
Convergence of a series

Definition 72

For a series
∞�

n=1

an, and for k ≥ 1, let

sk =
k�

n=1

an = a1 + a2 + a3 + · · ·+ ak .

Thus s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3 etc.
Then sk is called the kth partial sum of the series, and the sequence
{sk}∞k=1 is called the sequence of partial sums of the series.
If the sequence of partial sums converges to a limit s, the series is said to
converge and s is called its sum. In this situation we can write�∞

n=1 an = s. If the sequence of partial sums diverges, the series is said
to diverge.
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Convergence of a geometric series

Recall Example 2 above:

∞�

n=0

1

2n
= 1 +

1

2
+

1

22
+ ...

In this example, for k ≥ 0,

sk =
k�

n=0

1

2n
= 1 +

1

2
+

1

4
+ ...

1

2k

1

2
sk =

k�

n=1

1

2n+1
=

1

2
+

1

4
+ ...

1

2k
+

1

2k+1

Then

sk −
1

2
sk =

1

2
sk = 1− 1

2k+1
=⇒ sk = 2− 1

2k
.

So the sequence of partial sums has kth term 2− 1
2k
. This sequence

converges to 2 so the series converges to 2.
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General geometric series

Consider the sequence of partial sums for the geometric series

∞�

n=0

arn = a+ ar + ar2 + ...

(This is a geometric series with initial term a and common ratio r .) The
kth partial sum sk is given by

sk =
�k

n=0 ar
n = a + ar + ... + ark

rsk =
�k

n=0 ar
n+1 = ar + ar2 + ... + ark + ark+1

Then (1− r)sk = a− ark+1 =⇒ sk =
a(1− rk+1)

1− r
. If |r | < 1, then

rk+1 → 0 as k → ∞, and the sequence of partial sums (hence the series)

converges to
a

1− r
. If |r | ≥ 1 the series is divergent.
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The harmonic series is divergent

Theorem 73

The harmonic series
∞�

n=1

1

n
is divergent.

Proof: Think of 1
n as the area of a rectangle of height 1

n and width 1,
sitting on the interval [n, n + 1] on the x-axis. So the 1

1 corresponds to a
square of area 1 sitting on the interval [1, 2], the term 1

2 corresponds to a
rectangle of area 1

2 sitting on the interval [2, 3] and so on.
The total area accounted for by these triangles is the sum of the harmonic
series, and this exceeds the area accounted for by the improper integral

� ∞

1

1

x
dx .

From Section 1.5 we know that this area is infinite.
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A necessary condition for convergence

Note: A necessary condition for the series

∞�

n=1

an

to converge is that the sequence {an}∞n=1 converges to 0; i.e. that
an → 0 as n → ∞. If this does not happen, then the sequence of partial
sums has no possibility of converging.

The example of the harmonic series shows that the condition an → 0 as
n → ∞ is not sufficient to guarantee that the series

�∞
n=1 will converge.
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Learning outcomes for Section 3.3

After studying this section you should be able to

explain what an infinite series is and what it means for an infinite
series to converge;

Give examples of convergent and divergent series;

show that the harmonic series is divergent;

Use the “sigma” notation for sums.
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Section 3.4: Introduction to power series

Definition 74

A power series in the variable x resembles a polynomial, except that it
may contain infinitely many positive powers of x . It is an expression of
the type

∞�

i=0

aix
i = a0 + a1x + a2x

2 + ... ,

where each ai is a number.

Example 75

∞�

n=0

xn = 1 + x + x2 + x3 + ...

is a power series.

Question: Can we think of a power series as a function of x?
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Power Series as Functions

Define a “function” by

f (x) =
∞�

n=0

xn = 1 + x + x2 + ...

If we try to evaluate this function at x = 2, we get a series of real
numbers.

f (2) =
∞�

n=0

2n = 1 + 2 + 22 + ...

This series is divergent, so our power series does not define a
function that can be evaluated at 2.

If we try evaluating at 0 (and allow that the first term x0 of the
power series is interpreted as 1 for all values of x), we get

f (0) = 1 + 0 + 02 + · · · = 1.

So it does make sense to “evaluate” this function at x = 0.
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f (x) =
�∞

n=0 x
n = 1 + x + x2 + ...

If we try evaluating at x = 1
2 , we get

f

�
1

2

�
=

∞�

n=0

�
1

2

�n

= 1 +
1

2
+

�
1

2

�2

+ ...

This is a geometric series with first term a = 1 and common ratio
r = 1

2 . We know that if |r | < 1, such a series converges to the

number
a

1− r
. In this case

a

1− r
=

1

1− 1
2

= 2,

and we have f (12) = 2.

So we can evaluate our function at x = 1
2 .
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f (x) =
�∞

n=0 x
n = 1

1−x , for |x | < 1

A geometric series of this sort converges provided that the absolute value
of its common ratio is less than 1. In general for any value of x whose
absolute value is less than 1 (i.e. any x in the interval (−1, 1)), we find

that f (x) is a convergent geometric series, converging to
1

1− x
.

Conclusion: For values of x in the interval (−1, 1) (i.e. |x | < 1), the
function f (x) = 1

1−x coincides with the power series
�∞

n=0 x
n.

1

1− x
=

∞�

n=0

xn, for |x | < 1.

The interval (−1, 1) is called the interval of convergence of the power
series, and 1 is the radius of convergence. We say that the power series
representation of the function f (x) = 1

1−x is
�∞

n=0 x
n, for values of x in

the interval (−1, 1).
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Which functions have power series representations?

Remark: The power series representation is not particularly useful if you
want to calculate 1

1−x for some particular value of x , because this is
easily done directly. However, if we could obtain a power series
representation for a function like sin x and use it to evaluate (or
approximate) sin(1) or sin(9) or sin(20), that might be of real practical
use. These numbers are not easy to obtain directly because the definition
of sin x doesn’t tell us how to calculate sin x for a particular x - you can
use a calculator of course but how does the calculator do it?

Questions: What functions can be represented by power series, and on
what sorts of interval or subsets of R? If a function could be represented
by a power series, how would we calculate the coefficients in this series?
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