A power series in the variable \(x\) resembles a polynomial, except that it may contain infinitely many positive powers of \(x\). It is an expression of the type
\[
\sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + \ldots
\]
where each \(a_i\) is a number.

\[\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \ldots\]
is a power series.

Question: Can we think of a power series as a function of \(x\)?

Define a “function” by
\[
f(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \ldots
\]

- If we try to evaluate this function at \(x = 2\), we get a series of real numbers.
 \[
f(2) = \sum_{n=0}^{\infty} 2^n = 1 + 2 + 2^2 + \ldots
\]
 This series is divergent, so our power series does not define a function that can be evaluated at 2.

- If we try evaluating at 0 (and allow that the first term \(x^0\) of the power series is interpreted as 1 for all values of \(x\)), we get
 \[
f(0) = 1 + 0 + 0^2 + \cdots = 1.
\]
 So it does make sense to “evaluate” this function at \(x = 0\).

If we try evaluating at \(x = \frac{1}{2}\), we get
\[
f \left(\frac{1}{2} \right) = \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)^n = 1 + \frac{1}{2} + \left(\frac{1}{2} \right)^2 + \ldots
\]
This is a geometric series with first term \(a = 1\) and common ratio \(r = \frac{1}{2}\). We know that if \(|r| < 1\), such a series converges to the number \(\frac{a}{1-r}\). In this case
\[
\frac{a}{1-r} = \frac{1}{1-\frac{1}{2}} = 2,
\]
and we have \(f \left(\frac{1}{2} \right) = 2\).

So we can evaluate our function at \(x = \frac{1}{2}\).
Maclaurin (or Taylor) series

Which functions have power series representations?

A geometric series of this sort converges provided that the absolute value of its common ratio is less than 1. In general for any value of \(x \) whose absolute value is less than 1 (i.e. any \(x \) in the interval \((-1, 1)\)), we find that \(f(x) \) is a convergent geometric series, converging to \(\frac{1}{1-x} \).

Conclusion: For values of \(x \) in the interval \((-1, 1)\) (i.e. \(|x| < 1 \)), the function \(f(x) = \frac{1}{1-x} \) coincides with the power series \(\sum_{n=0}^{\infty} x^n \). The interval \((-1, 1)\) is called the interval of convergence of the power series, and 1 is the radius of convergence. We say that the power series representation of the function \(f(x) = \frac{1}{1-x} \) is \(\sum_{n=0}^{\infty} x^n \), for values of \(x \) in the interval \((-1, 1)\).

Maclaurin (or Taylor) series

Maclaurin (or Taylor) series

Suppose that \(f(x) \) is an infinitely differentiable function (this means that all the derivatives of \(f \) are themselves differentiable), and suppose that \(f \) is represented by the power series

\[
f(x) = \sum_{n=0}^{\infty} c_n x^n.
\]

We can work out appropriate values for the coefficients \(c_n \) as follows.

- Put \(x = 0 \). Then \(f(0) = c_0 + \sum_{n=1}^{\infty} c_n(0)^n \Rightarrow f(0) = c_0 \).

The constant term in the power series is the value of \(f \) at 0.

Suppose that \(f(x) \) is an infinitely differentiable function (this means that all the derivatives of \(f \) are themselves differentiable), and suppose that \(f \) is represented by the power series

\[
f(x) = \sum_{n=0}^{\infty} c_n x^n.
\]

We can work out appropriate values for the coefficients \(c_n \) as follows.

- Put \(x = 0 \). Then \(f(0) = c_0 + \sum_{n=1}^{\infty} c_n(0)^n \Rightarrow f(0) = c_0 \).

The constant term in the power series is the value of \(f \) at 0.

