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Introduction
In Group Theory, a relatively new field of study,
few theorems bear the same weight as that of
Lagrange’s. Only fully proven in 1861 by Camille
Jordan, it introduces the notion of an index to
the algebra, as well as imbuing Groups with
some of the properties that make other forms
of algebra so intuitive. However, the theorem’s
converse is infamously false. We aim to
investigate where the theorem fails, but also
where it works, and perhaps to find a theorem
that works more generally.

Disproving Lagrange’s Theorem

A very easy example to demonstrate is that of
the group of even permutations, A4 :
Claim:
If G is a finite group, and
∃ d ∈ N s.t. d(|G|) then
∃ H ∈ G where H is a subgroup and |H| = d
Counter-Example:
Take a4 =
{(1), (12)(34), (13)(24), (123), .., (243)}
where |A4| = 12
note that 8 of these 12 are of order 3
Suppose H is a group of A4 with order 6, and
take an element a ∈ A4 that is not in H, of order
3. By Lagrange’s Theorem, it has an index of 2; of
most two of the subsets H, aH, a2H are distinct.
The equality of any pair of these implies a ∈ H :
H = aH→ a ∈ H
H = a2H→ a ∈ H
aH = a2H→ a−1(aH) = a−1(a2H)
−→ H = aH −→ a = H
H contains all eight elements of order 8
→ Contradiction!

Where does the TheoremWork?
The set of integers module 12 under addition
(Z12,+)

Z12 = 0, 1, 2, 3, 4, ..., 11

H2 = 0,6
H3 = 0, 1, 11
H4 = 0, 3,6,9
H0 = 0, 2, 4,6,8, 10
.
The group of 2x2 rotational matrices of nπ2 about
the origin under matrix multipication:
.

R =

{︃(︃
1 0
0 1

)︃
,

(︃
0 −1
1 0

)︃
,

(︃
−1 0
0 −1

)︃
,

(︃
,0 1
−1 0

)︃}︃
.

R1 =

{︃(︃
1 0
0 1

)︃
,

(︃
−1 0
0 −1

)︃}︃

|

This example is isomorphic to both the 4th roots
of unit and the rotational symmetries of a
square. These examples work because they are
abelian.

Here is another example of Abelian Groups,
with the 6th Roots of unity. Seeing it visually
gives a better insight into the theory.

Cauchy’s Theorem

This theorem is a weaker, but more robust,
method for finding subgroups. It states: Let G
be a finite group and let p be a prime dividing
|G|. Then there is an element of order p in G.
Proof:
First, suppose that G is an abelian group.If G is
generated by a single element g of order np, we
can see:
gn 6= i.d and (gn)p = i.d.
Hence, gn is our element.
.
If G is not generated by a single element, we can
consider a set of generating elements:
K = {g1, g2, ...gn }
As you can see, these terms are commutative.

|

Since these generating elements are
commutative, the order of the group, which any
selection of these generate, cannot be divisible
by any prime that is not contained in the order
of at least one of these generating elements.
.
Hence, the order of at least one of these
generating elements of G must be divisible by p,
and some power of this generating element
must be the required element of order p.
.
Whilst this discovery might not seem of much
significance, knowing an element of order p
means you can now generate cyclical subgroups,
using this element, of order p.

A Stronger Case Against the Converse

Lemma
Let S be the set of all right cosets of a subgroup
H in a group G, and let g ∈ G. Then, the right
multipication pg by g is a permutation on S, i.e,
pg ∈ A(s), the group of permutations on S.
Moreover g 7→ pg is a group homomorphism
from G 7→ A(S), whose kernal is contained in H.
Theorem: If n > 4 k ∈ (1, n), then An has no
subgroup of order n!

2k.
Disproving(By Contradiction)
Since An is simple for n > 4, the map g 7→ pg
defined in the lemma is a monomorphism. So
the order of An divides ([H : G])!
Now, as ([H : G])! = k!, it follows that n!

2 > k!
−→ Contradiction!
Whilst this theorem certainly is the final nail in
the Converse’s coffin, it is very dense, and relies
on some advanced actions, such as Group
Homomorphisms.

Conclusion
Though, sadly, the converse case of Lagrange’s
Theorem is disappointingly fragile, in its failing is
a rich field of study that calls upon a wide
arrange of concepts that are vital for any Group
Theorist in training. The topics discussed could
be developed and generalised to investigate
Sylow’s Theorem or Hall-S Groups.
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