology of ∞. The neighborhood Ûǫ(s) is sometimes alled a �horoball� beause in the upper-halfspae model it is a Eulidean ball, but with the hyperboli metri it has �in�nite radius�.The spae Ĥ is endowed with the natural Γ-ation. Now the essential aspet of Flöge's onstrutionis the following onsequene of Flöge's theorem [11, 6.6℄, whih we append as theorem 28.Corollary 4. There is a retration ρ from Ĥ onto the set X ⊂ Ĥ of all Γ-translates of ∂B̂, i. e.there is a ontinuous map ρ : Ĥ → X suh that ρ(p) = p for all p ∈ X. The set X admits a naturalstruture as a ellular omplex X• on whih Γ ats ellularly.Remark 5. (1) We show with the lemma below that ρ is a homotopy equivalene, without givinga ontinuous path of maps Ĥ → Ĥ onneting ρ to the identity on Ĥ.(2) The map ρ is Γ-equivariant beause its �bers are geodesis. But we do not make use of thisfat, as we do not need to show that the homotopy type of Γ\Ĥ is the same as that of Γ\X.This would be useful in the ase of trivial lass group, i. e. the ase of a proper ation, toompute the rational homology H∗(Γ; Q) ∼= H∗(Γ\H; Q).(3) We will provide X• with a ellular struture whih is �ne enough to make the ell stabilizers�x the ells pointwise.Lemma 6. Let Y be a CW-omplex whih admits an inlusion i into a ontratible topologial spae
A, suh that i is a homeomorphism between Y with its ellular topology and the image i(Y ) with thesubset topology of A. Let p : A → Y be a ontinuous map with p ◦ i = idY . Then p is a homotopyequivalene.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 5Proof. For all n ∈ N, the indued maps on the homotopy groups (idY )∗ = (p ◦ i)∗ : πn(Y ) → πn(Y )fator through πn(A) = 0, hene are the zero map; and πn(Y ) = 0. Denote by c the onstant mapfrom A to the one-point spae. Then c ◦ i is a morphism of CW-omplexes, and the zero maps itindues on the homotopy groups are isomorphisms. Thus by Whitehead's Theorem, c◦i is a homotopyequivalene. As A is ontratible, the omposition (c ◦ i) ◦ p = c is a homotopy equivalene, so thesame holds already for p. �Taking Y = X, A = Ĥ, p = ρ, and using lemma 8, we obtain a ruial fat for our omputations.Corollary 7. X• is ontratible.The following is an observation on Flöge's onstrution.Lemma 8. The spae Ĥ is ontratible.Proof. One an identify the boundary ofH ∼= {(z, r) ∈ C×R | r > 0} with CP 1 ∼= C∪∞ ∼= {r = 0}∪∞.By viewing the singular points as part of the boundary, we arrive at an upper half-spae model of Ĥ.Now onsider H1 := {(z, r) ∈ Ĥ : r > 1} with the subspae topology of Ĥ. The idea of the proof is toonsider a vertial retration onto H1, and to show by an expliit argument that preimages of opensets are open. Flöge [11, Korollar 5.8℄ suggests using the map
φ : Ĥ × [0, 1]→ Ĥ, ((z, r), t) 7→

{
(z, r) for all t ∈ [0, 1], if r > 1

(z, r + t(1− r)), if r < 1.Let us now hek that this is a ontinuous family of ontinuous maps. Consider the olletion of openballs with respet to the Eulidean metri on C×R+ as soon as they are either ontained in C×R∗
+,or touh the boundary C × {0} in a usp in Ĥ − H. This is a basis for the topology of Ĥ. Considerone suh open ball B, and its preimage under some φt, t ∈ [0, 1). This either lies entirely in H, and isopen, or it has boundary points. In the latter ase, onsider the inverse of φt on Ĥ − H1, given by

φ−1
t =

(
z, r−t

1−t

)if this is in Ĥ. Suppose there is a usp s with s ∈ Ĥ − H and φt(s, 0) ∈ B. As B is open, we �nd
β > 0 and δ > 0 suh that (s, t + β) and (s + δ, t) are in B. Sine

{
φt

(
s, β

1−t

)
= (s, t + β) ∈ B

φt(s + δ, 0) = (s + δ, t) ∈ B,we know that (s, β
1−t) and (s + δ, 0) are in the preimage of B under φt. We dedue that the wholehorosphere of Eulidean diameter min {β, δ} touhing at the usp s is inluded in the preimage of

B. Thus eah point of the preimage has a neighborhood entirely ontained in the preimage, whihtherefore also is open. The ontinuity at t = 1 as well as the ontinuity in the variable t follow fromvery similar arguments. The spae H1 is homeomorphi to C× R+, thus ontratible. �2.1. The equivariant spetral sequene in group homology.Corollary 7 gives us a ontratible omplex X• on whih Γ ats ellularly. As a onsequene, the inte-gral homology H∗(Γ; Z) an be omputed as the hyperhomology H∗(Γ; C•(X)) of Γ with oe�ientsin the ellular hain omplex C•(X) assoiated to X. This hyperhomology is omputable beausethere is a spetral sequene as in [7, VII℄ whih is also the one used in [20℄. It is the spetral sequeneassoiated to the double omplex ΘΓ
• ⊗ZΓ C•(X) omputing the hyperhomology, where we denote by

ΘΓ
• the bar resolution of the group Γ. This spetral sequene an be rewritten (see [20, 1.1℄) to yield

E1
p,q =

⊕

σ ∈Γ\Xp

Hq(Γσ; Z) =⇒ Hp+q(Γ; Z),



6 RAHM AND FUCHSwhere Γσ denotes the stabilizer of (the hosen representative for) the p-ell σ. We have stated theabove E1-term with trivial Z-oe�ients in Hq(Γσ; Z), beause we use a fundamental domain whihis strit enough to give X a ell struture on whih Γ ats without inversion of ells. We shall alsomake extensive use of the desription of the d1-di�erential given in [20℄.The tehnial di�erene to the ases of trivial lass group, treated by [20℄, is that the stabilizers ofthe singular points are free abelian groups of rank two. In partiular, the Γ-ation on our omplex
X• is not a proper ation in the sense that all stabilizers are �nite. As a onsequene, the resultingspetral sequene does not degenerate on the E2-level as it does in Shwermer and Vogtmann's ases.So we ompute a nontrivial di�erential d2, making some additional use of homologial algebra, inpartiular the below lemma and its orollary.Remark 9. It would be possible to shift the tehnial di�ulty away from homologial algebra, usinga topologial modi�ation of our omplex. In our ases of lass number two, there is one singular pointin the fundamental domain, representing the nontrivial element of the lass group. Its stabilizer isfree abelian of rank two, and ontributes the homology of a torus to the zeroth olumn of the E2-termof our spetral sequene: H1(Z

2; Z) ∼= Z2, H2(Z
2; Z) ∼= Z and Hq(Z

2; Z) = 0 for q > 2. One ouldmodify our omplex in order to make the Γ-ation on it proper, by replaing eah singular point byan R2 with the former stabilizer Z2 now ating properly. Then the nontriviality of our di�erential isequivalent to the existene of a nontrivial homology relation indued by adjoining the torus R2/Z2 tothe fundamental domain.The following lemma will be useful for omputing our d2-di�erential in the situations where ylesfor Γσ are given in terms of the standard resolution of Γ instead of Γσ. In order to state it, let Γσbe a �nite subgroup of Γ, let M be a ZΓσ-module, and ℓ : Γ/Γσ → Γ a set-theoretial setion of thequotient map π : Γ → Γ/Γσ. Further, denote the standard bar resolution of a disrete group Γ by
ΘΓ

• . It will be onvenient to view ΘΓ
• as a omplex of ZΓ-right modules resp. ZΓσ-right modules.Thus, ΘΓ

q is de�ned as the free Z-module generated by the (q + 1)-tuples (γ0, . . . , γq) of elements of
Γ with the ation given by (γ0, . . . , γq).γ = (γ0γ, . . . , γqγ) and the same boundary operator as in theleft module ase, namely ∂ =

∑q
i=0(−1)idi where di(γ0, . . . , γq) = (γ0, . . . , γ̂i, . . . , γq).Lemma 10. The setion ℓ de�nes a map of ZΓσ-omplexes

ε̂ℓ : ΘΓ
• −→ ΘΓσ

•of degree zero whih is a retration of the resolution ΘΓ
• of the group Γ to the resolution ΘΓσ• of Γσ.For eah γ ∈ Γ, ℓ(π(γ)) is in the same orbit of the Γσ-right-ation on Γ as γ, so (ℓ(π(γ)))−1γ ∈ Γσ.The map ε̂ℓ is indued on ΘΓ

0 = ZΓ by
Γ

εℓ−−→ Γσ → ZΓσ,

γ 7→ (ℓ(π(γ)))−1γand is ontinued as a tensor produt ε̂ℓ = εℓ ⊗ ...⊗ εℓ = ε
⊗(n+1)
ℓ on ΘΓ

n.Remark 11. (1) Sine the group Γσ ats from the right, the map εℓ is ZΓσ-linear.(2) Note that the resulting isomorphism in homology from H∗(ΘΓ
• ⊗ZΓσ M) to H∗(ΘΓσ• ⊗ZΓσ M) isindependent of the hoie of ℓ, and onsistent with the anonial isomorphisms of both sideswith H∗(Γσ; M).(3) Note that in the above lemma, it is not neessary to require ℓ(π(1)) = 1. This would implythat εℓ is the identity on ΘΓσ• . However, we will hoose ℓ(π(1)) = 1 for simpliity.(4) In expliit terms, the map εℓ is desribed as follows:

εℓ : ZΓ→ ZΓσ,
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∑

γ∈Γ

aγγ =
∑

γσ∈Γσ

∑

ρ∈Γ/Γσ

aγσℓ(ρ)γσℓ(ρ) 7→
∑

γσ∈Γσ

( ∑

ρ∈Γ/Γσ

aγσℓ(ρ)

)
γσ,where the aγ are oe�ients from Z. The map εℓ restrits to the identity on ZΓσ and givesan isomorphism of Z-modules from Z[ℓ(ρ)Γσ] to ZΓσ for every Γσ-orbit ℓ(ρ)Γσ.Proof (of the lemma). In fat, the statement holds for any hain map ε̂ in the plae of ε̂ℓ that satis�esthe following onditions. They are easily heked to hold for the maps ε̂ℓ.(1) ε̂ is ZΓσ-linear.(2) The augmentation ΘΓ

0 → Z is the omposition of ε̂ with the augmentation ΘΓσ

0 → Z.Then the statement follows from the omparison theorem [25, 2.2.6℄ of fundamental homologialalgebra. In fat, the properties imply that ε̂ is a hain map of resolutions lifting the identity on Z.An inverse is given by the anonial inlusion ΘΓσ• → ΘΓ
• , and sine the omposition is unique up tohain homotopy equivalene, it must be homotopi to the identity. �The group Γσ ats diagonally from the right on ΘΓ

1
∼= ZΓ ⊗Z ZΓ, and trivially on Z, so we anonsider ΘΓ

1 ⊗ZΓσ Z. Denote the ommutator quotient map Γσ → (Γσ)ab ∼= H1(Γσ) by a 7→ a.Corollary 12. Consider a yle for H1(Γσ; Z) of the form ∑
i(ai ⊗Z bi) ⊗ZΓσ 1 ∈ ΘΓ

1 ⊗ZΓσ Z where
ai, bi ∈ ZΓ. Assume that all ai and bi are elements of Γ. The ensuing homology lass is then given by

∑

i

εℓ(bi)εℓ(ai)−1 ∈ (Γσ)ab.By the linearity of the desribed map, this overs the general ase as the yles of the form appearingin the orollary generate the submodule of all yles. Note that the yle ondition on ∑
i
(ai⊗Zbi)⊗ZΓσ1says that ∑

i
(bi − ai)⊗ZΓσ 1 = 0, whih means that ∑

i ai is equivalent to ∑
i bi modulo ZΓσ.Proof (of the orollary). Using lemma 10, we apply the map

(εℓ ⊗Z εℓ)⊗ZΓσ 1 : (ZΓ⊗Z ZΓ)⊗ZΓσ Z −→ (ZΓσ ⊗Z ZΓσ)⊗ZΓσ Zto get
∑

(εℓ ⊗Z εℓ ⊗ZΓσ 1)(ai ⊗Z bi ⊗ZΓσ 1) =
∑

(εℓ(ai)⊗Z εℓ(bi))⊗ZΓσ 1.Denote the augmentation ZΓσ → Z by ε. As ai ∈ Γ, we have εℓ(ai) ∈ Γσ whih is invertible in ZΓσ,and ε(εℓ(ai)) = 1. So the above term equals
∑(

