3.2 The Characteristic Equation of a Matrix

Let A be a 2×2 matrix; for example

$$
A=\left(\begin{array}{rr}
2 & 8 \\
3 & -3
\end{array}\right)
$$

If \vec{v} is a vector in \mathbb{R}^{2}, e.g. $\vec{v}=[2,3]$, then we can think of the components of \vec{v} as the entries of a column vector (i.e. a 2×1 matrix). Thus

$$
[2,3] \leftrightarrow\binom{2}{3}
$$

If we multiply this vector on the left by the matrix A, we get another column vector with two entries :

$$
A\binom{2}{3}=\left(\begin{array}{rr}
2 & 8 \\
3 & -3
\end{array}\right)\binom{2}{3}=\binom{2(2)+8(3)}{3(2)+(-3)(3)}=\binom{28}{-3}
$$

So multiplication on the left by the 2×2 matrix A is a function sending the set of 2×1 column vectors to itself - or, if we wish, we can think of it as a function from the set of vectors in \mathbb{R}^{2} to itself.

Note: In fact this function is an example of a linear transformation from \mathbb{R}^{2} into itself. Linear transformations are functions which have certain interesting geometric properties. Basically they are functions which can be represented in this way by matrices.

In general, if v is a column vector with two entries, then $A v$ is a another vector (with two entries), which typically does not resemble v at all. For example if $v=\binom{1}{2}$ then

$$
A v=\left(\begin{array}{rr}
2 & 8 \\
3 & -3
\end{array}\right)\binom{1}{2}=\binom{18}{-3}
$$

However, suppose $v=\binom{8}{3}$. Then

$$
A v=\left(\begin{array}{rr}
2 & 8 \\
3 & -3
\end{array}\right)\binom{8}{3}=\binom{40}{15}=5\binom{8}{3}
$$

i.e. $A\binom{8}{3}=5\binom{8}{3}$, or

$$
\text { Multiplying the vector }\binom{8}{3} \text { (on the left) by the matrix }\left(\begin{array}{rr}
2 & 8 \\
3 & -3
\end{array}\right)
$$

is the same as multiplying it by 5 .
Terminology: $\binom{8}{3}$ is called an eigenvector for the matrix $A=\left(\begin{array}{rr}2 & 8 \\ 3 & -3\end{array}\right)$ with corresponding eigenvalue 5 .

Definition 3.2.1 Let A be a $n \times n$ matrix, and let v be a non-zero column vector with n entries (so not all of the entries of v are zero). Then v is called an eigenvector for A if

$$
A v=\lambda v
$$

where λ is some real number.

In this situation λ is called an eigenvalue for A, and v is said to correspond to λ.
Note: " λ " is the symbol for the Greek letter lambda. It is conventional to use this symbol to denote an eigenvalue.

Example 3.2.2 If $A=\left(\begin{array}{rr}-1 & 1 \\ -2 & -4\end{array}\right)$ and $v=\binom{1}{-2}$, then

$$
A v=\left(\begin{array}{rr}
-1 & 1 \\
-2 & -4
\end{array}\right)\binom{1}{-2}=\binom{-3}{6}=-3\binom{1}{-2}=-3 v
$$

Thus $\binom{1}{-2}$ is an eigenvector for the matrix $\left(\begin{array}{rr}-1 & 1 \\ -2 & -4\end{array}\right)$ corresponding to the eigenvalue -3 .

Question: Given a $n \times n$ matrix A, how can we find its eigenvalues and eigenvectors?

Answer: We are looking for column vectors v and real numbers λ satisfying

$$
\begin{aligned}
A v & =\lambda v \\
\text { i.e. } \lambda v-A v & =\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) \\
\Longrightarrow \lambda I_{n} v-A v & =\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) \\
\Longrightarrow \underbrace{\left(\lambda I_{n}-A\right)}_{\text {a } n \times n \text { matrix }} v & =\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
\end{aligned}
$$

This may be regarded as a system of linear equations in which the coefficient matrix is $\lambda I_{n}-A$ and the variables are the n entries of the column vector v, which we can denote by x_{1}, \ldots, x_{n}. We are looking for solutions to

$$
\left(\lambda I_{n}-A\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

This system always has at least one solution : namely $x_{1}=x_{2}=\cdots=x_{n}=0$ - all entries of v are zero. However this solution does not give an eigenvector since eigenvectors must be non-zero.

The system can have additional solutions only if $\operatorname{det}\left(\lambda I_{n}-A\right)=0$ (otherwise if the square matrix $\lambda I_{n}-A$ is invertible, the system will have $x_{1}=x_{2}=\cdots=x_{n}=0$ as its unique solution). Conclusion: The eigenvalues of A are those values of λ for which $\operatorname{det}\left(\lambda I_{n}-A\right)=0$.