- To calculate \(c_1 \), look at the value of the first derivative of \(f \) at 0, and differentiate the power series term by term. We expect

\[
f'(x) = c_1 + 2c_2 x + 3c_3 x^2 + \cdots = \sum_{n=1}^{\infty} nc_n x^{n-1}.
\]

Then we should have \(f'(0) = c_1 + 2c_2 \times 0 + 3c_3 \times 0 + \cdots = c_1 \). Thus

\[c_1 = f'(0)\]
\[f(x) = \sum_{n=0}^{\infty} c_n x^n \]

For \(c_2 \), look at the second derivative of \(f \). We expect
\[f''(x) = 2(1)c_2 + 3(2)c_3 x + 4(3)c_4 x^2 + 5(4)c_5 x^3 + \ldots \]
Putting \(x = 0 \) gives \(f''(0) = 2(1)c_2 \) or
\[c_2 = \frac{f''(0)}{2(1)}. \]

For \(c_3 \), look at the third derivative \(f'''(x) \). We have
\[f'''(x) = 3(2)(1)c_3 + 4(3)(2)c_4 x + 5(4)(3)c_5 x^2 + \ldots \]
Setting \(x = 0 \) gives \(f'''(0) = 3(2)(1)c_3 \) or
\[c_3 = \frac{f'''(0)}{3(2)(1)}. \]

Coefficients of the Maclaurin Series

Continuing this process, we obtain the following general formula for \(c_n \):
\[c_n = \frac{1}{n!} f^{(n)}(0). \]

Definition 72

For a positive integer \(n \), the number \(n \) factorial, denoted \(n! \) is defined by
\[n! = n \times (n - 1) \times (n - 2) \times \ldots \times 3 \times 2 \times 1. \]

The number 0! (zero factorial) is defined to be 1.

Write \(f(x) = \sin x \), and write \(\sum_{n=0}^{\infty} c_n x^n \) for the Maclaurin series of \(\sin x \). Then
\[f(0) = \sin 0 = 0 \implies c_0 = 0. \]
Write \(f(x) = \sin x \), and write \(\sum_{n=0}^{\infty} c_n x^n \) for the Maclaurin series of \(\sin x \). Then

- \(f(0) = \sin 0 = 0 \implies c_0 = 0 \)
- \(f'(0) = \cos 0 = 1 \implies c_1 = 1 \)

Write \(f(x) = \sin x \), and write \(\sum_{n=0}^{\infty} c_n x^n \) for the Maclaurin series of \(\sin x \). Then

- \(f(0) = \sin 0 = 0 \implies c_0 = 0 \)
- \(f'(0) = \cos 0 = 1 \implies c_1 = 1 \)
- \(f''(0) = -\sin 0 = 0 \implies c_2 = \frac{2}{2!} = 0 \)
- \(f^{(3)}(0) = -\cos 0 = -1 \implies c_3 = \frac{-1}{3!} = -\frac{1}{6} \)
Power series representation of $\sin x$

This pattern continues:
- If k is even then $f^{(k)}(0) = \pm \sin 0 = 0$, so $c_k = 0$.
- If k is odd and $k \equiv 1 \pmod{4}$ then $f^{(k)}(0) = \cos 0 = 1$ and $c_k = \frac{1}{k!}$.

Thus the Maclaurin series for $\sin x$ is given by

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + ...$$

Note that this series only involves odd powers of x - this is not surprising because \sin is an odd function; it satisfies $\sin(-x) = -\sin x$.

Power series representations of $\sin x$ and $\cos x$

Theorem 73

For every real number x, the above series converges to $\sin x$.

Thus computing partial sums of this series gives us an effective way of approximating $\sin x$ for any real number x.

Exercise 74

Show that the Maclaurin series for $\cos x$ is given by

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}.$$

(Note that this can be obtained by differentiating term-by-term the series for $\sin x$, as we would expect since $\frac{d}{dx}(\sin x) = \cos x$.)
After studying this section you should be able to

- State the meaning of the term power series,
- Explain the concept of the radius of convergence of a power series,
- Calculate the coefficients in (an initial segment of) the Maclaurin series representation of a given function.