1⊗Z εℓ(bi)(εℓ(ai))
−1

)
⊗ZΓσ ε(εℓ(ai)) =

∑(
1⊗Z εℓ(bi)(εℓ(ai))

−1
)
⊗ZΓσ 1,where we take into aount that the ation of ZΓσ on ZΓσ ⊗Z ZΓσ is the diagonal right ation, andthat of ZΓσ on Z is the trivial ation a · 1 = ε(a) for a ∈ ZΓσ. In bar notation, we thus obtain theyle ∑[

εℓ(bi)(εℓ(ai))
−1

]
⊗ZΓσ 1, whih is mapped to

∑

i

εℓ(bi)εℓ(ai)−1 ∈ (Γσ)abby the map desribed in [7, page 36℄; it is easy to hek that an isomorphism H1(Θ
G
• ⊗G Z) ∼= Gab isdesribed by (1⊗ g)⊗G 1 = [g]⊗G 1 7→ g also in the ase where ΘG

• is ated on by G from the right.Moreover, this isomorphism is natural with respet to group inlusions. �Another property of the spetral sequene is that a part of it an be heked whenever the ge-ometry of the fundamental domain and a presentation of Γ are known. As Flöge shows, an inspe-tion of the omplex X and the assoiated stabilizer groups and identi�ations yields, together with



8 RAHM AND FUCHS[1, theorem 4.5℄, a presentation of Γ by means of generators and relations. We will use the presentationomputed by Flöge for m = 5, 6, 10 and that omputed by Swan [23℄ for m = 15.Remark 13. Let us look at the low term short exat sequene
0 // E∞

0,1
// Γab ρ // E∞

1,0
// 0of the spetral sequene. We have E∞

1,0 = H1(Γ\X) = (π1(Γ\X))ab, and the projetion ρ is theabelianization of the map Γ→ π1(Γ\X) given as follows. Choose a �xed base point x ∈ X. For every
γ ∈ Γ, hoose a ontinuous path in X from x to γx. This gives a well-de�ned loop in Γ\X sine X isontratible.The abelianization of Γ an be immediately dedued from its presentation. Thus, we an omputethe group E∞

0,1 = E3
0,1 as the kernel of the projetion ρ and hek this with the result obtained fromdetailed analysis of the d2-di�erential.2.2. The homology of the �nite subgroups in the Bianhi groups.In order to ompute the E1-term of the spetral sequene introdued in setion 2.1, we will need theisomorphism lasses of the homology groups of the stabilizers.Lemma 14 (Shwermer/Vogtmann [20℄). The only isomorphism lasses of �nite subgroups in PSL2(O)are the yli groups of orders two and three, the trivial group, the Klein four-group D2

∼= Z/2×Z/2,the symmetri group S3 and the alternating group A4.The homology with trivial Z respetively Z/n-oe�ients, n = 2 or 3, of these groups is
Hq(Z/n; Z)∼=

8

>

<

>

:

Z, q = 0,

Z/n, q odd,

0, q even, q > 0;

Hq(Z/n; Z/n)∼= Z/n, q ∈ N ∪ {0};

Hq(D2; Z) ∼=

8

>

>

<

>

>

:

Z, q = 0,

(Z/2)
q+3
2 , q odd,

(Z/2)
q
2 , q even, q > 0;

Hq(D2; Z/2) ∼=(Z/2)q+1 Hq(D2; Z/3)=0, q > 1;

Hq(S3; Z) ∼=

8

>

>

>

>

>

<

>

>

>

>

>

:

Z, q = 0,

Z/2, q ≡ 1 mod 4,

0, q ≡ 2 mod 4,

Z/6, q ≡ 3 mod 4,

0, q ≡ 0 mod 4, q > 0;

Hq(S3; Z/3) ∼=

8

>

>

>

>

>

<

>

>

>

>

>

:

Z/3, q = 0,

0, q ≡ 1 mod 4,

0, q ≡ 2 mod 4,

Z/3, q ≡ 3 mod 4,

Z/3, q ≡ 0 mod 4, q > 0;

Hq(S3; Z/2)∼=Z/2, q ∈ N ∪ {0};

Hq(A4; Z) ∼=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

Z, q = 0,

(Z/2)k ⊕ Z/3, q = 6k + 1,

(Z/2)k ⊕ Z/2, q = 6k + 2,

(Z/2)k ⊕ Z/6, q = 6k + 3,

(Z/2)k, q = 6k + 4,

(Z/2)k ⊕ Z/2 ⊕ Z/6, q = 6k + 5,

(Z/2)k+1, q = 6k + 6.

Hq(A4; Z/2) ∼=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

Z/2, q = 0,

(Z/2)2k, q = 6k + 1,

(Z/2)2k+1, q = 6k + 2,

(Z/2)2k+2, q = 6k + 3,

(Z/2)2k+1, q = 6k + 4,

(Z/2)2k+2, q = 6k + 5,

(Z/2)2k+3, q = 6k + 6.

Hq(A4; Z/3)∼=Z/3, q ∈ N ∪ {0}.Using the Universal Coe�ient Theorem, we see that in degrees q > 1, the homology with trivial
Z/4�oe�ients is isomorphi to the homology with trivial Z/2�oe�ients for the groups listed above.The stabilizers of the points inside H are �nite and hene of the above listed types. The stabilizers ofthe singular points are isomorphi to Z2, whih has homology Hq(Z

2; Z) ∼=
8

>

<

>

:

0, q > 3,

Z, q = 2,

Z2, q = 1.The maps indued on homology by inlusions of the stabilizers determine the d1-di�erentials of thespetral sequene from setion 2.1.Observation 15. The three images in H2(D2; Z/2) of the non-trivial element of H2(Z/2; Z/2) underthe maps indued by the inlusions of the three order-2-subgroups of D2 are linearly independent, butthe three images of the non-trivial element of H2(Z/2; Z/4) are linearly dependent in H2(D2; Z/4).More preisely, there is a anonial basis for H2(D2; Z/2) ∼= (Z/2)3 oming from the resolution for D2



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 9used by [20℄, assoiated to the deomposition D2
∼= Z/2× Z/2. One heks by diret alulation thatin this basis, the inlusions of the three order-2-subgroups in D2 indue the images

8

<

:

0,

0

@

1
0
0

1

A

9

=

;

, 8

<

:

0,

0

@

1
1
1

1

A

9

=

;

, and 8

<

:

0,

0

@

0
0
1

1

A

9

=

;

in H2(D2; Z/2);and in the basis oming from the same resolution used for Z/4�oe�ients these images are
8

<

:

0,

0

@

1
0
0

1

A

9

=

;

, 8

<

:

0,

0

@

1
0
1

1

A

9

=

;

, and 8

<

:

0,

0

@

0
0
1

1

A

9

=

;

in H2(D2; Z/4).The di�erene between the ases Z/2 and Z/4 omes from the behavior of the kernels of thedi�erential maps.Lemma 16 (Shwermer/Vogtmann [20℄). Let C ∈ {Z}∪{Z/n : n = 2, 3, 4}. Consider group homologywith trivial C-oe�ients. Then the following hold.(1) Any inlusion Z/2→ S3 indues an injetion on homology.(2) An inlusion Z/3 → S3 indues an injetion on homology in degrees ongruent to 3 or 0
mod 4, and is zero otherwise.(3) Any inlusion Z/2→ D2 indues an injetion on homology in all degrees.(4) An inlusion Z/3→ A4 indues injetions on homology in all degrees.(5) In the ase C ∈ {Z}∪{Z/n : n = 2, 3}, an inlusion Z/2→ A4 indues injetions on homologyin degrees greater than 1, and is zero on H1.In the ase C = Z/4, the same holds in homology degrees q 6= 2.An inlusion Z/2→ A4 indues the zero map on H2(−; Z/4).Sketh of proof. Shwermer and Vogtmann prove this for C = Z, and leave it to the reader in the ase

C = Z/2. Details for the latter ase an be found in [19℄. In the following, we are going to give themain arguments.(1) This follows for all oe�ients from the fat that the group extension
1→ Z/3→ S3 → Z/2→ 1 has the property that any inlusion, Z/2→ S3, omposed with itsquotient map is the identity on Z/2.(2) The assertion is trivial for C ∈ {Z/2, Z/4} beause then Hq(Z/3; C) = 0 for q > 1 bythe Universal Coe�ient Theorem. For C = Z/3, one omputes the Lyndon/Hohshild/Serrespetral sequene with Z/3-oe�ients assoiated to the extension 1→ Z/3→ S3 → Z/2→ 1.Its E2-term E2

p,q = Hp(Z/2; Hq(Z/3; Z/3)) is onentrated in the olumn p = 0; speial arehas to be taken with the ation of Z/2 on Hq(Z/3; Z/3). So E2
p,q
∼= E∞

p,q, and the assertionfollows from a omputation of the map Hq(Z/3; Z/3)→ H0(Z/2; Hq(Z/3; Z/3)), i. e. theprojetion onto the oinvariants.(3) Similar to (1), this is an immediate onsequene of the fat that 1 → Z/2 → D2 → Z/2 → 1splits.(4) Similar to (1) and (3), this follows for all oe�ients from the fat that any inlusion Z/3→ A4omposed with the unique quotient map A4 → Z/3 is an isomorphism, hene indues anisomorphism in homology.(5) The assertion is trivial for C = Z/3 beause then Hq(Z/2; C) = 0 for q > 1. For C ∈ {Z/2, Z/4},one onsiders the fatorization of the inlusion Z/2→ A4 as Z/2→ D2 → A4 where the �rstmap is one out of three possible inlusions Z/2→ D2, denoted by α, β, γ. By (3), α, β and γindue injetions. Furthermore, one onsiders the spetral sequene with C-oe�ients asso-iated to the extension 1 → D2 → A4 → Z/3 → 1. Similar to the ase onsidered in (2), the
E2-term E2

p,q = Hp(Z/3; Hq(D2; C)) is onentrated in the olumn p = 0, thus E2
p,q
∼= E∞

p,q,and the map Hq(Z/2; C)→ Hq(A4; C) is written as the omposition
Hq(Z/2; C)→ Hq(D2; C)→ H0(Z/3; Hq(D2; C)) ∼= Hq(A4; C)



10 RAHM AND FUCHSwhere the �rst map is α∗, β∗ or γ∗ and the seond one is the projetion onto the Z/3-oinvariants. From this, the statement an be diretly dedued for q 6= 2. For the ase
q = 2, denote the generator of H2(Z/2; C) by x. The ation of Z/3 on D2 omes fromonjugation within A4 and permutes the three non-trivial elements. There is an automor-phism φ of D2 given by the ation of a generator of Z/3, suh that φ ◦ α = β. Then
φ∗(α∗(x)) = (φ ◦ α)∗(x) = β∗(x) and φ∗(β∗(x)) = γ∗(x). For C = Z/4, observation 15implies that α∗(x) = γ∗(x)− β∗(x) = γ∗(x)− (φ2)∗(γ∗(x)), and thus α∗(x) is in Im(1− φ∗) =Im(1−(φ2)∗), hene is zero in the oinvariants. Therefore, the same holds for β∗(x) and γ∗(x),and the assertion follows. For C = Z/2, one omputes with the help of observation 15 that
α∗(x) 6∈ Im(1− φ∗); thus, the same holds for β∗(x) and γ∗(x) and the assertion follows.

