Recall from yesterday: Fundamental Theorem of Calculus

If

$$
\begin{aligned}
& \text { If } A(x)=\int_{r}^{\infty} f(t) d t \\
& \text { then } A^{\prime}(x)=f(x)
\end{aligned}
$$

"area accumulation function"

Sample

$$
A(x)=\int_{0}^{x} t^{2}-4 d t
$$

Whot is $A^{\prime}(3)$

$$
F T_{0} C: \quad A^{\prime}(3)=3^{2}-4=5
$$

Notes on the Fundamental Theorem

1 We won't formally prove the FToC, but to get a feeling for what it says, think about how $A(x)$ changes when x moves a little to the right. What if $f(x)=0$? What if $f(x)$ is large/small/positive/negative?
2 The FToC is interesting because it connects differential calculus to the problem of calculating definite integrals, or areas under curves.
3 The FToC is useful because we know a lot about differential calculus. We can calculate the derivative of just about anything that can be written in terms of elementary functions. So we have a lot of theory about differentiation that is now relevant to calculating definite integrals as well.
4 The FToC can be traced back to work of Isaac Barrow and Isaac Newton in the mid 17th Century.

Calculating Definite Integrals

Finally we see how to use the FToC to calculate definite integrals.

Example 12

Calculate $\int_{1}^{3} t^{3}-t^{2} d t$.
Solution: Imagine that r is some point to the left of 1 , and that the function A is defined for $x \geq r$ by

$$
A(x)=\int_{r}^{x} t^{3}-t^{2} d t
$$

Then

This is the area under the graph that is to the left of 3 but to the right of 1 .

Example of a definite integral calculation (continued)

So: if we had a formula for $A(x)$, we could use it to evaluate this function at $x=3$ and at $x=1$.
What we know about the function $A(x)$, from the Fundamental Theorem of Calculus, is that its derivative is given by $A^{\prime}(x)=x^{3}-x^{2}$. What function A has derivative $x^{3}-x^{2}$?
The derivative of x^{4} is $4 x^{3}$, so the derivative of $\left.\frac{1}{4} x^{4}\right)$ is x^{3}.
The derivative of x^{3} is $3 x^{2}$, so the derivative of $\left(-\frac{1}{3} x^{3}\right.$;s $-x^{2}$.
The derivative of $\frac{1}{4} x^{4}-\frac{1}{3} x^{3}$ is $x^{3}-x^{2}$.

Note : $\frac{1}{4} x^{4}-\frac{1}{3} x^{3}$ is not the only expression whose derivative is $x^{3}-x^{2}$. For example $\frac{1}{4} x^{4}-\frac{1}{3} x^{3} \times{ }_{20}$ is another one, or anything of the form $\frac{1}{4} x^{4}-\frac{1}{3} x^{3}+C$, for any constant C. We only need one though.

Calculation of a definite integral

So: take $A(x)=\frac{1}{4} x^{4}-\frac{1}{3} x^{3}$. Then
$\int_{1}^{3} t^{3}-t^{2} d t=A(3)-A(1)$

$$
=\left(\frac{1}{4}\left(3^{4}\right)-\frac{1}{3}\left(3^{3}\right)\right)-\left(\frac{1}{4}\left(1^{4}\right)-\frac{1}{3}\left(1^{3}\right)\right)
$$

$$
=\frac{81-1}{4}-\frac{27-1}{3}
$$

$$
=\frac{34}{3} .
$$

Fundamental Theorem of Calculus, Part 2

This technique is described in general terms in the following version of the Fundamental Theorem of Calculus:

Theorem 13

(Fundamental Theorem of Calculus, Part 2)
Let f be a function. To calculate the definite integral

$$
\int_{a}^{b} f(x) d x
$$

first find a function (F whose derivative is f, i.e. for which $F^{\prime}(x)=f(x)$. (This might be hard). Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

After studying this section, you should be able to

- Describe what is meant by an "area accumulation function".
- State the Fundamental Theorem of Calculus.

■ Use the FToC to solve problems similar to Example 12 in these slides.
■ Describe the general strategy for calculating a definite integral.

- Evaluate simple examples of definite integrals, like the one in Example 13 in these slides.

Section 1.4 Techniques of Integration

To calculate

$$
\int_{a}^{b} f(x) d x
$$

1 Find a function F for which $F^{\prime}(x)=f(x)$, i.e. find a function F whose derivative is f.
2 Evaluate F at the limits of integration a and b; i.e. calcuate $F(a)$ and $F(b)$. This means replacing x separately with a and b in the formula that defines $F(x)$.
3 Calculate the number $F(b)-F(a)$. This is the definite integral $\int_{a}^{b} f(x) d x$.
Of the three steps above, the first one is the hard one.