Example 3.2.3 Let $A=\left(\begin{array}{rr}10 & -8 \\ 4 & -2\end{array}\right)$. Find all eigenvalues of A and find an eigenvector corresponding to each eigenvalue.

Solution: We need to find all values of λ for which $\operatorname{det}\left(\lambda I_{2}-A\right)=0$.

$$
\begin{aligned}
\lambda I_{2}-A & =\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{rr}
10 & -8 \\
4 & -2
\end{array}\right) \\
& =\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)-\left(\begin{array}{rr}
10 & -8 \\
4 & -2
\end{array}\right) \\
& =\left(\begin{array}{rr}
\lambda-10 & 8 \\
-4 & \lambda+2
\end{array}\right) \\
\operatorname{det}\left(\lambda I_{2}-A\right) & =(\lambda-10)(\lambda+2)-8(-4) \\
& =\lambda^{2}-10 \lambda+2 \lambda-20+32 \\
& =\lambda^{2}-8 \lambda+12
\end{aligned}
$$

So $\operatorname{det}\left(\lambda I_{2}-A\right)$ is a polynomial of degree 2 in λ. The eigenvalues of A are those values of λ for which

$$
\operatorname{det}\left(\lambda I_{2}-A\right)=0
$$

i.e. $\lambda^{2}-8 \lambda+12=0 \Longrightarrow(\lambda-6)(\lambda-2)=0, \quad \lambda=6$ or $\lambda=2$

Eigenvalues of $A: 6,2$.
To find an eigenvector of A corresponding to $\lambda=6$, we need a vector $\binom{x}{y}$ for which

$$
\begin{aligned}
& A\binom{x}{y}=6\binom{x}{y} \\
& \text { i.e. }\left(\begin{array}{rr}
10 & -8 \\
4 & -2
\end{array}\right)\binom{x}{y}=6\binom{x}{y} \\
& \Longrightarrow\binom{10 x-8 y}{4 x-2 y}=\binom{6 x}{6 y} \\
& \Longrightarrow 10 x-8 y=6 x \quad \text { and } 4 x-2 y=6 y
\end{aligned}
$$

Both of these equations say $x-2 y=0$; hence any non-zero vector $\binom{x}{y}$ in which $x=2 y$ is
an eigenvector for A corresponding to the eigenvalue 6 . For example we can take $y=1, x=2$ to obtain the eigenvector $\binom{2}{1}$.

Exercises:

1. Show that $\left(\begin{array}{rr}10 & -8 \\ 4 & -2\end{array}\right)\binom{2}{1}=6\binom{2}{1}$.
2. Find an eigenvector for A corresponding to the other eigenvalue $\lambda=2$.

Definition 3.2.4 Let A be a square matrix $(n \times n)$. The characteristic polynomial of A is the determinant of the $n \times n$ matrix $\lambda I_{n}-A$. This is a polynomial of degree n in λ.

Example 3.2.5

(a) Let $A=\left(\begin{array}{rr}4 & -1 \\ 2 & 1\end{array}\right)$. Then

$$
\begin{aligned}
& \lambda I_{2}-A=\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{rr}
4 & -1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)-\left(\begin{array}{cc}
4 & -1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{cc}
\lambda-4 & 1 \\
-2 & \lambda-1
\end{array}\right) \\
& \operatorname{det}\left(\lambda I_{2}-A\right)=(\lambda-4)(\lambda-1)-1(-2)=\lambda^{2}-5 \lambda+6
\end{aligned}
$$

Characteristic Polynomial of $A: \lambda^{2}-5 \lambda+6$.
(b) Let $B=\left(\begin{array}{rrr}5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2\end{array}\right)$.

$$
\lambda I_{3}-B=\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)-\left(\begin{array}{ccc}
5 & 6 & 2 \\
0 & -1 & -8 \\
1 & 0 & -2
\end{array}\right)=\left(\begin{array}{ccc}
\lambda-5 & -6 & -2 \\
0 & \lambda+1 & 8 \\
-1 & 0 & \lambda+2
\end{array}\right)
$$

We can calculate $\operatorname{det}\left(\lambda I_{3}-B\right)$ using cofactor expansion along the first row.

$$
\begin{aligned}
\operatorname{det}\left(\lambda I_{3}-B\right)= & (\lambda-5)[(\lambda+1)(\lambda+2)-(0)(8)] \\
& \quad-(-6)[0(\lambda+2)-8(-1)]+(-2)[0(0)-(-1)(\lambda+1)] \\
& =(\lambda-5)\left(\lambda^{2}+3 \lambda+2\right)+6(8)-2(\lambda+1) \\
= & \lambda^{3}-2 \lambda^{2}-13 \lambda-10+48-2 \lambda-2 \\
= & \lambda^{3}-2 \lambda^{2}-15 \lambda+36
\end{aligned}
$$

$\underline{\text { Characteristic polynomial of } B}: \lambda^{3}-2 \lambda^{2}-15 \lambda+36$.