�2.3. The mass formula for the equivariant Euler harateristi.We will use the Euler harateristi to hek the geometry of the quotient Γ\X. Reall the followingde�nitions and proposition, whih we inlude for the reader's onveniene.De�nition 17 (Euler harateristi). Suppose Γ′ is a torsion-free group. Then we de�ne its Eulerharateristi as
χ(Γ′) =

∑

i

(−1)i dim Hi(Γ
′; Q).Suppose further that Γ′ is a torsion-free subgroup of �nite index in a group Γ. Then we de�ne theEuler harateristi of Γ as

χ(Γ) =
χ(Γ′)
[Γ : Γ′]

.This is well-de�ned beause of [7, IX.6.3℄.De�nition 18 (Equivariant Euler harateristi). Suppose X is a Γ-omplex suh that(1) every isotropy group Γσ is of �nite homologial type;(2) X has only �nitely many ells mod Γ.Then we de�ne the Γ-equivariant Euler harateristi of X as
χΓ(X) :=

∑

σ

(−1)dimσχ(Γσ),where σ runs over the orbit representatives of ells of X.Proposition 19 ([7, IX.7.3 e'℄). Suppose X is a Γ-omplex suh that χΓ(X) is de�ned. If Γ is virtuallytorsion-free, then Γ is of �nite homologial type and χ(Γ) = χΓ(X).Let now Γ be PSL2

(
O

Q[
√
−m ]

). Then the above proposition applies to X taken to be Flöge's(or still, Mendoza's) Γ-equivariant deformation retrat of H, beause Γ is virtually torsion-free bySelberg's lemma. Using χ(Γσ) = 1
card(Γσ) for Γσ �nite, the fat that the singular points have stabilizer

Z2, and the torsion-free Euler harateristi
χ(Z2) =

∑

i

(−1)irankZ(Hi Z2) = 1− 2 + 1 = 0,we get the formula
χ(Γ) =

∑

σ

(−1)dimσ 1

card(Γσ)
,where σ runs over the orbit representatives of ells of X with �nite stabilizers.Proposition 20. The Euler harateristi χ(Γ) vanishes.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 11Remark 21. Thus, the formula
0 =

∑

σ

(−1)dimσ 1

card(Γσ)
,allows to hek the joint data of the geometry of the fundamental domain, ell stabilizers and ellidenti�ations.Proof of proposition 20. Denote by ζK the Dedekind ζ-funtion assoiated to the number �eld

K := Q
[√−m

]. Brown [7, below (IX.8.7)℄ dedues the following from Harder's result [13, p. 453℄:
χ(SLn(OK)) =

n∏

j=2

ζK(1− j),so espeially we have χ(SL2(OK)) = ζK(−1). As Γ is a quotient of SL2(OK) by a group of order two,it follows [4℄ that
χ(Γ) = 2 · χ(SL2(OK)) = 2 · ζK(−1).Using the funtional equation of ζK [17℄ and the fat that K has no real embeddings beause it isimaginary quadrati, we get ζK(−1) = 0. �Remark 22. One an prove the above proposition without using the Dedekind zeta funtion. Thisalternative proof applies to any o�nite arithmetially de�ned subgroup Γ of PSL(2, C). Let Γ′denote a torsion-free subgroup of Γ of �nite index. It is the main theorem of Harder's artile onthe Gauss-Bonnet theorem [13℄ that the Euler harateristi of Γ′ is its ovolume with respet to theEuler-Poinaré form µ on H, i. e. χ(Γ′) =

∫
Y dµ, where Y is a fundamental domain for the ation of Γ′on H. This extends the lassial Gauss-Bonnet theorem from the theory of the Euler-Poinaré form,see [21, paragraph 3℄ (where the theorem is hidden as the existene assertion of the Euler-Poinarémeasure) to non-oompat but o�nite disrete subgroups. The measure µ is a fundamental datumassoiated to the symmetri spae, without referene to any disrete group. In [21, paragraph 3,2a℄ itis shown that µ = 0 on any odd-dimensional spae. Sine dim H = 3, we have χ(Γ′) = χ(Γ) = 0.3. Computations of the integral homology of PSL2

(
O

Q[
√
−m ]

)Throughout this setion, the ation on the homology oe�ients is trivial beause the stabilizers �xthe ells pointwise. We mean Z-oe�ients wherever we do not mention the oe�ients. Throughout,we label the singular point in the fundamental domain by s and use the notation
⊗σ := ⊗Z[Γσ ].We write D2 for the Klein four group, S3 for the permutation group on three objets and A4 for thealternating group on four objets.We have Γ = PSL2(OQ[

√
−m ]) = PSL2(Z[ω]) with ω :=

√−m in the ases m = 5, 6, 10, 13. Theoordinates in hyperboli spae of the verties of the fundamental domains have been omputed byBianhi [6℄. There, they are listed up to omplex onjugation for m = 5, 6, 15; and for m = 10, 13,the reader has to divide out the re�etion alled ri�essione impropria by Bianhi.
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Figure 2: Thefundamental do-main for m = 13

3.1. m = 13. We make the following de�nitions.
A := ±

„

9 7ω
ω −10

«

, B := ±
„

−2 − ω 2 − ω
4 2 + 1ω

«

, C := ±
„

−1 − ω 8 − ω
3 1 + 2ω

«

,

D := ±
„

5 2ω
ω −5

«

, E := ±
„

−ω 6
2 ω

«

, J := ±
„

1
−1

«

,

S := ±
„

−1
1 1

«

, K := ±
„

11 + 4ω −17 + 7ω
−8 + ω −10 − 3ω

«

, M := ±
„

4 − 2ω 12 + ω
4 + ω −4 + 2ω

«

,

U := ±
„

1 ω
1

«

, V := ±
„

−ω 6 − ω
2 2 + ω

«

, W := ±
„

14 − ω 13 + 6ω
2ω −12 + ω

«

,

P := V −1D, T := P−1S2, R := TU−1S2U.Verties with the same letter in the fundamental domain displayed in�gure 2 are identi�ed by the ation of Γ, for instane, y is identi�edwith y′ and y′′ and so on. This yields relations between the matri-es in the same way as shown by [10℄. Amongst these relations, wewill use T = CKCA(CKC)−1, V −1 = CAC−1M and S2 = BS−1BSin our further alulations, in partiular in the omputation of the d2-di�erential. Note that the 2-ell (y′′, a′′, u′, x′, b′′, v′′) is identi�ed with the 2-ell (y, a, u, x, b, v), hene only one of them an be in the fundamental do-main. The matrix U ats as a vertial translation by −ω. Furthermore,we will use the identi�ations C · x′ = x, U · j′ = j, C · y′ = y and
K · z = z′.Amongst the edge identi�ations, we will use CAC−1 · (c, z) = (c′, z), V −1 · (s, c) = (s, c′),
CAC−1 · (b, x) = (b′, x), V −1 · (b, v) = (b′, v′), P · (y, v) = (y′, v′), S2 · (a, y) = (a′, y′), and
B · (a, u) = (a′, u). There are seventeen orbits of verties, whih have the following stabilizers.

Γo = 〈J |J2 = 1〉 ∼= Z/2,
Γa = 〈S−1BS|(S−1BS)2 = 1〉 ∼= Z/2,
Γb = Γc = 〈M |M2 = 1〉 ∼= Z/2,
Γu = 〈B|B2 = 1〉 ∼= Z/2,
Γv = 〈D|D2 = 1〉 ∼= Z/2,
Γf = 〈D, E|D2 = E2 = (DE)2 = 1〉 ∼= D2,
Γh = 〈E, AU−1JU |E2 = (AU−1JU)2 = (EAU−1JU)2 = 1〉 ∼= D2,
Γe = 〈A, U−1JU |A3 = (U−1JU)2 = (AU−1JU)2 = 1〉 ∼= S3,
Γg = 〈J, T |J2 = T 3 = (JT )2 = 1〉 ∼= S3,
Γt = 〈R, U−1SU |R2 = (U−1SU)3 = (RU−1SU)2 = 1〉 ∼= S3,
Γw = 〈B, S|B2 = S3 = (BS)2 = 1〉 ∼= S3,
Γj = 〈S|S3 = 1〉 ∼= Z/3,
Γx = Γz = 〈CAC−1|(CAC−1)3 = 1〉 ∼= Z/3,
Γy = 〈T |T 3 = 1〉 ∼= Z/3,
Γs = 〈V, W |V W = WV 〉 ∼= Z2.There are twenty-eight orbits of edges.The edge stabilizers isomorphi to Z/3 are given on the hosen representatives as

Γ(e,x′) = 〈A|A3 = 1〉 ∼= Z/3,

Γ(x,z) = 〈CAC−1|(CAC−1)3 = 1〉 ∼= Z/3,

Γ(g,y) = 〈T |T 3 = 1〉 ∼= Z/3,

Γ(j,w) = 〈S|S3 = 1〉 ∼= Z/3,

Γ(t,j′) = 〈U−1SU |(U−1SU)3 = 1〉 ∼= Z/3,

Γ(y′,z′) = 〈KCA(KC)−1|(KCA(KC)−1)3 = 1〉 ∼= Z/3,



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 13and the edge stabilizers isomorphi to Z/2 are given on the hosen representatives as
Γ(f,v) = 〈D|D2 = 1〉 ∼= Z/2,

Γ(h,u′) = 〈EAU−1JU |(EAU−1JU)2 = 1〉 ∼= Z/2,

Γ(t,b′′) = 〈R|R2 = 1〉 ∼= Z/2,

Γ(w,a) = 〈S−1BS|(S−1BS)2 = 1〉 ∼= Z/2,

Γ(b,c) = 〈M |M2 = 1〉 ∼= Z/2,

Γ(a′′,c′′) = 〈C−1S−1BSC|(C−1S−1BSC)2 = 1〉 ∼= Z/2,

Γ(v′,t) = 〈RU−1SU |(RU−1SU)2 = 1〉 ∼= Z/2,

Γ(w,u) = 〈B|B2 = 1〉 ∼= Z/2,

Γ(h,e) = 〈AU−1JU |(AU−1JU)2 = 1〉 ∼= Z/2,

Γ(g,f) = 〈DE|(DE)2 = 1〉 ∼= Z/2,

Γ(f,h) = 〈E|E2 = 1〉 ∼= Z/2,

Γ(o,g) = 〈J |J2 = 1〉 ∼= Z/2,

Γ(o′,e) = 〈U−1JU |(U−1JU)2 = 1〉 ∼= Z/2.We �nd nine edge orbits with the trivial stabilizer, thirteen edge orbit representatives with sta-bilizer type Z/2, and six with stabilizer type Z/3. The singular vertex has stabilizer type
Z2, and there are six vertex orbit representatives with stabilizer type Z/2, two with D2, fourwith S3 and four with Z/3. Furthermore, there are twelve orbits of faes with trivial stabilizers.The above data gives the Γ-equivariant Euler harateristi of X, in aordane with remark 21:

χΓ(X) =
6

2
+

4

3
+

2

4
+

4

6
− 9− 13

2
− 6

3
+ 12 = 0.3.1.1. The bottom row of the E1-term. Figure 3: (d1

1,q)(2)

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1...
1 1

1 1...
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

We obtain for the row q = 0 in the olumns p = 0, 1, 2:
Z17

d1
1,0←−−− Z28

d1
2,0←−−− Z12,where the only ourring elementary divisor is 1, withmultipliity sixteen for d1

1,0, and with multipliity tenfor d1
2,0.3.1.2. The odd rows of the E1-term.We set the goal to determine the morphism

⊕
σ∈Γ\X0 Hq(Γσ)

d1
1,q←−−−⊕

σ∈Γ\X1 Hq(Γσ) for odd q > 1.By lemma 14, the torsion only ours at the primes2 and 3. For eah m, we are going to treat theseprimes separately. For eah of them, lemma 16spei�es the e�et on homology of the vertex inlu-sion,thus allowing us to determine the matrix of d1
1,q in the basis determined by the edge respetivelyvertex stabilizers in a row-by-row fashion. For m = 13 and odd q, the map d1

1,q is on the 2-primarypart a homomorphism (Z/2)q+13 ←− (Z/2)13 given by the q+13-by-13 matrix in �gure 3, where wereplae the dotted entries � ... � by q−1
2 lines with a �1� in the olumn of the dots, and zeroes in therest of these lines. Therefore, we have to distinguish the ase q = 1, where d1

1,q has rank 12,and the ase q > 3, where it has rank 13.On the 3-primary part, d1
1,q is a homomorphism {

(Z/3)4 ←− (Z/3)6 for q ≡ 1 mod 4,

(Z/3)8 ←− (Z/3)6 for q ≡ 3 mod 4.



