Section 1.4 Techniques of Integration

To calculate

 $\int_{a}^{b} f(x) dx$

- 1 Find a function F for which F'(x) = f(x), i.e. find a function F whose derivative is f.
- Evaluate F at the limits of integration a and b; i.e. calcuate F(a) and F(b). This means replacing x separately with a and b in the formula that defines F(x).
- 3 Calculate the number F(b) F(a). This is the definite integral $\int_{a}^{b} f(x) dx$.

Of the three steps above, the first one is the hard one.

Recall the following notation : if F is a function that satisfies F'(x) = f(x), then

$$F(x)|_{a}^{b}$$
 or $F(x)|_{x=a}^{x=b}$ means $F(b) - F(a)$.

Definition 14

Let f be a function. Another function F is called an antiderivative of f if the derivative of F is f, i.e. if F'(x) = f(x), for all (relevant) values of the variable x.

So for example x^2 is an antiderivative of 2x. Note that $x^2 + 1$, $x^2 + 5$ and $x^2 - 20e$ are also antiderivatives of 2x. So we talk about an antiderviative of a function or expression rather that the antiderivative.

Definition 15

Let f be a function. The indefinite integral of f, written

is the "general antiderivative" of f. If F(x) is a particular antiderivative of f, then we would write

 $\int f(x) dx$

$$\int f(x)\,dx=F(x)+C,$$

to indicate that the different antiderivatives of f look like F(x) + C, where C may be any constant. (In this context C is often referred to as a constant of integration).

Examples

Example 16	
Determine	$\cos 2x dx.$

Solution: The question is: what do we need to differentiate to get $\cos 2x$? Well, what do we need to differentiate to get something involving \cos ? The derivative of $\sin x$ is $\cos x$. A reasonable guess would say that the derivative of $\sin 2x$ might be "something like" $\cos 2x$. By the chain rule, the derivative of $\sin 2x$ is in fact $2\cos 2x$. So $\sin 2x$ is pretty close but it gives us twice what we want - we should compensate for this by taking $\frac{1}{2}\sin 2x$; its derivative is

$$\frac{1}{2}(2\cos 2x)=\cos 2x.$$

Conclusion:
$$\int \cos 2x \, dx = \frac{1}{2} \sin 2x + C$$

Powers of *x*

Example 17

Determine $\int x^n dx$

Important Note: We know that in order to calculate the derivative of an expression like x^n , we reduce the index by 1 to n - 1, and we multiply by the constant n. So

$$\frac{d}{dx}x^n = nx^{n-1}$$

in general. To find an antiderivative of x^n we have to reverse this process. This means that the index increases by 1 to n + 1 and we multiply by the constant $\frac{1}{n+1}$. So $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$.

This makes sense as long as the number *n* is not equal to -1 (in which case the fraction $\frac{1}{n+1}$ wouldn't be defined).

The Integral of $\frac{1}{x}$

Suppose that x > 0 and $y = \ln x$. Recall this means (by definition) that $e^y = x$. Differentiating both sides of this equation (with respect to x) gives

$$e^{y}\frac{dy}{dx} = 1 \Longrightarrow \frac{dy}{dx} = \frac{1}{e^{y}} = \frac{1}{x}.$$

Thus the derivative of $\ln x$ is $\frac{1}{x}$, and

$$\int \frac{1}{x} dx = \ln x + C, \text{ for } x > 0.$$

If x < 0, then

$$\int \frac{1}{x} \, dx = \ln |x| + C.$$

This latter formula applies for all $x \neq 0$.

A definite integral

Solution: We need to write down *any* antiderivative of sin x + cos x and evaluate it at the limits of integration :

$$\int_0^{\pi} \sin x + \cos x \, dx = -\cos x + \sin x |_0^{\pi}$$

= $(-\cos \pi + \sin \pi) - (-\cos 0 + \sin 0)$
= $-(-1) + 0 - (-1 + 0) = 2.$

Note: To determine $\cos \pi$, start at the point (1, 0) and travel counter-clockwise around the unit circle through an angle of π radians (180 degrees), arriving at the point (-1, 0). The *x*-coordinate of the point you are at now is $\cos \pi$, and the *y*-coordinate is $\sin \pi$.

Dr Rachel Quinlan