As we saw in Section 5.1, the eigenvalues of a matrix A are those values of λ for which $\operatorname{det}(\lambda I-A)=0$; i.e., the eigenvalues of A are the roots of the characteristic polynomial.

Example 3.2.6 Find the eigenvalues of the matrices A and B of Example 6.2.2.
(a) $A=\left(\begin{array}{rr}4 & -1 \\ 2 & 1\end{array}\right)$

Characteristic Equation : $\lambda^{2}-5 \lambda+6=0 \Longrightarrow(\lambda-3)(\lambda-2)=0$
Eigenvalues of $A: \lambda=3, \lambda=2$.
(b) $B=\left(\begin{array}{rrr}5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & 2\end{array}\right)$

Characteristic Equation: $\lambda^{3}-2 \lambda^{2}-15 \lambda+36=0$
To find solutions to this equation we need to factor the characteristic polynomial, which is cubic in λ (in general solving a cubic equation like this is not an easy task unless we can factorize). First we try to find an integer root.

Fact: The only possible integer roots of a polynomial are factors of its constant term.

So in this example the only possible candidates for an integer root of the characteristic polynomial $p(\lambda)=\lambda^{3}-2 \lambda^{2}-15 \lambda+36$ are the integer factors of 36 : i.e.

$$
\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 9, \pm 12, \pm 18, \pm 36
$$

Try some of these :

$$
\begin{aligned}
& p(1)=1^{3}-2(1)^{2}-15(1)+36 \neq 0 \\
& p(2)=2^{3}-2(2)^{2}-15(2)+36 \neq 0 \\
& p(3)=3^{3}-2(3)^{2}-15(3)+36=0
\end{aligned}
$$

$\Longrightarrow 3$ is a root of $p(\lambda)$, and $(\lambda-3)$ is a factor of $p(\lambda)$. Then

$$
p(\lambda)=\lambda^{3}-2 \lambda^{2}-15 \lambda+36=(\lambda-3)\left(\lambda^{2}+a \lambda-12\right)
$$

To find a, look at the coefficients of λ^{2} (or λ) on the left and right

$$
\lambda^{2}:-2=-3+a \Longrightarrow a=1
$$

$$
\begin{aligned}
\lambda^{3}-2 \lambda^{2}-15 \lambda+36 & =(\lambda-3)\left(\lambda^{2}+\lambda-12\right) \\
& =(\lambda-3)(\lambda-3)(\lambda+4) \\
& =(\lambda-3)^{2}(\lambda+4)
\end{aligned}
$$

We conclude this section by calculating eigenvectors of B corresponding to these eigenvalues.
Example 3.2.7 Let $B=\left(\begin{array}{rrr}5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2\end{array}\right)$
From Example 3.2.5, the eigenvalues of B are $\lambda=3$ (occurring twice), $\lambda=-4$.
Find an eigenvector of B corresponding to the eigenvalue $\lambda=-4$.
Solution: We need a column vector $v=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$, with entries not all zero, for which

$$
\begin{aligned}
& \left(\begin{array}{rrr}
5 & 6 & 2 \\
0 & -1 & -8 \\
1 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=-4\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& \text { i.e. }\left(\begin{array}{rrrrr}
5 x_{1} & + & 6 x_{2} & + & 2 x_{3} \\
& - & x_{2} & - & 8 x_{3} \\
x_{1} & & & & 2 x_{3}
\end{array}\right)=\left(\begin{array}{l}
-4 x_{1} \\
-4 x_{2} \\
-4 x_{3}
\end{array}\right)
\end{aligned}
$$

So we need to solve the system of linear equations with augmented matrix

$$
\left(\begin{array}{rrrr}
9 & 6 & 2 & 0 \\
0 & 3 & -8 & 0 \\
1 & 0 & 2 & 0
\end{array}\right)
$$

Note: The coefficient matrix here is just $B-(-4) I_{3}$ i.e.

$$
\left(\begin{array}{rrr}
5 & 6 & 2 \\
0 & -1 & -8 \\
1 & 0 & -2
\end{array}\right)-\left(\begin{array}{rrr}
-4 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & -4
\end{array}\right)
$$