14 RAHM AND FUCHS Figure 4: (d1
1,q)(3)

(e, x′) (g, y) (x, z) (y′, z′) (j, w) (t, j′)

e −α 0 0 0 0 0
x 1 0 −1 0 0 0
g 0 −α 0 0 0 0
y 0 1 0 −1 0 0
z 0 0 1 1 0 0
j 0 0 0 0 −1 1
w 0 0 0 0 α 0
t 0 0 0 0 0 −α,

It is given by the matrix displayed in �gure 4, where
α = 1 for q ≡ 3 mod 4 and α = 0 else. This matrixhas full rank 6 (injetivity) for q ≡ 3 mod 4, and rank4 (surjetivity) for q ≡ 1 mod 4. For q = 1, there isan additional module H1(Γs) ∼= Z2 on the target side,whih an not be hit beause the edge stabilizers areonly torsion.Remark 23. So, the 3-torsion in H1(Γ) has alreadybeen killed by the d1 di�erential. This is useful for show-ing that the map
H1(PSL2(Z))→ H1(Γ)is not injetive. In fat, the matrix S of order 3 de�nes a non-zero element in the abelianization of
PSL2(Z) but beomes subjet to the relation S2 = BS−1BS in Γ where B is the matrix of order twode�ned above. Thus, the lass of S is zero in Γab.3.1.3. The even rows of the E1-term.There is a zero map arriving at ⊕

σ∈Γ\X0

Hq(Γσ) ∼= (Z/2)q for q bigger than 2, and respetively at
⊕

σ∈Γ\X0

H2(Γσ) ∼= Z⊕ (Z/2)2.3.1.4. The E2-term.In the rows with q > 2, E2
p,q is onentrated in the olumns p = 0 and p = 1 given as follows:

q = 4k + 1, q > 5 (Z/2)q (Z/3)2

q even, q > 4 (Z/2)q 0
q = 4k + 3, q > 3 (Z/3)2 ⊕ (Z/2)q 0
. . . . . . . . .
q = 2 Z ⊕ (Z/2)2 0In the rows q = 0 and q = 1, E2

p,q is onentrated in the olumns p = 0, 1, 2:
q = 1 Z2 ⊕ (Z/2)2 (Z/3)2 ⊕ Z/2 0

q = 0 Z Z2 Z2

d2

kkVVVVVVVVVVVVVVVVVVVVVV3.1.5. The di�erential d2.The only nontrivial d2-arrow is determined on the E0-level by the following maps onneting E0
2,0with E0

0,1:
L

σ∈Γ\X0

Θ1 ⊗σ Z
L

σ∈Γ\X1

Θ1 ⊗σ Z1⊗δoo

dΘ⊗1

��
L

σ∈Γ\X1

Θ0 ⊗σ Z
L

σ∈Γ\X2

Θ0 ⊗σ Z1⊗δoowhere dΘ is the di�erential of the bar resolution Θ• for Γ, and δ is the di�erential of Flöge's ellularomplex. The generators of the abelian group E2
2,0
∼= Z2 are represented by the fae (c, s, c′, z) andthe union of two faes (b, x, b′, v′, y′, a′, u, a, y, v) =: F , whose quotients by Γ are homeomorphi to2-spheres.Using the identi�ations stated in 3.1, we ompute that the above d2-arrow is indued by

δ
(
(c, s, c′, z)

)
= (CAC−1 − 1) · (c, z) + (V −1 − 1) · (s, c)
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δ

`

(b, x, b′, v′, y′, a′, u, a, y, v)
´

= (CAC−1 − 1) · (x, b) + (V −1 − 1) · (b, v) + (P − 1) · (v, y) + (S2 − 1) · (y, a) + (B − 1) · (a, u).The lift 1⊗F 1 in E0
2,0 of the generator of E2

2,0 represented by
F = (b, x, b′, v′, y′, a′, u, a, y, v) is mapped as follows:

(1, CAC−1) ⊗b 1 − (1, CAC−1) ⊗x 1
+(1, V −1) ⊗v 1 − (1, V −1) ⊗b 1

+(1, P ) ⊗y 1 − (1, P ) ⊗v 1
+(1, S2) ⊗a 1 − (1, S2) ⊗y 1
+(1, B) ⊗u 1 − (1, B) ⊗a 1

(1, CAC−1) ⊗(x,b) 1

+(1, V −1) ⊗(b,v) 1

+(1, P ) ⊗(v,y) 1

+(1, S2) ⊗(y,a) 1

+(1, B) ⊗(a,u) 1

1⊗δoo

dΘ⊗1

��
(CAC−1 − 1) ⊗(x,b) 1

+(V −1 − 1) ⊗(b,v) 1

+(P − 1) ⊗(v,y) 1

+(S2 − 1) ⊗(y,a) 1

+(B − 1) ⊗(a,u) 1

1 ⊗F 1
1⊗δooThe passage to E1.We attribute the symbols tσ to the part of this sum lying in Θ1 ⊗σ Z:

tx := −(1, CAC−1)⊗x 1,
tb := (1, CAC−1)⊗b 1− (1, V −1)⊗b 1,
tv := (1, V −1)⊗v 1− (1, P ) ⊗v 1,
ty := (1, P ) ⊗y 1− (1, S2)⊗y 1,
ta := (1, S2)⊗a 1− (1, B)⊗a 1,
tu := (1, B) ⊗u 1.With the formula in our orollary 12, we �nd the lasses t̄σ in H1(Θ∗ ⊗σ Z) as follows:As V −1M = CAC−1 and Γb = 〈M | M2 = 1〉,

tb = [CAC−1]⊗b 1− [V −1]⊗b 1 = [V −1M ]⊗b 1− [V −1]⊗b 1gives the yle
V V −1M − V V −1 = M ∈ 〈M | 2M = 0〉 ∼= H1(Γb; Z).As V −1 = PD and Γv = 〈D| D2 = 1〉,

tv = [V −1]⊗v 1− [P ]⊗v 1 = [PD]⊗v 1− [P ]⊗v 1gives the yle
P−1PD − P−1P = D ∈ 〈D| 2D = 0〉 ∼= H1(Γv; Z).As S2 = BS−1BS and Γa = 〈S−1BS| (S−1BS)2 = 1〉,

ta = [S2]⊗a 1− [B]⊗a 1 = [BS−1BS]⊗a 1− [B]⊗a 1gives the yle
B−1BS−1BS −B−1B = S−1BS ∈ 〈S−1BS| 2S−1BS = 0〉 ∼= H1(Γa; Z).Finally, tu = [B]⊗u 1 gives the yle

B ∈ 〈B| 2B = 0〉 ∼= H1(Γu; Z).The term E2
0,1 has no 3-torsion, so the 3-torsion part t̄x + t̄y of the above sum makes no ontributionto the image of d2.The 2-torsion part, tb + ta + tv + tu, equals the image

d1
1,1(t(b,c) + t(c′′,a′′) + t(v,f) + t(f,h) + t(h,u′)),



16 RAHM AND FUCHSwhere tσ stands for the generator of H1(Γσ; Z) ∼= Z/2. Thus it is a boundary and is quotiented tozero on the E2-page. Hene it makes no ontribution either to the image of d2, so we obtain that
d2(F ) = 0.The lift 1⊗(c,s,c′,z) 1 of the generator (c, s, c′, z) is mapped as follows:

(1, CAC−1) ⊗z 1
−(1, CAC−1) ⊗c 1

+(1, V −1) ⊗c 1
−(1, V −1) ⊗s 1

(1, CAC−1) ⊗(c,z) 1

+(1, V −1) ⊗(s,c) 1

1⊗δoo

dΘ⊗1

��
(CAC−1 − 1) ⊗(c,z) 1

+(V −1 − 1) ⊗(s,c) 1
1 ⊗(c,s,c′,z) 1

1⊗δooThe passage to E1.We attribute the symbols tσ to the part of this sum lying in Θ1 ⊗σ Z:
tz := (1, CAC−1)⊗z 1,
tc := (1, V −1)⊗c 1− (1, CAC−1)⊗c 1,
ts := −(1, V −1)⊗s 1.With the formula in our orollary 12, we �nd the lasses t̄σ in H1(Θ∗ ⊗σ Z) as follows:As V −1M = CAC−1 and Γc = 〈M | M2 = 1〉,

tc = [V −1]⊗c 1− [CAC−1]⊗c 1 = [V −1]⊗c 1− [V −1M ]⊗c 1gives the yle
V V −1 − V V −1M = −M ∈ 〈M | 2M = 0〉 ∼= H1(Γc; Z).Finally,

ts = −[V −1]⊗s 1gives the yle
V ∈ 〈V ,W 〉 ∼= H1(Γs; Z) ∼= Z2.The term E2

0,1 has no 3-torsion, so the 3-torsion part tz of the above sum makes no ontribution tothe image of d2.However the 2-torsion part, tc = M , passes to the E2-page beause no hain of edges an have the singlepoint c as its boundary. Furthermore, V is one of the generators of the free part of E2
0,1
∼= Z2⊕(Z/2)2,so we obtain d2 ((c, s, c′, z)) = M + V , whih is of in�nite order and has the following property: thereis no element η ∈ E2

0,1 with kη = M + V for an integer k > 1. As we have seen that d2(F ) = 0, weobtain the quotient
E3

0,1
∼= Z⊕ (Z/2)2.Hene we obtain for integral homology the following short exat sequenes:






0→ (Z/2)q → Hq(Γ; Z)→ (Z/3)2 → 0, q = 4k + 2,

0→ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 1,

0→ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 4,

0→ (Z/3)2 ⊕ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 3,

0→ Z⊕ (Z/2)2 → H2(Γ; Z)→ Z⊕ (Z/3)2 ⊕ Z/2→ 0,

0→ Z⊕ (Z/2)2 → H1(Γ; Z)→ Z2 → 0.We will resolve the ambiguity in the torsion part of the group extension H2(Γ; Z) by a re�etion likethe one on [20, page 587℄, for whih we have to reompute the spetral sequene with Z/2�, Z/3� and
Z/4�oe�ients. The free part is unambiguous, as we an see from tensoring with Q.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 173.1.6. The E1-term with Z/2-oe�ients.We an apply the funtor −⊗ Z/2 to the row q = 0 and obtain in the olumns p = 0, 1, 2:
(Z/2)17

d1
1,0←−−− (Z/2)28

d1
2,0←−−− (Z/2)12.The rest of this row are zeroes. The matrix d1

1,0 has rank 16 and the matrix d1
2,0 has rank 10.In the rows with q > 0, the di�erential d1 is given by a single arrow d1

1,q from
E1

1,q
∼= (Hq(Z/2; Z/2))13 ⊕ (Hq(Z/3; Z/2))6 ∼= (Z/2)13 to

E1
0,q
∼= Hq(Z

2; Z/2)⊕ (Hq(Z/2; Z/2))6 ⊕ (Hq(D2; Z/2))2 ⊕ (Hq(S3; Z/2))4,and the rest of these rows are zeroes. For q = 1, we have d1
1,1 of rank 12 arriving at E1

0,1
∼= (Z/2)16. For

q > 3, we have d1
1,q of rank 13 arriving at E1

0,q
∼= (Z/2)12+2q . For q = 2, we have d1

1,2 of rank 13 arrivingat E1
0,2
∼= (Z/2)17. The only di�ulty in seeing this is to ompare the maps from Hq(Z/2; Z/2) to

Hq(D2; Z/2) indued by the di�erent inlusions Z/2→ D2; we use observation 15 for this purpose.3.1.7. The E2-term with Z/2-oe�ients.We obtain in the rows with q > 2 the E2-term onentrated in the olumn p = 0,
q > 3 (Z/2)2q−1

q = 2 (Z/2)4,and in the rows q = 0, q = 1 it is onentrated in the olumns p = 0, 1, 2:
q = 1 (Z/2)4 Z/2 0

q = 0 Z/2 (Z/2)2 (Z/2)2.

d2
2,0

iiTTTTTTTTTTTTTTTTTThe di�erential d2
2,0 with Z/2-oe�ients.The basis {(c, s, c′, z), F} of E2

2,0 with Z-oe�ients indues a basis of E2
2,0 with Z/2-oe�ients. TheUniversal Coe�ient Theorem yields an isomorphism from H1(Γσ; Z)⊗Z Z/2 to H1(Γσ; Z/2), whihwe will use to transfer the elements tσ ∈ H1(Γσ; Z) omputed in subsetion 3.1.5 to H1(Γσ; Z/2).For d2

2,0((c, s, c
′, z)) the omputation is as follows. As tc generates H1(Γc; Z) ∼= Z/2, it is transferredto the generator of H1(Γc; Z/2) ∼= Z/2. Sine ts an be ompleted with a seond element to a Z-basisof H1(Γs; Z) ∼= Z2, it is transferred to a nontrivial element of H1(Γs; Z/2) ∼= (Z/2)2. The element tzvanishes beause H1(Γz; Z)⊗Z/2 ∼= Z/3⊗Z/2 = 0. The sum tc+ts is quotiented to a nontrivial elementon the E2-page beause H1(Γs; Z/2) is not hit by the d1-di�erential. So d2

2,0(〈(c, s, c′, z)〉) ∼= Z/2.For d2
2,0(F ), the omputation is as follows. Sine the 3-torsion vanishes when tensored with Z/2,the 3-torsion part t̄x + t̄y of the sum makes no ontribution to the image of d2. The 2-torsion part,

tb + ta + tv + tu, equals the image
d1
1,1(t(b,c) + t(c′′,a′′) + t(v,f) + t(f,h) + t(h,u′)),where tσ, σ ∈ {b, a, v, u, (b, c), (c′′ , a′′), (v, f), (f, h), (h, u′)} is the generator of H1(Γσ; Z/2) ∼= Z/2.Hene it makes no ontribution neither, and we obtain d2(F ) = 0. Thus d2

