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Overview
The group of symmetries of a cube is
isomorphic to S4,the group of permuta-
tions of four objects. This means that
if we number the vertices of the cube
from 1 to 4, and where opposite ver-
tices are given the same number, the per-
mutation corresponding to a symmetry
can be read out from one of the faces.
There are 48 symmetries in total. 24
of these are rotational symmetries. The
other 24 symmetries come from the re-
flections of the cube that are isometries
but which can not be carried out physi-
cally in a 3-dimensional space. Rotations
in 3D are non-commutative because rota-
tion changes direction of every potential
other axis except itself, hence rotational
symmetry in 3D is non-abelian.
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What is the Group S4?
The symmetric group S4 is the
group of all permutations of 4 ele-
ments(Wikiversity, 2019). It has 4!=24
elements and is non-abelian. S4 con-
tains 2-cycle permutations, product
of 2-cycle permutations, 3 and 4-cycle
permutations.
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Rotational Symmetries of a Cube
There are 24 rotational symmetries of a cube. These include the identity rotation, 9
combinations of rotations about the central axes, 8 combinations of rotations about
the diagonal vertices and 6 rotations about the diagonal midpoints. To find these, we
used GeoGebra (GeoGebra, 2019) and created our own model.
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The symmetries can be permutated in the following way when labelled like the image

in panel 1:
Centre:(1234), (13)(24) (1432); (1324), (12)(34), (1423); (1243), (14)(23), (1342)
Diagonals:(1)(243), (1)(234); (2)(143), (2)(134); (3)(142), (3)(124); (4)(132),
(4)(123)
Midpoints:(14), (12), (23), (34), (24), (13)

Symmetries of a Cube and Octahedron
The cube and the octahedron both have 48 symmetries, divided into 24 rotational
symmetries and 24 using a rotation and a reflection. This can be explained by the
duality of the two shapes. Essentially, the midpoint of the 6 faces of the cube corre-
sponds to the 6 vertices of the octahedron, and the 8 midpoints of the faces of the
octahedron correspond to the 8 vertices of a cube.

The 24 rotational symmetries of the octahedron can then be explained in terms of the
cube. It has 9 rotations of 90 degrees through its vertices the same way the cube has
nine through the centre of its faces. There are 8 rotations of 120 degrees through the
centre of the faces, similar to the 8 through the diagonals of the cube and finally 6
through the midpoints of the edges, identical to the cube.