Recall the following notation: if F is a function that satisfies
$F^{\prime}(x)=f(x)$, then

$$
\left.\left.F(x)\right|_{a} ^{b} \operatorname{pr} F(x)\right|_{x=a} ^{x=b} \text { means } F(b)-F(a)
$$

$$
\begin{array}{r}
\left.x^{2}\right|_{2} ^{3}=3^{2}-2^{2} \\
=5
\end{array}
$$

Definition 14

Let \underline{f} be a function. Another function F is called an antiderivative of f if the derivative of F is f, i.e. if $F^{\prime}(x)=f(x)$, for all (relevant) values of the variable x.

So for example x^{2} is an antiderivative of $2 x$. Note that $x^{2}+1, x^{2}+5$ and $x^{2}-20 e$ are also antiderivatives of $2 x$. So we talk about an antiderviative of a function or expression rather that the antiderivative.

The Indefinite Integral

Definition 15

Let f be a function. The indefinite integral of f, written

$$
\bigoplus_{f(x) d x} \text { no limits of } \begin{aligned}
& \text { integration on the inters sign }
\end{aligned}
$$

is the "general antiderivative" of f. If $F(x)$ is a particular antiderivative of f, then we would write

$$
\int f(x) d x=F(x)+C
$$

$$
\begin{aligned}
\int 2 x d x & =x^{2}+C \\
\int_{0}^{1} 2 x d x & =\left.x^{2}\right|_{0} ^{1}=1
\end{aligned}
$$

to indicate that the different antiderivatives of f look like $F(x)+C$, where C may be any constant. (In this context C is often referred to as a constant of integration).

Examples

Example 16

Determine $\int \cos 2 x d x$.
Solution: The question is: what do we need to differentiate to get $\cos 2 x$?
Well, what do we need to differentiate to get something involving cos? The derivative of $\sin x$ is $\cos x$. A reasonable guess would say that the derivative of $\sin 2 x]$ might be "something like" $\cos 2 x$. By the chain rule, the derivative of $\sin 2 x$ is in fact $2 \cos 2 x$.
So $\sin 2 x$ is pretty close but it gives us twice what we want - we should compensate for this by taking $\frac{1}{2} \sin 2 x$, its derivative is

$$
\frac{1}{2}(2 \cos 2 x)=\cos 2 x
$$

$$
\frac{d}{d x}\left[\frac{1}{2} \sin 2 x\right]
$$

Conclusion: $\int \cos 2 x d x=\frac{1}{2} \sin 2 x+C$
$\frac{1}{2} \cos 2 x(2 x)=\cos 2 x$

Example 17

Determine $\int x^{n} d x$
Important Note: We know that in order to calculate the derivative of an expression like x^{n}, we reduce the index by 1 to $n-1$, and we multiply by the constant n. So

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

in general. To find an antiderivative of x^{n} we have to reverse this process. This means that the index increases by 1 to $n+1$ and we multiply by the constant $\frac{1}{n+1}$. So

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C
$$

This makes sense as long as the number n is not equal to -1 (in which case the fraction $\frac{1}{n+1}$ wouldn't be defined).

The Integral of $\frac{1}{x}$

Suppose that $x>0$ and $y=\ln x$. Recall this means (by definition) that $e^{y}=x$. Differentiating both sides of this equation (with respect to x) gives

$$
e^{y} \frac{d y}{d x}=1 \Longrightarrow \frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x} .
$$

Thus the derivative of $\ln x$ is $\frac{1}{x}$, and

$$
\int \frac{1}{x} d x=\ln x+C, \text { for } x>0
$$

If $x<0$, then

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

This latter formula applies for all $x \neq 0$.

A definite integral

Example 18

Determine $\int_{0}^{\pi} \sin x+\cos x d x$.
Solution: We need to write down any antiderivative of $\sin x+\cos x$ and evaluate it at the limits of integration :

$$
\begin{aligned}
\int_{0}^{\pi} \sin x+\cos x d x & =-\cos x+\left.\sin x\right|_{0} ^{\pi} \\
& =(-\cos \pi+\sin \pi)-(-\cos 0+\sin 0) \\
& =-(-1)+0-(-1+0)=2
\end{aligned}
$$

Note: To determine $\cos \pi$, start at the point $(1,0)$ and travel counter-clockwise around the unit circle through an angle of π radians (180 degrees), arriving at the point $(-1,0)$. The x-coordinate of the point you are at now is $\cos \pi$, and the y-coordinate is $\sin \pi$.