2,0 has rank 1.As Z/2-modules are vetor spaes over the �eld with two elements F2, the E3 = E∞-page yieldsimmediately the results. We do an analogous omputation with Z/3� and Z/4�oe�ients and obtain
dimF2 Hq(Γ; Z/2) =

{
2q − 1, q > 3,

6, q = 2,

5, q = 1,

dimF3 Hq(Γ; Z/3) =

{
2, q ≡ 0 or 2 mod 4, q > 2,

4, q ≡ 3 mod 4,

0, q ≡ 1 mod 4, q > 2;



18 RAHM AND FUCHSand the exat sequene 1→ (Z/2)5 → H3(Γ; Z/4)→ Z/2→ 1. The short exat sequene
1→ Z⊕ (Z/2)2 → H2(Γ; Z)→ Z⊕ (Z/3)2 ⊕ Z/2→ 1tells us that H2(Γ; Z) is one of the group extensions 8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Z2 ⊕ (Z/3)2 ⊕ (Z/2)3 ,

Z2 ⊕ (Z/3)2 ⊕ (Z/2)2 ,

Z2 ⊕ Z/3 ⊕ (Z/2)3,

Z2 ⊕ (Z/3)2 ⊕ Z/2 ⊕ Z/4,

Z2 ⊕ Z/3 ⊕ Z/2 ⊕ Z/4.Using the Universal Coe�ient Theorem in the form
Hq(Γ; Z/n) ∼= Hq(Γ; Z)⊗ (Z/n)⊕ TorZ

1 (Hq−1(Γ; Z), Z/n)with n = 2, 3 and 4, we an now eliminate all the wrong answers and retain
Hq(PSL2(O−13); Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ (Z/3)2 ⊕ Z/2, q = 2,

(Z/2)q ⊕ (Z/3)2, q = 4k + 3, k > 0,

(Z/2)q, q = 4k + 4, k > 0,

(Z/2)q, q = 4k + 1, k > 1,

(Z/2)q ⊕ (Z/3)2, q = 4k + 2, k > 1.3.2. m = 5. We will make use of the following matries, whih agree with those in [10℄:
A:= ±

„

−1
1

«

, B:= ±
„

−ω 2
2 ω

«

, M := ±
„

−ω 4
1 ω

«

, S :=±
„

−1
1 1

«

,

U := ±
„

1 ω
1

«

, V := ±
„

−ω 2 − ω
2 2 + ω

«

, W :=±
„

6 − ω 5 + 2ω
2ω ω − 4

«

.These are subjet to the relations UMU−1 = A, UWS(UW )−1 = S, WABW−1 = MB and S = ABV .A fundamental domain is displayed in �gure 5. There are �ve orbits of verties, with stabilizers

v1

a3

a1

a2b

u

u1

s

v

a

Figure 5: Thefundamental do-main for m = 5

Γb = 〈A, B|A2 = B2 = 1〉 ∼= D2,
Γu = 〈B, M |B2 = M2 = 1〉 ∼= D2,
Γa = 〈AB|AB2 = 1〉 ∼= Z/2,
Γv = 〈S|S3 = 1〉 ∼= Z/3,
Γs = 〈V, W |V W = WV 〉 ∼= Z2As in the ase m = 13, verties with the same letter in the fundamental domain areidenti�ed by the ation of Γ. Amongst the identi�ations of the verties, we will usethe following. UW · a = a1, V −1 · a = a2, S2 · a = a2, U · u = u1 and UW · v = v1.There are seven orbits of edges, with stabilizers
Γ(b,a) = 〈AB|AB2 = 1〉 ∼= Z/2,

Γ(v,v1) = 〈S|S3 = 1〉 ∼= Z/3,

Γ(a3,u) = 〈MB|MB2 = 1〉 ∼= Z/2,

Γ(u,b) = 〈B|B2 = 1〉 ∼= Z/2,

Γ(u1,b) = 〈A|A2 = 1〉 ∼= Z/2;

(a, v) and (a, s) having the trivial stabilizer. There are three orbits of faes, withtrivial stabilizers. The above data gives the Γ-equivariant Euler harateristi of X:
χΓ(X) =

1

2
+

1

3
+

2

4
− 2− 4

2
− 1

3
+ 3 = 0,in aordane with remark 21.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 193.2.1. The bottom row of the E1-term.This row identi�es with the ellular hain omplex of the quotient omplex Γ\X.We obtain for the row q = 0 in the olumns p = 0, 1, 2:
Z5

d1
1,0←−−− Z7

d1
2,0←−−− Z3where 1 is the only elementary divisor of the di�erential matries, with multipliity four for d1

1,0,and multipliity two for d1
2,0. The homology of Γ\X is generated in degree 1 by theloop represented by the edge (v, v1), and in degree 2 by the quotient of the fae

(a2, s, a, v), whih is homeomorphi to a 2-sphere.3.2.2. The odd rows of the E1-term.We start by investigating the morphism
Z2 ⊕ Z/3⊕ (Z/2)5

d1
1,1←−−−−− Z/3⊕ (Z/2)4and the morphism

Z/3⊕ (Z/2)q+4
d1
1,q←−−−−− Z/3⊕ (Z/2)4for q > 3. On the 3-torsion, d1

1,q is zero. Figure 6: (d1
1,q)(2)

(b, a) (a3, u) (u, b) (u1, b)

a 1 −1 0 0
b −1 0 0 1... ... ... ... ...
b −1 0 1 0
u 0 1 −1 0... ... ... ... ...
u 0 1 0 −1,

On the 2-torsion, d1
1,q is given by the matrix (d1

1,q)(2) of �gure6, where we replae the q−1
2 dotted entries between the two

1's with 1's, and the q−1
2 dotted entries between the −1's with

−1's. The rest is �lled with zeroes. Thus (d1
1,1)(2) has rank 3and (d1

1,q)(2) has rank 4 for q > 3.3.2.3. The even rows of the E1-term.There is a zero map arriving at E1
0,2
∼= Z⊕ (Z/2)2.For q > 4, there is a zero map arriving at E1

0,q
∼= (Z/2)q .The rest of the E1-page are zeroes.3.2.4. The E2-term.In the rows with q > 2, the E2-page is onentrated in theolumns

p = 0 and p = 1:
q > 4 even (Z/2)q 0
q > 3 odd (Z/2)q ⊕ Z/3 Z/3
q = 2 Z ⊕ (Z/2)2 0Its lowest two rows are onentrated in the olumns p = 0, 1, 2:

q = 1 Z2 ⊕ (Z/2)2 ⊕ Z/3 Z/2 ⊕ Z/3 0

q = 0 Z Z Z

d2

kkVVVVVVVVVVVVVVVVVVVVVVLet us ompute the only nontrivial d2-arrow. The generator of E2
2,0 omes from the 2-ell (a2, s, a, v).Using the identi�ations listed in 3.2, we see that the lift 1 ⊗(a2,s,a,v) 1 of the generator of E2

2,0 is



20 RAHM AND FUCHSmapped as follows in the E0-page:
−(1, V −1) ⊗s 1 + (1, V −1) ⊗a 1

+(1, S2) ⊗v 1 − (1, S2) ⊗a 1

−(1, V −1) ⊗(a,s) 1

+(1, S2) ⊗(a,v) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(a,s) 1 − V −1 ⊗(a,s) 1

+S2 ⊗(a,v) 1 − 1 ⊗(a,v) 1
1 ⊗(a2,s,a,v) 1

1⊗δooAs S = ABV , the part lying in Θ1⊗a Z is [V −1]⊗a 1− [S2]⊗a 1 = [S2AB]⊗a 1− [S2]⊗a 1; and goesto S−1S2AB − S−1S2 = AB, the generator of H1(Γa; Z). So, our image in E0
0,1 passes to

(V , 2S, AB) ∈ 〈V , W 〉 ⊕ 〈S | 3S = 0〉 ⊕ (Z/2)2 ∼= E2
0,1,whih is of in�nite order and has the following property: There is no element η ∈ E2

0,1 with
kη = (V , 2S,AB) for an integer k > 1. So,

E3
0,1
∼= Z⊕ (Z/2)2 ⊕ Z/3.Thus the E∞-page yields the following short exat sequenes:






0 → (Z/2)q → Hq(Γ; Z) → Z/3 → 0 q > 4 even,

0 → Z/3 ⊕ (Z/2)q → Hq(Γ; Z) → 0 q > 3 odd,

0 → Z ⊕ (Z/2)2 → H2(Γ; Z) → Z/3 ⊕ Z/2 → 0,

0 → Z ⊕ Z/3 ⊕ (Z/2)2 → H1(Γ; Z) → Z → 0.To resolve the ambiguity at the group extension H2(Γ; Z), we ompute
dimF2 Hq(Γ; Z/2) =

8

>

<

>

:

4 q = 1,

5 q = 2,

2q − 1 q > 3

Hq(Γ; Z/3) ∼= (Z/3)2, q > 2, 8

>

<

>

:

1 → (Z/2)5 → H3(Γ; Z/4) → Z/2 → 1,

1 → (Z/2)4 ⊕ Z/4 → H2(Γ; Z/4) → Z/2 → 1;where the last two sequenes are exat; and get the result
Hq(PSL2(O−5); Z) ∼=






Z2 ⊕ Z/3⊕ (Z/2)2 q = 1,

Z⊕ Z/4⊕ Z/3⊕ Z/2 q = 2,

Z/3⊕ (Z/2)q q > 3.Remark 24. For m = 5, the hek introdued in remark 13 takes the following form.The abelianization is Γab ∼= 〈A,B, S,U, V : 2A = 0, 2B = 0, 3S = 0〉. The fundamental group ofthe quotient spae is free, so only the paraboli elements U and V an de�ne nontrivial loops in thequotient spae. The element U generates a nontrivial loop, while V generates a trivial loop. It followsthat E∞
0,1
∼= Z⊕ (Z/2)2 ⊕ Z/3, generated by V ,A,B and S. This is onsistent with the omputationabove, involving the detailed analysis of the d2-di�erential.3.3. m = 10. Let ω :=

√
−10. We will use the following de�nitions:

A := ±
„

−1
1

«

, B := ±
„

−ω 3
3 ω

«

, C := ±
„

−1 − ω 4 − ω
2 1 + ω

«

, D := ±
„

ω − 1 −4
3 1 + ω

«

,

L := ±
„

ω 3
3 −ω

«

, R := ±
„

5 + ω 2ω − 3
ω − 3 −4 − ω

«

, S := ±
„

−1
1 1

«

, U := ±
„

1 ω
1

«

,

V := ±
„

1 − ω 5
2 1 + ω

«

, W := ±
„

11 5ω
2ω −9

«

, Y := ±
„

ω − 2 −5
3 2 + ω

«

.Verties with the same letter are identi�ed by the ation. The matrix U ats as a vertial translation by
−ω on the fundamental domain, whih is shown in �gure 7. There are nine orbits of verties, labelled
a, b, r, u, v, w, x, y, s. We have the following identi�ations: UWa = a1, Wa = a2, V a = a3;
S−1v = v1, U−1Dv = v2; Dw = w1, U−1Dw = w2; Db = b1, Cb = b2; Dr = r1;
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UWx = x1. On the verties of (a, s, a3, x) , we have the identi�ations B · a = a3 and V · a = a3,where the matrix B �xes x and the matrix V �xes s. For (v1, b2, r, b, v, w), we have the identi�ationsof verties Cb = b2, Cr = r, S2v = v1 and S2w = w; and we pay partiular attention to the matrix
CR = S2AB identifying the edge (b, v) ∼= (b2, v1).The stabilizers of the vertex orbit representatives are

Γa = Γb =
˙

R| R3 = 1
¸ ∼= Z/3,

Γw =
˙

S | S3 = 1
¸ ∼= Z/3,

Γy =
˙

A, L| A2 = L2 = (AL)2 = 1
¸ ∼= D2,

Γu =
˙

A, B | A2 = B2 = (AB)2 = 1
¸ ∼= D2,

Γr =
˙

C| C2 = 1
¸ ∼= Z/2,

Γv =
˙

AB| (AB)2 = 1
¸ ∼= Z/2,

Γx =
˙

B | B2 = 1
¸ ∼= Z/2,

Γs = 〈V, W | V W = WV 〉 ∼= Z2.There are �fteen orbits of edges, labelled (b, v), (r, w), (b, r), (v, w), (a2 , w2),
(y, r1), (x, a), (u, y), (a, b), (u, v), (a, s), (w, b1), (r, v2), (y, x1), (x, u).