To find solutions to the system :

$$
\left.\left.\begin{array}{lc}
\left(\begin{array}{rrrr}
9 & 6 & 2 & 0 \\
0 & 3 & -8 & 0 \\
1 & 0 & 2 & 0
\end{array}\right) & R 3 \leftrightarrow R 1 \\
\left(\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 3 & -8 & 0 \\
0 & 6 & -16 & 0
\end{array}\right) & \left(\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 3 & -8 & 0 \\
9 & 6 & 2 & 0
\end{array}\right)
\end{array} \begin{array}{c}
R 3-9 \times R 1 \\
\left(\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 1 & -\frac{8}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{array} \begin{array}{c}
\\
\left(\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 3 & -8 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{array} \begin{array}{c}
R 2 \times \frac{1}{3}
\end{array}\right] \rightarrow \begin{array}{rr}
1
\end{array}\right)
$$

The variable x_{3} is free : let $x_{3}=t$. Then

$$
\begin{aligned}
x_{1}+2 x_{3}=0 & \Longrightarrow \quad x_{1}=-2 t \\
x_{2}-\frac{8}{3} x_{3}=0 & \Longrightarrow \quad x_{2}=\frac{8}{3} t
\end{aligned}
$$

For example if we take $t=3$ we find $x_{1}=-6$ and $x_{2}=8$. Hence $v=\left(\begin{array}{r}-6 \\ 8 \\ 3\end{array}\right)$ is an eigenvector for B corresponding to $\lambda=-4$
Exercise: Check that $B v=-4 v$.

Notes:

1. To find an eigenvector v of a $n \times n$ matrix A corresponding to the eigenvalue λ : solve the system

$$
\left(A-\lambda I_{n}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

i.e. the system whose coefficient matrix is $A-\lambda I_{n}$ and in which the constant term (on the right in each equation) is 0 .
2. If v is an eigenvector of a square matrix A, corresponding to the eigenvalue λ, and if $k \neq 0$ is a real number, then $k v$ is also an eigenvector of A corresponding to λ, since

$$
A(k v)=k(A v)=k(\lambda v)=\lambda(k v)
$$

In the above example any (non-zero) scalar multiple of $\left(\begin{array}{r}-6 \\ 8 \\ 3\end{array}\right)$ is an eigenvector of A corresponding to $\lambda=-4$ (these arise from different choices of value for the free variable t in the solution of the relevant system of equations).

Example 3.2.8 Find an eigenvector of B corresponding to the eigenvalue $\lambda=3$.
Solution: We need to solve the system whose augmented matrix consists of $B-3 I_{3}$ and a fourth column all of whose entries are zero.

$$
B-3 I_{3}=\left(\begin{array}{rrr}
2 & 6 & 2 \\
0 & -4 & -8 \\
1 & 0 & -5
\end{array}\right)
$$

(obtained by subtracting 3 from each of the entries on the main diagonal of B and leaving the other entries unchanged).

We apply elementary row operations to the augmented matrix of the system :

$$
\left.\begin{array}{l}
\left(\begin{array}{rrrr}
2 & 6 & 2 & 0 \\
0 & -4 & -8 & 0 \\
1 & 0 & -5 & 0
\end{array}\right)
\end{array} \begin{array}{c}
R 1 \times \frac{1}{2} \\
R 2 \times\left(-\frac{1}{4}\right)
\end{array}\left(\begin{array}{rrrr}
1 & 3 & 1 & 0 \\
0 & 1 & 2 & 0 \\
1 & 0 & -5 & 0
\end{array}\right) \quad \begin{array}{c}
R 3-R 1 \\
\left(\begin{array}{rrrr}
1 & 3 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & -3 & -6 & 0
\end{array}\right)
\end{array} \begin{array}{c}
\\
R 3+3 \times R 2 \\
\left(\begin{array}{rrrr}
1 & 0 & -5 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 3 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{array} \begin{array}{c}
R 1-3 \times R 2
\end{array}\right] \begin{aligned}
& \longrightarrow \\
&
\end{aligned} \quad \begin{aligned}
& \\
&
\end{aligned}
$$

Let $x_{3}=t$. Then

$$
\begin{array}{rlr}
x_{1}-5 x_{3}=0 & \Longrightarrow \quad x_{1}=5 t \\
x_{2}+2 x_{3}=0 & \Longrightarrow \quad x_{2}=-2 t
\end{array}
$$

Eigenvectors are given by

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
5 t \\
-2 t \\
t
\end{array}\right)
$$

for $t \in \mathbb{R}, t \neq 0$. For example of we choose $t=1$ we find that $v=\left(\begin{array}{r}5 \\ -2 \\ 1\end{array}\right)$ is an eigenvector for B corresponding to $\lambda=3$. (Exercise: Check this).

