Convergence of a series

Definition 72

For a series $\sum_{n=1}^{\infty} a_{n}$, and for $k \geq 1$, let

$$
s_{k}=\sum_{n=1}^{k} a_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{k}
$$

Thus $s_{1}=a_{1}, s_{2}=a_{1}+a_{2}, s_{3}=a_{1}+a_{2}+a_{3}$ etc.
Then s_{k} is called the k th partial sum of the series, and the sequence $\left\{s_{k}\right\}_{k=1}^{\infty}$ is called the sequence of partial sums of the series.
If the sequence of partial sums converges to a limit s, the series is said to converge and s is called its sum. In this situation we can write $\sum_{n=1}^{\infty} a_{n}=s$. If the sequence of partial sums diverges, the series is said to diverge.

Convergence of a geometric series

Recall Example 2 above:

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n}}=1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots
$$

In this example, for $k \geq 0$,

$$
\begin{aligned}
s_{k} & =\sum_{n=0}^{k} \frac{1}{2^{n}}=1+\frac{1}{2}+\frac{1}{4}+\ldots \frac{1}{2^{k}} \\
\frac{1}{2} s_{k} & =\sum_{n=1}^{k} \frac{1}{2^{n+1}}=\quad \frac{1}{2}+\frac{1}{4}+\ldots \frac{1}{2^{k}}+\frac{1}{2^{k+1}}
\end{aligned}
$$

Then

$$
s_{k}-\frac{1}{2} s_{k}=\frac{1}{2} s_{k}=1-\frac{1}{2^{k+1}} \Longrightarrow s_{k}=2-\frac{1}{2^{k}} .
$$

So the sequence of partial sums has k th term $2-\frac{1}{2^{k}}$. This sequence converges to 2 so the series converges to 2 .

General geometric series

Consider the sequence of partial sums for the geometric series

$$
\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+\ldots
$$

(This is a geometric series with initial term a and common ratio r.) The k th partial sum s_{k} is given by

$$
\begin{aligned}
& s_{k}=\sum_{n=0}^{k} a r^{n}=a+a r+\ldots \quad+a r^{k} \\
& r s_{k}=\sum_{n=0}^{k} a r^{n+1}=a r+a r^{2}+\ldots+a r^{k}+a r^{k+1}
\end{aligned}
$$

Then $(1-r) s_{k}=a-a r^{k+1} \Longrightarrow s_{k}=\frac{a\left(1-r^{k+1}\right)}{1-r}$. If $|r|<1$, then $r^{k+1} \rightarrow 0$ as $k \rightarrow \infty$, and the sequence of partial sums (hence the series) converges to $\frac{a}{1-r}$. If $|r| \geq 1$ the series is divergent.

The harmonic series is divergent

Theorem 73

The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
Proof: Think of $\frac{1}{n}$ as the area of a rectangle of height $\frac{1}{n}$ and width 1 , sitting on the interval $[n, n+1]$ on the x-axis. So the $\frac{1}{1}$ corresponds to a square of area 1 sitting on the interval [1, 2], the term $\frac{1}{2}$ corresponds to a rectangle of area $\frac{1}{2}$ sitting on the interval $[2,3]$ and so on.
The total area accounted for by these triangles is the sum of the harmonic series, and this exceeds the area accounted for by the improper integral

$$
\int_{1}^{\infty} \frac{1}{x} d x
$$

From Section 1.5 we know that this area is infinite.

A necessary condition for convergence

Note: A necessary condition for the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

to converge is that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to 0 ; i.e. that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. If this does not happen, then the sequence of partial sums has no possibility of converging.

The example of the harmonic series shows that the condition $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ is not sufficient to guarantee that the series $\sum_{n=1}^{\infty}$ will converge.

After studying this section you should be able to

- explain what an infinite series is and what it means for an infinite series to converge;
- Give examples of convergent and divergent series;

■ show that the harmonic series is divergent;
■ Use the "sigma" notation for sums.

Section 3.4: Introduction to power series

Definition 74

A power series in the variable x resembles a polynomial, except that it may contain infinitely many positive powers of x. It is an expression of the type

$$
\sum_{i=0}^{\infty} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots,
$$

where each a_{i} is a number.

Example 75

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots
$$

is a power series.
Question: Can we think of a power series as a function of x ?

Define a "function" by

$$
f(x)=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\ldots
$$

- If we try to evaluate this function at $x=2$, we get a series of real numbers.

$$
f(2)=\sum_{n=0}^{\infty} 2^{n}=1+2+2^{2}+\ldots
$$

This series is divergent, so our power series does not define a function that can be evaluated at 2 .

- If we try evaluating at 0 (and allow that the first term x^{0} of the power series is interpreted as 1 for all values of x), we get

$$
f(0)=1+0+0^{2}+\cdots=1
$$

So it does make sense to "evaluate" this function at $x=0$.
$f(x)=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\ldots$

- If we try evaluating at $x=\frac{1}{2}$, we get

$$
f\left(\frac{1}{2}\right)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\ldots
$$

This is a geometric series with first term $a=1$ and common ratio $r=\frac{1}{2}$. We know that if $|r|<1$, such a series converges to the number $\frac{a}{1-r}$. In this case

$$
\frac{a}{1-r}=\frac{1}{1-\frac{1}{2}}=2
$$

and we have $f\left(\frac{1}{2}\right)=2$.
So we can evaluate our function at $x=\frac{1}{2}$.

$$
f(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}, \text { for }|x|<1
$$

A geometric series of this sort converges provided that the absolute value of its common ratio is less than 1 . In general for any value of x whose absolute value is less than 1 (i.e. any x in the interval $(-1,1)$), we find that $f(x)$ is a convergent geometric series, converging to $\frac{1}{1-x}$.

Conclusion: For values of x in the interval $(-1,1)$ (i.e. $|x|<1$), the function $f(x)=\frac{1}{1-x}$ coincides with the power series $\sum_{n=0}^{\infty} x^{n}$.

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad \text { for }|x|<1
$$

The interval $(-1,1)$ is called the interval of convergence of the power series, and 1 is the radius of convergence. We say that the power series representation of the function $f(x)=\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^{n}$, for values of x in the interval $(-1,1)$.

Which functions have power series representations?

Remark: The power series representation is not particularly useful if you want to calculate $\frac{1}{1-x}$ for some particular value of x, because this is easily done directly. However, if we could obtain a power series representation for a function like $\sin x$ and use it to evaluate (or approximate) $\sin (1)$ or $\sin (9)$ or $\sin (20)$, that might be of real practical use. These numbers are not easy to obtain directly because the definition of $\sin x$ doesn't tell us how to calculate $\sin x$ for a particular x - you can use a calculator of course but how does the calculator do it?

Questions: What functions can be represented by power series, and on what sorts of interval or subsets of \mathbb{R} ? If a function could be represented by a power series, how would we calculate the coefficients in this series?