x1

a2

a1

b1

v2w2

w1

r1

a3

b2

v1

s

u

x

y

a
b

r

v
w

Figure 7: Thefundamental do-main for m = 10

Amongst their stabilizers only
Γ(a2,w2) = Γa2 = W−1ΓaW =

˙

W−1RW
˛

˛ (W−1RW )3 = 1
¸ ∼= Z/3,

Γ(a,b) = Γa = Γb =
˙

R| R3 = 1
¸ ∼= Z/3,

Γ(w,b1) = Γb1 = Γw =
˙

S | S3 = 1
¸ ∼= Z/3,

Γ(y,r1) = Γr1 = DΓrD−1 =
˙

AL = DCD−1
˛

˛ (DCD−1)2 = 1
¸ ∼= Z/2,

Γ(u,v) = Γv =
˙

AB | (AB)2 = 1
¸ ∼= Z/2,

Γ(r,v2) = Γv2 = Γr =
˙

C| C2 = 1
¸ ∼= Z/2,

Γ(y,x1) = Γx1 = UWΓx(UW )−1 =
˙

L | L2 = 1
¸ ∼= Z/2,

Γ(x,u) = Γx =
˙

B | B2 = 1
¸ ∼= Z/2,

Γ(u,y) =
˙

A | A2 = 1
¸ ∼= Z/2are nontrivial. Furthermore, there are seven orbits of faes, with trivial stabilizers.With the above information on the isomorphism types of the ell stabilizers, we getthe Γ-equivariant Euler harateristi of X:

χΓ(X) =
3

3
+

2

4
+

3

2
− 3

3
− 6

2
− 6 + 7 = 0,in aordane with remark 21.3.3.1. The bottom row q = 0 of the E1-term. We obtain for the row q = 0 in theolumns p = 0, 1, 2:

Z9
d1
1,0←−−− Z15

d1
2,0←−−− Z7,where 1 is the only elementary divisor of the di�erential matries, with multipliityeight for d1

1,0, and multipliity �ve for d1
2,0. The rest of this row is zero.3.3.2. The odd rows of the E1-term.For odd q, the morphism

⊕

σ∈Γ\X0

Hq(Γσ)
d1
1,q←−−−

⊕

σ∈Γ\X1

Hq(Γσ)is for q > 3 of the form
(Z/3)3 ⊕ (Z/2)q+6 ←− (Z/3)3 ⊕ (Z/2)6.For q = 1, we have to add H1(Γs) ∼= Z2 on the target side of the morphism d1

1,q, but the inomingtorsion must reah it trivially. On the 3-primary part, d1
1,q is given by the matrix

(d1
1,q)(3) =

(a, b) (Db, w) (Wa, U−1Dw)

a −1 0 −1
w 0 1 1
b 1 −1 0.



22 RAHM AND FUCHSThis matrix has rank 2, so its image is isomorphi to (Z/3)2 and its kernel is Z/3.On the 2-primary part, d1
1,q is for odd q given by the matrix

(d1
1,q)(2) =

(y, r1) (u, v) (r, v2) (y, x1) (x, u) (u, y)

u 0 −1 0 0 0 −1... ... ... ... ... ... ...
u 0 −1 0 0 1 0
y −1 0 0 0 0 1... ... ... ... ... ... ...
y −1 0 0 −1 0 0
x 0 0 0 1 −1 0
r 1 0 −1 0 0 0
v 0 1 1 0 0 0,where we replae, as in the omputation for m = 13, the q−1

2 dotted entries between the two 1'swith 1's, and the q−1
2 dotted entries between the −1's with −1's. The rest is �lled with zeroes. Theresulting matrix (d1
1,q)(2) has rank 5 for q = 1, and full rank 6 for q > 3.3.3.3. The even rows of the E1-term.These rows are given by zero maps into ⊕

σ∈Γ\X0

Hq(Γσ) ∼= (Z/2)q for q > 2, respetively into
⊕

σ∈Γ\X0

H2(Γσ) ∼= Z⊕ (Z/2)2 for q = 2.3.3.4. The E2-term.In the rows with q > 2, the E2-page is onentrated in the olumns p = 0 and p = 1:
q > 4 even (Z/2)q 0
q > 3 odd (Z/2)q ⊕ Z/3 Z/3
q = 2 Z ⊕ (Z/2)2 0Its lowest two rows are onentrated in the olumns p = 0, 1, 2:

q = 1 Z2 ⊕ (Z/2)2 ⊕ Z/3 Z/2 ⊕ Z/3 0

q = 0 Z Z2 Z2

d2

kkVVVVVVVVVVVVVVVVVVVVVV3.3.5. The di�erential d2.The generators of the abelian group E2
2,0
∼= Z2 are represented by the 2-ell (a, s, a3, x) and theunion of two 2-ells (v1, b2, r, b, v, w), whose quotients by Γ are homeomorphi to 2-spheres. Using theidenti�ations given in 3.3, wee that the only nontrivial d2-arrow is indued by

δ((a, s, a3, x)) = (a, s) + V · (s, a) + B · (a, x) + (x, a)and
δ((v1, b2, r, b, v, w)) = (b, r)− C · (b, r) + CR · (b, v) + S2 · (v,w) − (v,w) − (b, v).The lift 1⊗(v1,b2,r,b,v,w) 1 of the generator obtained from (v1, b2, r, b, v, w) is mapped as follows:

(C, 1) ⊗r 1 − (C, 1) ⊗b 1
+(1, CR) ⊗v 1 − (1, CR) ⊗b 1
+(1, S2) ⊗w 1 − (1, S2) ⊗v 1

(C, 1) ⊗(b,r) 1

+(1, CR) ⊗(b,v) 1

+(1, S2) ⊗(v,w) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(b,r) 1 − C ⊗(b,r) 1

+CR ⊗(b,v) 1 − 1 ⊗(b,v) 1

+S2 ⊗(v,w) 1 − 1 ⊗(v,w) 1

1 ⊗(v1,b2,r,b,v,w) 1
1⊗δoo
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2,0(〈(v1, b2, r, b, v, w)〉) ∼= Z/3.The lift 1⊗(a,s,a3,x) 1 of the generator obtained from (a, s, a3, x) is mapped
(V, 1) ⊗s 1 − (V, 1) ⊗a 1

+(1, B) ⊗x 1 − (1, B) ⊗a 1

(V, 1) ⊗(a,s) 1

+(1, B) ⊗(a,x) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(a,s) 1 − V ⊗(a,s) 1

+B ⊗(a,x) 1 − 1 ⊗(a,x) 1
1 ⊗(a,s,a3,x) 1

1⊗δooWe attribute the symbols tσ to the part of this sum lying in Θ1 ⊗σ Z,
ts := (V, 1) ⊗s 1,
tx := (1, B) ⊗x 1,
ta := −(V, 1) ⊗a 1 − (1, B) ⊗a 1.We �nd the lass ts = −V ∈ 〈V ,W 〉 = Γabs ∼= H1(Γs; Z) ∼= Z2, whih is a generator of the free partof E1

0,1. It an not be the image of a torsion element from E1
1,1 = (Z/3)3 ⊕ (Z/2)2. Therefore, it ispreserved when passing from E1

0,1 to E2
0,1. The yles tx and ta are torsion, so the fat that ts is agenerator of the free part determines that the image d2

2,0(〈(a, s, a3, x)〉) is of in�nite order and has thefollowing property: There is no element η ∈ E2
0,1
∼= Z2 ⊕ Z/3 ⊕ (Z/2)2 with kη = d2

2,0(〈(a, s, a3, x)〉)for an integer k > 1. Together with the isomorphism d2
2,0(〈(v1, b2, r, b, v, w)〉) ∼= Z/3, we obtain

E3
0,1
∼= Z⊕ (Z/2)2.Thus the E∞-page gives the following short exat sequenes:






0 → (Z/2)q → Hq(Γ; Z) → Z/3 → 0, for q > 4 even,

0 → Z/3 ⊕ (Z/2)q → Hq(Γ; Z) → 0, for q > 3 odd,

0 → Z ⊕ (Z/2)2 → H2(Γ; Z) → Z ⊕ Z/3 ⊕ Z/2 → 0,

0 → Z ⊕ (Z/2)2 → H1(Γ; Z) → Z2 → 0.Therefore, there is ambiguity in the 3-torsion and the 2-torsion of the short exat sequene for
H2(Γ; Z). To identify the orret group extension, we ompute

dimF2 Hq(Γ; Z/2) ∼=






2q − 1, q > 3

6, q = 2,

5, q = 1.Furthermore, we �nd Hq(Γ; Z/3) ∼= (Z/3)2 for all q > 3 and the exat sequene
1→ (Z/2)5 → H3(Γ; Z/4)→ Z/2→ 1.From here, we easily see the results,

Hq(PSL2(O−10); Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ (Z/2)q, q > 3;Remark 25. For m = 10, the hek introdued in remark 13 takes the following form. The abelian-ization is the group Γab ∼= 〈A,B,D,U,W : 2A = 2B = 0〉. The elements of in�nite order are D, Uand W . The elements U and U−1D give the yles generating H1(Γ\X), while W generates a trivialloop. So it follows that E∞
0,1 = Z ⊕ (Z/2)2, generated by W,A and B. This is onsistent with theomputation above.



24 RAHM AND FUCHS3.4. m = 6. We obtain the fundamental domain for Γ = PSL2(Z[
√
−6 ]) displayed in �gure 8. Thematrix U := ± ( 1 ω

1 ) performs a vertial translation by −ω of the fundamental domain. The followingmatries our in the ell stabilizers.
A := ±

„

−1
1

«

, B := ±
„

−1 − ω 2 − ω
2 1 + ω

«

, R := ±
„

−ω 5 − ω
1 1 + ω

«

,

S := ±
„

−1
1 1

«

, V := ±
„

1 − ω 3
2 1 + ω

«

, W := ±
„

7 3ω
2ω −5

«

.There are �ve orbits of verties, labelled b, a, u, v, s, with stabilizers

b1 a1

a2

a3

s

b

a

u

v

v1Figure 8: Thefundamental do-main for m = 6

Γu =
˙

B, S| B2 = S3 = (BS)3 = 1
¸ ∼= A4,

Γv =
˙

B, R| B2 = R3 = (BR)3 = 1
¸ ∼= A4,

Γa =
˙

SB | (SB)3 = 1
¸ ∼= Z/3,

Γb =
˙

A| A2 = 1
¸ ∼= Z/2,

Γs = 〈V, W | V W = WV 〉 ∼= Z2,and identi�ations UW · a = a1, W · a = a2, V · a = a3, A · a = a3, UW · b = b1and U · v = v1. There are seven orbits of edges, labelled (b, a), (a, s), (a, u), (u, v),
(a2, v), (b, b1) and (u, v1), amongst whose stabilizers only

Γ(a2,v) =
˙

RB | (RB)3 = 1
¸

= Γa2
∼= Z/3,

Γ(u,v1) =
˙

S | S3 = 1
¸ ∼= Z/3,

Γ(a,u) =
˙

SB | (SB)3 = 1
¸

= Γa
∼= Z/3,

Γ(u,v) =
˙

B | B2 = 1
¸ ∼= Z/2,

Γ(b,b1) =
˙

A | A2 = 1
¸

= Γb = Γb1
∼= Z/2are nontrivial; and three orbits of faes with trivial stabilizers. The above data givesthe Γ-equivariant Euler harateristi of X:

χΓ(X) =
2

12
+

1

3
+

1

2
− 2− 3

3
− 2

2
+ 3 = 0,in aordane with remark 21.3.4.1. The bottom row of the E1-term.We obtain in the olumns p = 0, 1, 2:

Z5
d1
1,0←−−− Z7

d1
2,0←−−− Z3where 1 is the only ourring elementary divisor of the di�erential matries, withmultipliity four for d1

1,0, and multipliity two for d1
2,0. The homology of this sequene is generated bythe yle (b, b1) in degree one and by the fae (a, s, a3, b) in degree two.3.4.2. The odd rows of the E1-term.The map d1

1,q is on the 2-primary part indued by the inlusion of Γ(u,v)
∼= Z/2 into Γv and Γu whihare isomorphi to A4. By [20, lemma 4.5(2)℄, every inlusion of Z/2 into A4 indues injetions onhomology in degrees greater than 1, and is zero on H1. So the morphism

Z2 ⊕ Z/2⊕ (Z/3)3
d1
1,1←−−− (Z/2)2 ⊕ (Z/3)3has Z/2-rank 0 on the 2-primary part, and

Z/3⊕ Z/2⊕ (Hq(A4))
2

d1
1,q←−−− (Z/2)2 ⊕ (Z/3)3in the odd rows of degree q > 3 has Z/2-rank 1 on the 2-primary part.
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1,q is for all odd q given by the following rank 2 matrix.

