Section 1.4 Techniques of Integration

To calculate

$$
\int_{a}^{b} f(x) d x
$$

1 Find a function F for which $F^{\prime}(x)=f(x)$, i.e. find a function F whose derivative is f.
2 Evaluate F at the limits of integration a and b; i.e. calcuate $F(a)$ and $F(b)$. This means replacing x separately with a and b in the formula that defines $F(x)$.
3 Calculate the number $F(b)-F(a)$. This is the definite integral $\int_{a}^{b} f(x) d x$.
Of the three steps above, the first one is the hard one.

Notation

Recall the following notation: if F is a function that satisfies $F^{\prime}(x)=f(x)$, then

$$
\left.F(x)\right|_{a} ^{b} \text { or }\left.F(x)\right|_{x=a} ^{x=b} \text { means } F(b)-F(a) .
$$

Definition 14

Let f be a function. Another function F is called an antiderivative of f if the derivative of F is f, i.e. if $F^{\prime}(x)=f(x)$, for all (relevant) values of the variable x.

So for example x^{2} is an antiderivative of $2 x$. Note that $x^{2}+1, x^{2}+5$ and $x^{2}-20 e$ are also antiderivatives of $2 x$. So we talk about an antiderviative of a function or expression rather that the antiderivative.

The Indefinite Integral

Definition 15

Let f be a function. The indefinite integral of f, written

$$
\int f(x) d x
$$

is the "general antiderivative" of f. If $F(x)$ is a particular antiderivative of f, then we would write

$$
\int f(x) d x=F(x)+C
$$

to indicate that the different antiderivatives of f look like $F(x)+C$, where C may be any constant. (In this context C is often referred to as a constant of integration).

Examples

Example 16

Determine $\int \cos 2 x d x$.
Solution: The question is: what do we need to differentiate to get $\cos 2 x$?
Well, what do we need to differentiate to get something involving cos? The derivative of $\sin x$ is $\cos x$. A reasonable guess would say that the derivative of $\sin 2 x$ might be "something like" $\cos 2 x$. By the chain rule, the derivative of $\sin 2 x$ is in fact $2 \cos 2 x$.
So $\sin 2 x$ is pretty close but it gives us twice what we want - we should

$$
\frac{1}{2}(2 \cos 2 x)=\cos 2 x
$$

Conclusion: $\int \cos 2 x d x=\frac{1}{2} \sin 2 x+C$

Example 17

Determine $\int x^{n} d x$
Important Note: We know that in order to calculate the derivative of an expression like x^{n}, we reduce the index by 1 to $n-1$, and we multiply by the constant n. So

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

in general. To find an antiderivative of x^{n} we have to reverse this process. This means that the index increases by 1 to $n+1$ and we multiply by the constant $\frac{1}{n+1}$. So

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C
$$

This makes sense as long as the number n is not equal to -1 (in which case the fraction $\frac{1}{n+1}$ wouldn't be defined).

The Integral of $\frac{1}{x}$

Suppose that $x>0$ and $y=\ln x$. Recall this means (by definition) that $e^{y}=x$. Differentiating both sides of this equation (with respect to x) gives

$$
e^{y} \frac{d y}{d x}=1 \Longrightarrow \frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x} .
$$

Thus the derivative of $\ln x$ is $\frac{1}{x}$, and

$$
\int \frac{1}{x} d x=\ln x+C, \text { for } x>0
$$

If $x<0$, then

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

This latter formula applies for all $x \neq 0$.

A definite integral

Example 18

Determine $\int_{0}^{\pi} \sin x+\cos x d x$.
Solution: We need to write down any antiderivative of $\sin x+\cos x$ and evaluate it at the limits of integration :

$$
\begin{aligned}
\int_{0}^{\pi} \sin x+\cos x d x & =-\cos x+\left.\sin x\right|_{0} ^{\pi} \\
& =(-\cos \pi+\sin \pi)-(-\cos 0+\sin 0) \\
& =-(-1)+0-(-1+0)=2
\end{aligned}
$$

Note: To determine $\cos \pi$, start at the point $(1,0)$ and travel counter-clockwise around the unit circle through an angle of π radians (180 degrees), arriving at the point $(-1,0)$. The x-coordinate of the point you are at now is $\cos \pi$, and the y-coordinate is $\sin \pi$.