(d1
1,q)(3) =

(a, u) (a2, v) (u, v1)

a −1 −1 0
u 1 0 −1
v 0 1 1.In order to determine its rank, we make use of the following fats.First, by [20, lemma 4.5℄, eah of the ourring group inlusions indues an injetion in homology.So we have to determine the relative positions of the images oming from the edges in eah diretsummand over the points. In order to �nd out if anellation ours between terms with positive andnegative signs, let us look at the following diagram. The symbol ∆W denotes the isomorphism givenby onjugation with W , δ denotes an inner automorphism, ι denotes any anonial inlusion, and thearrows emanating from Z/3 are labeled with the image of the anonial generator.
Γ(a2,v)

id

uujjjjjjjjjjjjjjjjjjj
ι

**UUUUUUUUUUUUUUUUUUUUUU

Γa2

∆W
��

Z/3

RB

OO

RB
oo

RB
//

SB
uujjjjjjjjjjjjjjjjjjjjj

SUBU−1 **UUUUUUUUUUUUUUUUUUUUUUU

SB

zzuuuuuuuuuuuuuuuuuuuuuuu

S

��:
::

::
::

::
::

::
::

::

SB

����
��

��
��

��
��

��
��

�

S

%%KKKKKKKKKKKKKKKKKKKKKKKKKK

S

��

Γv

∆U
��

Γa Γv1

Γ(a,u)

id

OO

ι
// Γu

δ
// Γu Γ(u,v1) ι

//
ι

oo Γv1

δ

OO

Applying homology Hq for odd q and taking into aount that the fat that inner automorphismsat trivially on homology, we get a similar slightly smaller ommutative diagram. One an thenunambiguously identify all ourring groups Hq(Z/3) ∼= Z/3 and its images in Hq(A4) with the�abstrat� Hq(Z/3) ∼= Z/3 in the middle. This gives a basis for the 3-primary parts of the soureand a subspae of the image. In this basis, the 3-primary map is given by the above matrix (d1
1,q)(3),followed by an injetion whih does not in�uene the homology.3.4.3. The even rows of the E1-term.The even rows are the zero map to E1

0,2
∼= Z⊕ (Z/2)2, and to E1

0,q
∼= (Hq(A4))

2 for degree q > 4.3.4.4. The E2-term.In the rows with q > 2, the E2-page is onentrated in the olumns p = 0 and p = 1:
q = 6k + 8 (Z/2)2k+4 0

q = 6k + 7 (Z/2)2k+2 ⊕ Z/3 Z/2 ⊕ Z/3
q = 6k + 6 (Z/2)2k+2 0
q = 6k + 5 (Z/2)2k+4 ⊕ Z/3 Z/2 ⊕ Z/3
q = 6k + 4 (Z/2)2k 0
q = 6k + 3 (Z/2)2k+2 ⊕ Z/3 Z/2 ⊕ Z/3
q = 2 Z ⊕ (Z/2)2 0Its lowest two rows are onentrated in the olumns p = 0, 1, 2:

q = 1 Z2 ⊕ Z/2 ⊕ Z/3 (Z/2)2 ⊕ Z/3 0

q = 0 Z Z Z

kkVVVVVVVVVVVVVVVVVVVVVVV



26 RAHM AND FUCHS3.4.5. The E3 = E∞-term.For the alulation of the d2-di�erential, we have
δ(a, s, a3, b) = (a3, s) + (s, a) + (a, b) + (b, a3)

= (V · a, s) + (s, a) + (a, b) + (b, A · a)

= V · (a, s)− (a, s)− (b, a) + A · (b, a),

(1 ⊗ δ)(1⊗(a,s,a3,b) 1) = 1⊗V ·(a,s) 1− 1⊗(a,s) 1− 1⊗(b,a) 1 + 1⊗A·(b,a) 1

= (V − 1)⊗(a,s) 1 + (A− 1)⊗(b,a) 1

= (dΘ ⊗ 1)
(
(1, V )⊗(a,s) 1 + (1, A)⊗(b,a) 1

)

= (dΘ ⊗ 1)
(
[V ]⊗(a,s) 1 + [A]⊗(b,a) 1

)
.We then get

(1⊗ δ)
(
[V ]⊗(a,s) 1 + [A]⊗(b,a) 1

)
= [V ]⊗s 1− [V ]⊗a 1 + [A]⊗a 1− [A]⊗b 1.As [V ]⊗s 1 and [W ]⊗s 1 represent the generators of the torsion-free part of E2

0,1
∼= Z2 ⊕ Z/2⊕ Z/3,we see that the above omputed element of E0

0,1 represents an element ν ∈ E2
0,1 of in�nite orderwith the following property: there is no element η ∈ E2

0,1 with kη = ν for an integer k > 1. So,
E3

0,1
∼= Z⊕ Z/3⊕ Z/2 and E3

2,0 = 0.3.4.6. The short exat sequenes.We thus obtain for integral homology the following short exat sequenes:





0 → (Z/2)2k+4 → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 8

0 → (Z/2)2k+2 ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 7

0 → (Z/2)2k+2 → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 6,

0 → (Z/2)2k+4 ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 5,

0 → (Z/2)2k → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 4,

0 → (Z/2)2k+2 ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 3,

0 → Z ⊕ (Z/2)2 → H2(Γ; Z) → Z/3 ⊕ (Z/2)2 → 0,

0 → Z ⊕ Z/3 ⊕ Z/2 → H1(Γ; Z) → Z → 0.Thus, there is ambiguity similar to the ase m = 10 in the 3-torsion of the short exat sequene for
H2(Γ; Z) and in the 2-torsion for all even degrees. To resolve it, we ompute
dimF2 Hq(Γ; Z/2) ∼=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

3, q = 1,

5, q = 2,

4k + 5, q = 6k + 3,

4k + 3, q = 6k + 4,

4k + 5, q = 6k + 5,

4k + 7, q = 6k + 6,

4k + 5, q = 6k + 7

4k + 7, q = 6k + 8,

Hq(Γ; Z/3) ∼= (Z/3)2 for all q > 3,and the exat sequenes





1→ (Z/2)4 → H3(Γ; Z/4)→ (Z/2)2 → 1,

1→ Z/4⊕ (Z/2)3 → H2(Γ; Z/4)→ (Z/2)2 → 1.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 27Summarizing, we have resolved the ambiguities and obtain:
Hq(PSL2(O−6); Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/4⊕ Z/3⊕ (Z/2)2, q = 2,

Z/3⊕ (Z/2)2k+2, q = 6k + 3,

Z/3⊕ (Z/2)2k+1, q = 6k + 4,

Z/3⊕ (Z/2)2k+4, q = 6k + 5,

Z/3⊕ (Z/2)2k+3, q = 6k + 6,

Z/3⊕ (Z/2)2k+2, q = 6k + 7,

Z/3⊕ (Z/2)2k+5, q = 6k + 8, q > 8.Remark 26. For m = 6, the hek introdued in remark 13 takes the following form. The abelian-ization is Γab ∼= 〈A,R,U,W : 2A = 0, 3R = 0〉. The paraboli element U gives the yle generating
H1(Γ\X), while the paraboli element W generates a trivial loop in the quotient spae. So it followsthat E∞

0,1
∼= Z⊕Z/2⊕Z/3, generated by W,A and R. This is onsistent with the omputation above.3.5. m = 15. We have O

Q[
√
−15 ] = Z[ω] with ω := −1

2 + 1
2

√
−15. Writing Γ := PSL2(Z[ω]) and

A := ±
„

−1
1

«

, C := ±
„

4 −1 − 2ω
1 + 2ω 4

«

, T := ±
„

−3 + ω −3 − 2ω
−1 − 2ω 4

«

,

U := ±
„

1 1 + ω
1

«

, V := ±
„

−1 − 2ω 3 − ω
4 3 + 2ω

«

, W := ±
„

−1 − 2ω 4
4 + ω −1 + 2ω

«

, S := ±
„

−1
1 1

«

,

o′c′

b′

a′

o c

s
a

b

Figure 9: Thefundamental do-main for m = 15

we have the identi�ations U−1A · (o, c) = (o′, c′), T · (a, b′) = (a′, b),
W · (s, b′) = (s, b), and V −1 · (s, a) = (s, a′) in the fundamental domain displayed in�gure 9. There is no identi�ation between the edges (b, c) and (b′, c′), nor betweenthe edges (a, o) and (a′, o′). Thus the quotient by the Γ-ation is homeomorphi tothe sum of a Möbius band and a 2-sphere, with a disk amalgamated. There are �veorbits of verties, labelled o, a, b, c, s, with stabilizers

Γo = Γa =
˙

A | A2 = 1
¸ ∼= Z/2,

Γc = Γb =
˙

S | S3 = 1
¸ ∼= Z/3,

Γs = 〈V, W | V W = WV 〉 ∼= Z2.There are eight orbits of edges, labelled (o, a), (o′, a′),(a, s), (a, b′), (b, s), (b, c), (b′, c′)and (o, c), amongst whose stabilizers only
Γ(o,a) =

˙

A | A2 = 1
¸

= Γo = Γa
∼= Z/2,

Γ(o′,a′) =
˙

V −1AV
˛

˛ (V −1AV )2 = 1
¸

= Γo′ = Γa′
∼= Z/2,

Γ(b,c) =
˙

S | S3 = 1
¸

= Γb = Γc
∼= Z/3,

Γ(b′,c′) =
˙

U−1ASA−1U
˛

˛ (U−1ASA−1U)3 = 1
¸

= Γb′ = Γc′
∼= Z/3are nontrivial; and four orbits of faes with trivial stabilizers. The above data givesthe Γ-equivariant Euler harateristi of X, in aordane with remark 21:

χΓ(X) =
2

2
+

2

3
− 4− 2

2
− 2

3
+ 4 = 0.3.5.1. The bottom row of the E1-term.We obtain in the olumns p = 0, 1, 2:

Z5
d1
1,0←−−− Z8

d1
2,0←−−− Z4where 1 is the only ourring elementary divisor of the di�erential matries, with multipliity fourfor d1

1,0, and multipliity three for d1
2,0. The homology of this sequene is generated by the yle

(o, a) + (a, b′) + (b′, c′) + (c′, o′) in degree one and by the yle (a, s, b′)− (a′, s, b) in degree two.



28 RAHM AND FUCHS3.5.2. The odd rows of the E1-term.The maps
(Z/2)2 ⊕ (Z/3)2

d1
1,q←−−− (Z/2)2 ⊕ (Z/3)2for q > 3, and

Z2 ⊕ (Z/2)2 ⊕ (Z/3)2
d1
1,1←−−− (Z/2)2 ⊕ (Z/3)2are on the 2-primary part indued by the identity maps Γ(o,a) = Γo = Γa and Γ(o′,a′) = Γo′ = Γa′ . So,we obtain the following rank 1 matrix for the 2-primary part:

(d1
1,q)(2) =

(o, a) (o′, a′)

a −1 −1
o 1 1

.On the 3-primary part, they are indued by the identity maps Γ(b,c) = Γb = Γc and Γ(b′,c′) = Γb′ = Γc′ .So, we obtain the following rank 1 matrix for the 3-primary part:
(d1

1,q)(3) =
(b, c) (b′, c′)

b −1 −1
c 1 1

.3.5.3. The even rows of the E1-term.The even rows are the zero map to E1
0,2
∼= Z, and to E1

0,q = 0 for q > 4.3.5.4. The E2-term.In the rows with q > 2, the E2-page is onentrated in the olumns p = 0 and p = 1:
q > 4 even 0 0
q > 3 odd Z/2 ⊕ Z/3 Z/2 ⊕ Z/3
q = 2 Z 0Its lowest two rows are onentrated in the olumns p = 0, 1, 2:

q = 1 Z2 ⊕ Z/2 ⊕ Z/3 Z/2 ⊕ Z/3 0

q = 0 Z Z Z

d2
2,0

jjVVVVVVVVVVVVVVVVVVVVV3.5.5. The E3 = E∞-term.For the alulation of the d2-di�erential, we have
δ

`

(a, s, b′) − (a′, s, b)
´

= (a, s) + (s, b′) + (b′, a) − (a′, s) − (s, b) − (b, a′)

= (a, s) + W−1 · (s, b) + (b′, a) − V −1 · (a, s) − (s, b) − T · (b′, a),

(1 ⊗ δ)(1 ⊗(a,s,b′)−(a′,s,b) 1) = −(V −1 − 1) ⊗(a,s) 1 + (W−1 − 1) ⊗(s,b) 1 − (T − 1) ⊗(b′,a) 1

= (dΘ ⊗ 1)
`

−(1, V −1) ⊗(a,s) 1 + (1, W−1) ⊗(s,b) 1 − (1, T ) ⊗(b′,a) 1
´

= (dΘ ⊗ 1)
`

−[V −1] ⊗(a,s) 1 + [W−1] ⊗(s,b) 1 − [T ] ⊗(b′,a) 1
´

.We then get
1⊗δ

`

−[V −1] ⊗(a,s) 1 + [W−1] ⊗(s,b) 1 − [T ] ⊗(b′,a) 1
´

= [V −1]⊗a1−[V −1]⊗s1+[W−1]⊗b1−[W−1]⊗s1+[T ]⊗b′ 1−[T ]⊗a1.As the generators of the torsion-free part of E2
0,1
∼= Z2 ⊕ Z/2⊕ Z/3 are represented by −[V −1]⊗s 1and −[W−1]⊗s 1, we see that the above omputed element of E0

0,1 represents an element ν ∈ E2
0,1 ofin�nite order with the following property: There is no element η ∈ E2

0,1 with kη = ν for an integer
k > 1. So, E3

0,1
∼= Z⊕ Z/3⊕ Z/2 and E3

2,0 = 0.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 293.5.6. The short exat sequenes.We thus obtain for integral homology the following short exat sequenes:
{

0 → Z/2 ⊕ Z/3 → Hq(Γ; Z) → 0, q > 3,

0 → Z → H2(Γ; Z) → Z/2 ⊕ Z/3 → 0,

0 → Z ⊕ Z/2 ⊕ Z/3 → H1(Γ; Z) → Z → 0.Thus, there is ambiguity in the 2- and 3-torsion in H2(Γ; Z), similar to the ases m = 10 and m = 6.In order to resolve it, we only need to ompute the homology with Z/2- and Z/3-oe�ients,
Hq(Γ; Z/2) ∼=

{
(Z/2)3 , q ∈ {1, 2},
(Z/2)2 , q > 3.

Hq(Γ; Z/3) ∼=
{

(Z/3)3, q ∈ {1, 2},
(Z/3)2, q > 3.and then use the Universal Coe�ient Theorem to ompare. This yields the result:

Hq(PSL2(O−15); Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ Z/2, q > 3.Remark 27. For m = 15, the hek introdued in remark 13 takes the following form. The abelian-ization is Γab ∼= 〈AS,C,U : 6AS = 0〉. The elements of in�nite order U and C−1 give the same yle,whih generates H1(Γ\X). However, the element U−1C−1 has in�nite order as well, and generates atrivial loop in the quotient spae. So it follows that E∞
0,1
∼= Z⊕Z/2⊕Z/3, generated by U−1C−1 and

AS. This is onsistent with the omputation above.4. Appendix: The equivariant retrationIn this setion, we give Flöge's proof of the existene of a retration ρ from Ĥ to the ell omplex
X•. We do not show the fat that ρ is Γ-equivariant, whih an be observed sine the �bers of ρ aregeodesi ars.Theorem 28 ([11, theorem 6.6℄). X is a retrat of Ĥ, i. e. there is a ontinuous map ρ : Ĥ → Xsuh that ρ(p) = p for all p ∈ X.The map ρ is �rst de�ned as the orthogonal projetion π from B̂ to ∂B̂, and is then ontinued tothe whole of Ĥ by Γ. Bianhi [6℄ has shown that a nearly strit fundamental domain for the ation of
Γ on H an be hosen in the form of a Eulidean vertial olumn D inside B. De�ne

D̂ := {(z, r) ∈ B̂ | 0 6 Re(z) 6 1, 0 6 Im(z) 6
√

m},and denote by S the set of singular points in D̂. Finally, D := D̂ − S.Remark 29 ([11℄, D is Γ-normal). For every p ∈ H, there exists a neighborhood U of p in H suhthat there are at most �nitely many g ∈ Γ with gD ∩ U 6= ∅.We will use the following lemmas to prove theorem 28.Lemma 30 ([11, lemma 6.5℄). For any subset A ⊂ D whih is losed in H and any p ∈ H, thereexists an open neighborhood Up of p suh that we have for all g ∈ Γ: gA ∩ Up 6= ∅ if and only if
p ∈ gA.



30 RAHM AND FUCHSProof. By remark 29, there is a neighborhood U of p in H for whih {g ∈ Γ | gD ∩ U 6= ∅ } is �nite.In partiular, its subset
Γo := {g ∈ Γ | gA ∩ U 6= ∅ and p /∈ gA }is �nite. Therefore, A being losed, ⋃

g∈Γo

gA is losed in H. Thus Up := U − (
⋃

g∈Γo

gA) is open in Hand satis�es to the requested ondition. �Lemma 31 ([11, lemma 6.3℄). There is an ε0 > 0 suh that for all singular points s, s′ ∈ S, for all
ε 6 ε0 and g ∈ Γ we have the following statement: gÛε(s) ∩ Ûε(s

′) 6= ∅ implies gs = s′.For lass number two, as we obtain a fundamental domain for the ation of Γ on Ĥ (striterthan D̂) ontaining just one singular point, this lemma states only that Γ ats disontinuously on Ĥ(with respet to its topology whih is �ner than the subset topology of R3); and we skip Flöge's proofwhih is useful for lass number three or greater.Lemma 32 ([11, lemma 6.4℄). There exists an ε1 > 0 with the following property:If ε 6 ε1 and (z, r) ∈ D̂ with r < ε, then there is an s′ ∈ S suh that (z, r) ∈ Û2ε(s
′).

Figure 10: Flöge's sketh
Flöge draws the sketh of the situation in a vertial half-plane,whih we reprodue in �gure 10 with his kind permission. He givesonly some hints on the proof, whih we want to make slightly moreexpliit here.Sketh of proof. We onsider the Eulidean geometry of the upper-half spae model for Ĥ and write oordinates in C×R>0 . Denoteby ε1 the �height of the lowest non-singular vertex�, more preiselythe minimum of the values r > 0 ouring as the real oordinateof the non-singular verties (z, r) ∈ H of the fundamental domain

ρ(D̂) for Γ. Then {(z, r) ∈ D̂ | r < ε1} onsists of one onnetedomponent for eah singular point s′ ∈ S. We will denote by D̂s′the onneted omponent ontaining s′. Now �x s′ ∈ S. There are �nitely many hemispheres limiting
D̂ from below and touhing s′. We will onsider the situation in a vertial half-plane ontaining
s′. The most ritial vertial half-planes for our assertion ontain the intersetion ar of two suhhemispheres, beause the other vertial half-planes ontain irle segments of ∂D̂ of greater radius.The intersetion of two non-idential Eulidean 2-spheres whih have more than one point in ommon,is a irle with enter on the line segment onneting the two 2-sphere enters. Thus the intersetionof the two hemispheres mentioned above is a semiirle with enter in the plane r = 0 . Denote by ζthe radius of this semiirle. Then ε1 6 ζ, beause an edge of our fundamental domain, onneting
s′ with a non-singular vertex, lies on this semiirle. Now it is easy to see that D̂s′ is a subset of thetrunated one obtained as the onvex envelope of s′ and the horizontal disk with radius ζ and enter
(s′, ζ). We onlude that for all ε < ε1, ε > 0, the set {(z, r) ∈ D̂s′ | r < ε} is a subset of the horoball
Û2ε(s

′). So we have seen that ε1 has the property laimed in the lemma. �Proof of theorem 28. For any (z, r) ∈ D̂ there is a unique rz > 0 suh that (z, rz) ∈ D̂ ∩ ∂B̂ =: Ĝ, infat rz = min {r′ : (z, r′) ∈ D̂}. We an thus de�ne the map π : D̂ → Ĝ by π(z, r) := (z, rz). Themap π is ontinuous with respet to the subset topology of R3, and by [11, orollary 5.10℄ also withrespet to the topology of Ĥ. Furthermore, we have π(p) = p for all p ∈ Ĝ. We now extend π to a map
ρ : Ĥ → X as follows. Beause of {(

1 b
1

)
: b ∈ R

}
· D̂ = Ĝ, we �nd for any p ∈ Ĥ a γ ∈ Γ suh that

γ(p) ∈ D̂. We set ρ(p) := γ−1 ◦ π ◦ γ(p). In order to show that this makes sense, we have to show that
p ∈ γ−1D̂ ∩ ξ−1D̂ implies γ−1 ◦ π ◦ γ(p) = ξ−1 ◦ π ◦ ξ(p), where γ, ξ ∈ Γ. We have ξ(p) ∈ ξγ−1D̂ ∩ D̂,



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 31then γξ−1(ξ(p)) = γ(p) ∈ D̂ ∩ γξ−1D̂, and either ξ(p), γ(p) are both from Ĝ, or both from D̂ ∩ B◦.In the �rst ase, it immediately follows that γ−1 ◦π ◦ γ(p) = ξ−1 ◦π ◦ ξ(p) = p, and ξ−1 ◦ ξ(p) = p. Inthe seond ase, we have by [11, lemma 3.4℄ that if γξ−1 =
(

a b
c d

), the entry c must vanish. So γξ−1is the produt (
a 0
0 d

) (
1 db
0 1.

). Both of the latter two matries ommute with π sine any suh element
ζ satis�es ζ(∂B̂) = ∂B̂, and ζ maps vertial half-lines to vertial half-lines.So we have (γξ−1 ◦ π ◦ ξγ−1)p′ = πp′ for all p′ ∈ D̂ with ξγ−1p′ ∈ D̂, and then it follows that

ξ−1 ◦ π ◦ ξ(p) = γ ∈ γ(ξ−1 ◦ π ◦ ξ)γ−1γ(p) = γ−1 ◦ π ◦ γ(p) = γ−1 ◦ π ◦ γ(p).Thus, ρ is well-de�ned. Furthermore, π(p) = p for all p ∈ Ĝ implies ρ(p) = p for all p ∈ X. It remainsto show that ρ is ontinuous at any p ∈ Ĥ.1st ase. In the ase p ∈ H, by lemma 30, p has an open neighborhood Up suh that: for any γ ∈ Γ, wehave γUp ∩D 6= ∅ ⇐⇒ γ(p) ∈ D. Furthermore, the set {γ ∈ Γ : γ(p) ∈ D} is �nite [11, remark 3.6℄,say γ1, . . . , γn. Let now V be an open neighborhood of ρ(p). Beause of the ontinuity of all γi, γ
−1
iand the ontinuity of π : D̂ → Ĝ, there exist neighborhoods Ui of p suh that γ−1

i ◦ π ◦ γi(Ui) ⊂ V .Note that for all γi we have γ−1
i ◦ π ◦ γi(p) = ρ(p). Setting U := Up ∩ (

⋂n
i=1 Ui), we have ρ(U) ⊂ V ,i. e. ρ is ontinuous at the point p.2nd ase. In the ase p ∈ Ĥ ∩ C, let ǫ0, ǫ1 and ǫs for s ∈ S be positive real numbers as in lemma 31,lemma 32 and [11, lemma 5.9℄; and let ǫ > 0 be less than the minimum of ǫ0
2 , ǫ1, ǫs for s ∈ S. Beauseof {(

1 b
1

)
: b ∈ R

}
· D̂ = Ĝ, there exist s ∈ S, ξ =

(
a b
c d

) suh that ξs = p and by [11, remark 5.5(a)℄,we have ξÛǫ(s) = Û ǫ

|cs−d|2
(p). Let us now show that ρ(Û ǫ

|cs−d|2
(p)) ⊂ Û2ǫ(p). Let p′ ∈ Û ǫ

|cs−d|2
(p), andlet γ ∈ Γ with γp′ ∈ D̂. Then ρ(p′) = γ−1 ◦ π ◦ γ(p′). By [11, remark 5.5(b)℄, applied to s and γξ itfollows that γp′ = γξ(ξ−1p′) ∈ Ûǫ(γξs) = Ûǫ(γp), and by [11, remark 5.6℄ all onditions of lemma 32are satis�ed. So there is an s′ ∈ S suh that γp′ ∈ Û2ǫ(s

′). This means that γξ(Û2ǫ(s)) ∩ Û2ǫ(s
′) 6= ∅,and by lemma 31 it follows that s′ = γξs = γp. Let us now onsider γp′ again.Sine γp′ ∈ Ûǫ(γp)) = Ûǫ(s

′) = Uǫ(s
′) and π(Uǫ(s

′)) ⊂ Uǫ(s
′); and by [11, lemma 5.9℄ we have

Uǫ(s
′) ∩ B̂ ⊂ Û2ǫ(s

′). So π ◦ γp′ ∈ Û2ǫ(s
′). By [11, remark 5.5(b)℄ it �nally follows that

ρ(p′) = γ−1 ◦ π ◦ γp′ ∈ γ−1Û2ǫ(s
′) ⊂ Û2ǫ(γ
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